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Abstract: The study of land use/land cover (LULC) changes plays an important guiding role in
regional ecological protection and sustainable development policy formulation. Especially, the
simulation study of the future scenarios may provide a hypothetical prospect which could help
to determine the rationality of current and future development policies. In order to support the
ecological protection and high-quality development strategy of the Yellow River Basin proposed by
the Chinese government, the Great Yellow River Region (GYRR) is taken as the research area. The
multi-period land cover data are used to carry out the analysis of land cover changes. The MOLUSCE
(Modules for Land Use Change Simulations) plugin of QGIS software is used to carry out a land
cover simulation and prediction study for 2030 on a large regional scale. Finally, the land cover
status in the mountainous areas of the GYRR is analyzed thoroughly. The results show a decrease in
agricultural land and increase in forest land during the past 25 years from 1995 to 2020, and that this
trend would continue to 2030. The landscape pattern index analysis indicates that the land cover in
the GYRR has become more and more abundant, and the degree of fragmentation has become higher
and higher, while landscape patches were more evenly distributed in the GYRR until 2020. On the
other hand, the landscape pattern would tend to achieve a certain degree of stability in 2030. The
decrease in farmland and the increase in forest land illustrate the efforts made by the GYRR residents
and governments in improving the ecological environment under the policy of returning farmland to
forests and grasslands. On the other hand, although the residential areas in the mountainous areas
are far away from the mountain hazard historical points because of consideration during construction
with the help of the development of disaster prevention and mitigation over the years, there could be
problem of rapid and haphazard urbanization. It is worth mentioning here that the harmonious and
sustainable development of people and land in the GYRR mountainous areas still requires a large
amount of effort.

Keywords: land cover; QGIS; MOLUSCE; Great Yellow River Region; mountain hazards

1. Introduction

All lives on the earth depend on land, which is the material basis for human survival
and development. Land use refers to the activities related to the focused development and
utilization of land resources by human beings, such as industrial land, agricultural land,
residential land, transportation land, etc. Land cover refers to the natural or man-made
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coverage of the land surface. The material coverage related to various land uses mentioned
above includes crops, forests, grasslands, houses, and so on. Therefore, the land use is a
process occurring on the earth’s surface, while the land cover is the result of various surface
processes. Whether at the regional scale, national scale, or even global scale, change in land
use is constantly causing the accelerated change of land cover [1,2].

Land use/land cover (LULC) changes affect the natural basis of human survival
and development. Climate, soil, vegetation, water resources, and biodiversity are deeply
affected. They are closely related to global climate change, biodiversity reduction, ecological
environment evolution, and the sustainability of human–environment interaction [3]. The
research on land use and land cover changes could provide some reference for policy
formulation, land planning, and many other aspects. Nowadays, LULC change research
has become one of the core topics of global change research [4]. Many national government
agencies, scientific research departments, and social groups are paying attention to land
use and land cover change research, which involves a series of major issues such as the
protection and management of the ecological environment [5,6], the effective development
and rational protection of regional resources [7], the protection of arable land and food
security [8], and the sustainable development of the social economy [9,10].

At present, there are many models that analyze and simulate land use and land cover
change, such as the Markov chain model [11,12], cellular automata model [13], the future
land use simulation (FLUS) model [14], cellular automata Markov (CA–Markov) model [15],
SLEUTH [16,17], etc. Every model has its own specialty for addressing the composite issues
of land use and land cover changes. Now, various LULC prediction models have also been
applied to different regional scales. Han et al. [18] simulated future land use scenarios
for Beijing from 2010 to 2020 by combining the Conversion of Land Use and its Effects at
Small regional extent (CLUE-S) model with a Markov model. Arsanjani et al. [19] used a
hybrid model consisting of the logistic regression model, Markov chain (MC), and cellular
automata (CA) to improve the performance of the standard logistic regression model,
and predicted the future land use for 2016 and 2026 in the metropolitan area of Tehran,
Iran. Kafy et al. [20] used the Cellular Automata (CA) and the Artificial Neural Network
(ANN) machine learning algorithms to simulate the LULC and seasonal land surface
temperature (LST) scenarios of Chattogram, Bangladesh for 2029 and 2039. Puangkaew
and Ongsomwang [21] simulated the LULC data of Phuket Island using the CLUE-S model.
Based on the CA–Markov model, Chen et al. obtained a predicted land use map of a hilly
area, Jiangle, China, for 2014. Li et al. [22] presented a Future Land-Use Simulation (FLUS)
system to simulate global LUCC in relation to human–environment interactions from 2010
to 2100. In general, people may pay more attention to the simulation of land use and
land cover on medium and small scales. However, with the deepening of cross regional
economic and cultural exchanges, the simulation of land use and land cover on a large
regional scale is receiving more and more attention [23]. The improvement of computer
computing ability also provides conditions for the simulation of land use and land cover
on a large regional scale.

In order to achieve long-term peace and stability in the Yellow River Basin, the Chi-
nese government has set the ecological protection and high-quality development of the
Yellow River Basin national strategies that are equally as important as the coordinated
development of Beijing, Tianjin, and Hebei, the development of the Yangtze River economic
belt, the construction of the Great Bay area of Guangdong, Hong Kong, and Macao, and
the integrated development of the Yangtze River Delta [24]. In this study, we performed
the analysis of land cover changes and modeled the future scenario of Land cover with the
help of the Modules for Land Use Change Simulation (MOLUSCE) plugin within QGIS
software [25]. As compared with other land cover simulation tools, MOLUSCE has the
advantages of being open source, free of charge, and simple to operate. We used land
cover data from 1995 to 2020 with a five-year interval, along with spatial variables, such as
elevation, relief, slope, monthly average temperature, annual precipitation, river network
density, Gross Domestic Product (GDP), population, road network density, and city density.
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The logistic regression was used to construct transition potential modeling, and the Cellular
Automata was used to do the future land cover simulation of 2030. On the other hand, we
analyzed the land cover changes between different years, especially the land cover changes
in the mountainous areas of the Great Yellow River Region (GYRR), and comprehensively
discussed relationships between land cover and the mountain hazards in this region. This
study confirms that the MOLUSCE plug-in could be effectively applied to the simulation
of land cover on a large regional scale, and it is also an attempt to explore the relationship
between land cover change and mountain hazards on a large regional scale.

2. Materials and Methods
2.1. Study Area

The Yellow River, located in the north-central part of China (Figure 1), is the second-
longest river in China, with a total length of 5464 km [26]. It flows through the Qinghai
Tibet Plateau, Inner Mongolia Plateau, Loess Plateau, and Huang-Huai-Hai Plain [27], and
goes through nine provinces, including Qinghai, Sichuan, Gansu, Ningxia, Inner Mongolia,
Shaanxi, Shanxi, Henan, and Shandong [28,29]. The terrain of the Yellow River Basin is
high in the West and low in the East [30]. According to statistics, the total area of the
Yellow River Basin is 795,000 km2 [31,32]. The annual average temperature of the basin is
about 7 °C and the annual average precipitation is about 440 mm [33]. Now, the Yellow
River basin has become one of the most vulnerable areas of ecological environment in
China due to its complex landforms and climate differences. Serious water pollution,
land desertification, gradual reduction of runoff, intensified soil erosion, and vegetation
degradation [34] have become the focus of sustainable development of the Yellow River
Basin. On 18 September 2019, the “Ecological protection and high-quality development in
the Yellow River River Basin” was upgraded to a major national strategy by the China’s
government on a forum in Zhengzhou, Henan, China [35,36].

It should be noted that the Yellow River is a special river which exists in the form of
suspended river on the ground in the lower reaches. According to statistics, thousands
of years before, and until, 1946, the Yellow River burst 1593 times, and 26 major river
diversions occurred [37–39]. Among them, the northernmost diversion occupied the Hai
River and flowed into the Bohai Sea; the southernmost diversion passed through the Huai
River (Figure 1). Considering the particularity of the Yellow River, we believe that the
relevant research on the Yellow River cannot be limited to the existing basin, because its
lower reaches are bounded by artificial levees and do not show a natural state. Therefore,
we selected the Yellow River Basin, the Huai River Basin, and the Hai River Basin, which
all are greatly affected by the Yellow River, to form the GYRR (Figure 1), and used them as
the research area in response to “ecological protection and high-quality development of the
Yellow River Basin”. For the GYRR, relevant scholars have put forward similar concepts,
such as the “Great Yellow River theory” of Guo [40], which defines a similar research area
to guide relevant researchers to explore the development, evolution, generation, watershed
size, source, rheology, estuary, river length, disaster, and contribution of the Yellow River.
Mostern [41], in his book “The Yellow River-A Natural and Unnatural history”, also selected
a similar study area to introduce many research aspects of the Yellow River, such as history,
loess, levies, and levees.

The GYRR is bounded by the Yanshan and Yinshan Mountains in the north, Helan
and Qilian Mountains in the west, Qinling and Dabie Mountains in the South, and Bohai
and Yellow Sea in the East. The division of the surrounding mountains causes the GYRR
to become an independent geographical unit. The Yellow River, which has changed its
course for many times, has become the tie linking different parts of the geographical unit.
This area has become the main and core area of the Yellow River civilization. In terms of
administrative divisions, the GYRR occupies all of Shandong, Shanxi, and Ningxia, most
places in Henan and Hebei, the east part of Qinghai, the middle and north parts of Shaanxi,
the north part of Jiangsu and Anhui, the south part of Gansu, the northwest corner of
Sichuan, and the middle part of Inner Mongolia. A total of 12 provinces are involved.
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In terms of geomorphology, the western areas of the GYRR are the mountainous areas,
while the eastern part is a large area of alluvial plains. The area percentage of plains and
platforms is about 34.96%, and that of mountainous areas is 65.04% (Figure 2).
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Figure 1. GYRR extent, including the Yellow River Basin, the Huai River Basin, and the Hai River
Basin. A similar region concept has been recognized and mentioned by many scholars [40,41].
Historically, the Yellow River has burst and changed its course many times, affecting a wide area. At
present, the lower reaches of the Yellow River are overland rivers, which are not natural rivers, but are
significantly affected by human activities. Therefore, the study of the Yellow River should consider
the history and river characteristics. It is more reasonable to take the area affected by the Yellow River
as the study area of the Yellow River. In particular, we propose that historical archaeologists may
take this area as the research area for Yellow River civilization archaeology.
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2.2. Materials
2.2.1. Land Cover Data

The land cover data used in this study (1995, 2000, 2005, 2010, 2015, and 2020) were
downloaded from the land cover classification data set released by the European Space
Agency (ESA) climate change initiative [42]. The spatial resolution is 300 m. Using the
international Intergovernmental Panel on Climate Change (IPCC) land categories, the
land cover types were divided into 10 categories: (i) agriculture, (ii) forest, (iii) grassland,
(iv) wetland, (v) settlement, (vi) permanent snow and ice, (vii) shrubland, (viii) sparse
vegetation, (ix) bare area, and (x) water (Figure 3). We resampled these land cover data and
obtained multi-temporal 1000-m resolution land cover data.
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2.2.2. Spatial Variables Affecting the Land Cover Change

Physical and socioeconomic elements may cause alterations in land cover. For the
selection of spatial variables affecting land cover change, we mainly referred to the relevant
literature [14,43–49]. After comparison and analysis, we employed a variety of physical
and socioeconomic elements (Table 1), including the elevation, topographic relief, slope,
annual average temperature, annual average precipitation, river network density, GDP,
population, road network density, and city density.

The elevation data (Figure 4a) were downloaded from the EarthEnv website (https://
www.earthenv.org/topography). We found that the landform of the whole GYRR is high in
the west region and low in the east region. There are many mountains in the west, and
alluvial plains and hills in the east. The highest altitude of the whole area is 6018 m. The

https://www.earthenv.org/topography
https://www.earthenv.org/topography
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topographic relief was calculated from elevation, and the maximum relief in this region is
1112 m. The high value of relief is mainly distributed in the Taihang Mountains (Figure 4b).
The slope data (Figure 4c) were also downloaded from the EarthEnv website (https://
www.earthenv.org/topography). The high value distribution of the slope is similar to the
relief high value distribution. The maximum value of the slope is 38.36◦. The temperature
and precipitation data were downloaded from the WorldClim website. WorldClim version
2.1 climate data for 1970–2000 was released in January 2020. They provide monthly climate
data for minimum, mean, and maximum temperature, precipitation, solar radiation, wind
speed, water vapor pressure, and total precipitation at the four spatial resolutions, between
30 s and 10 min. Each download is a “zip” file that contains 12 GeoTiff (.tif) files, one for
each month of the year (January is 1; December is 12). We obtained the annual average
temperature by averaging the 12-monthly mean temperature data. It was found that
the maximum annual average temperature in this area is 16.18°C and the minimum is
−13.68 °C (Figure 4d). Due to the influence of monsoons, the temperature in the East is
higher, while the influence of ocean in the West is weak, and the temperature is lower.
The precipitation data were also taken from the WorldClim website. We summed up the
12-monthly precipitation data to obtain the annual average precipitation. The precipitation
in the GYRR decreases from Southeast to Northwest. The annual maximum precipitation
can reach 1723 mm (Figure 4e). The river network density was calculated using the river
network data (Figure 4f). In addition, data related to human activities mainly include GDP,
population, road density, and city density. Due to the accumulation of human beings in the
plain area, the four above-mentioned factors show the characteristics of high density in the
plain area (Figure 4g−j).

Table 1. Data sources.

Data Source Access Date

Elevation https://www.earthenv.org/topography [50] 20 May 2022
Relief Calculated from Elevation 20 May 2022
Slope https://www.earthenv.org/topography [50] 20 May 2022

Temperature https://www.worldclim.org/data/index.html [51] 22 May 2022
Precipitation https://www.worldclim.org/data/index.html [51] 22 May 2022

River https://www.hydrosheds.org/products/hydrorivers [52] 28 May 2022
GDP https://www.nies.go.jp/link/population-and-gdp.html [53] 6 June 2022

Population https://landscan.ornl.gov/ [54] 10 June 2022

Road https://sedac.ciesin.columbia.edu/data/set/groads-global-roads-open-access-v1/data-
download [55] 11 June 2022

City https://www.resdc.cn/data.aspx?DATAID=211 [56] 15 June 2022

2.2.3. Mountain Hazards in the GYRR

Mountain hazards generally refer to the hazards that can threaten human beings
and their living environment in mountainous areas [57,58]. Tang et al. [59] discussed
and defined “mountain hazards” in the 1980s, and considered that landslides, collapses,
mudslides, soil erosion, ice avalanches, frozen soil hazards, earthquakes, hail, and other
hazards in the mountainous areas could all be classified as mountain hazards. As compared
with the above-mentioned broad categories, mountain hazards, in a narrow sense, could be
understood as the phenomenon through which the water and soil materials move along the
slope under the driving force of gravity and have a certain destructive capacity [60]. Debris
flows, landslides, collapses, and mountain torrents are the representatives of common
typical mountain hazards. In this study, we collected data on landslides, mountain torrents,
and debris flows in the GYRR. For the collection of landslide and debris flow data, the global
landslide catalog (GLC) from 2007 to 2017 produced by the National Aeronautics and Space
Administration (NASA) of the United States was downloaded to collect rainfall-induced
landslide and debris flow events. The data sources of the GLC include media, disaster
databases, scientific reports, etc. [61]. On the other hand, the Dartmouth flood Observatory
was established in 1993, mainly recording major global flood events from January 1985 [62].

https://www.earthenv.org/topography
https://www.earthenv.org/topography
https://www.earthenv.org/topography
https://www.earthenv.org/topography
https://www.worldclim.org/data/index.html
https://www.worldclim.org/data/index.html
https://www.hydrosheds.org/products/hydrorivers
https://www.nies.go.jp/link/population-and-gdp.html
https://landscan.ornl.gov/
https://sedac.ciesin.columbia.edu/data/set/groads-global-roads-open-access-v1/data-download
https://sedac.ciesin.columbia.edu/data/set/groads-global-roads-open-access-v1/data-download
https://www.resdc.cn/data.aspx?DATAID=211
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For the mountain torrents, as a special flood occurring in the mountainous areas, the
mountainous areas of the GYRR were used to screen the above flood event points and to
obtain the mountain torrent points.
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factors as possible based on the availability of the data.

2.3. Methods
2.3.1. MOLUSCE Plugin

Asia Air Survey Co., Ltd. (AAS) released MOLUSCE (Modules for Land Use Change
Evaluation) at FOSS4G 2013, which was a conference for people working with open-source
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tools. As a user-friendly plug-in for QGIS 2.0 and above, MOLUSE is designed to analyze,
model, and simulate land use/cover changes. MOLUSCE is well suited to analyze land use
and forest cover changes between different time periods, model land use/cover transition
potential or areas at risk of deforestation, and simulate future land use and forest cover
changes [63].

2.3.2. Correlation Analysis

Correlation analysis refers to the analysis of two or more variable elements with
correlation, to measure the closeness of the correlation between the variable factors. The
measurement of the closeness of the relationship between geographical elements is mainly
realized through the calculation and interpretation of the correlation coefficient. Pearson’s
correlation and Cramer’s coefficient are the main correlation analysis methods in the
MOLUSCE plugin of QGIS. Among them, Pearson correlation analysis is a measurement
method of vector similarity [64]. The output range is from −1 to + 1, where 0 represents no
correlation, negative value represents negative correlation, and positive value represents
positive correlation.

The correlation degree is usually judged by the following value ranges:

• 0.8–1.0: extreme correlation;
• 0.6–0.8: strong correlation;
• 0.4–0.6: moderate correlation;
• 0.2–0.4: weak correlation;
• 0.0–0.2: very weak correlation or no correlation.

2.3.3. Change Analysis and Transition Potential Modeling

We used the MOLUSCE plugin inside QGIS to compute the land cover change between
the research intervals. For transition potential modeling, we used the logistic regression
approach. The elevation, relief, slope, monthly average temperature, annual average
precipitation, river density, GDP, population count, road density, and city kernel density
were used as the explanatory factors.

2.3.4. Prediction and Model Validation

The MOLUSCE plugin can not only efficiently compute land cover change analyses,
but is also well-suited for simulating future scenarios of land cover. We used the CA Simu-
lation tool [65–67] of the MOLUSCE plugin inside QGIS to simulate the future land cover
after we finished the transition potential modeling operation using the logistic regression
approach. Next, we entered the reference map and simulated map for comparison and
verification on the Validation page of the MOLUSCE plugin, and obtained the relevant
Kappa coefficient values as a reference to check the accuracy of the simulation results.

2.3.5. Annual Rate of Change Analysis

The annual rate of change (ARC) could be used to represent the magnitude of change
between corresponding years. In order to obtain the annual rate of change for each land
cover type, the area difference between the final year and initial year was divided by the
area of initial year and time (year) period. We used Equation (1) to assess the annual rate of
change in land cover categories [25,68]:

ARC =
AreaFinal − AreaInitial

AreaInitial∗t
× 100% (1)

where ARC is the annual rate of change in land cover categories. AreaFinal and AreaInitial
are the areas of final and initial year, and t is the interval of years between the final year
and initial year.
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2.3.6. Landscape Pattern Index Analysis

The landscape pattern is the arrangement of landscape blocks of different sizes and
shapes formed naturally or artificially in landscape space [69]. The landscape pattern
indexes, as the sub-classification of landscape indexes, reflect the structural characteristics
of land use/land cover types [70]. There are many types of landscape pattern indexes,
and because of the application of new theories in landscape ecology, they are constantly
being pushed forward [71,72]. Researchers often extend this part of the functions of the
Geographic Information System (GIS) to form a unique landscape index software package
based on GIS, such as Fragstats software package.

In order to study the spatial structure characteristics of different land cover types in
the GYRR, this study first introduced the landscape diversity index to characterize them.
Shannon’s Diversity Index (SHDI) is a measurement index which is widely used in ecology
based on information theory, and it is equal to the negative sum of the area ratio of each
patch type multiplied by the natural logarithm of its value at the landscape level:

SHDI = −
s

∑
i=1

PilnPi (2)

where s is the amount of patches, and Pi the area ratio of each patch type. When SHDI = 0,
it indicates that the whole landscape is composed of only one patch, and an increase in
SHDI indicates that the patch types increase or distribute equally in the landscape space.
In a landscape system, the richer the land use/land cover is, the higher the degree of
fragmentation is, and more uncertain information content leads to a higher calculated SDHI
value. The diversity depends on two factors: the number of types and the evenness of
area combination; therefore, the diversity index is the comprehensive embodiment of type
richness and combination complexity [73].

Shannon’s Evenness Index (SHEI) equals the SHDI divided by the maximum possible
diversity under a given landscape abundance (all patch types are equally distributed). The
smaller the SHEI value is, the more likely it is that some patch types may dominate the
landscape, and a value that is close to 1 indicates that there is no obvious dominant type
in the landscape while patch types are evenly distributed. Therefore, when SHEI = 0, it
indicates that the landscape is composed of only one type of patch without diversity, and
SHEI = 1 indicates that the patches are evenly distributed and have the greatest diversity.

SHEI =
SHDI

SHDImax
(3)

where SHDI is Shannon’s Diversity Index, and SHDImax is the maximum possible diversity
under a given landscape abundance (all patch types are equally distributed) [74].

2.4. Technology Roadmap

In the process of this research, our work includes the following steps (Figure 5):
(1) We downloaded the land cover data for six years, including 1995, 2000, 2005, 2010,

2015, and 2020, and then, by comparing and analyzing the data of the first year (1995) and
the last year (2020), we gained general insight into the land cover change in the GYRR in
the past 25 years.

(2) The data of 10 geographical elements from different data sources, including eleva-
tion, relief, slope, annual average temperature, annual average precipitation, river network
density, GDP, population, road density, and city density were collected.

(3) The MOLUSCE plugin was found in the plugin installation window and installed.
(4) We opened the MOLUSCE tool in the Raster menu drop-down list. Initial (2000)

and final (2010) land cover data were used as input. Geographic impact factors, such as
spatial variable, were used as input in the “inputs” tab of the MOLUSCE tool. Then, the
subsequent operations were carried out step by step. The data generated in the previous
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step were the basis for the next operation. In particular, we carried out the prediction of
land cover in 2030 after verifying the effectiveness of the prediction model.
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(5) By comparing the land cover data in 2020 and 2030, we analyzed the land cover
change over the next 10 years.

(6) On the other hand, we used the mountainous areas of the GYRR to cut out the land
cover data of six periods from 1995 to 2020.

(7) The area changes in different land cover types in the mountainous areas of the
GYRR were analyzed over time.

(8) Mountain hazard data points were downloaded and sorted to conduct the Eu-
clidean distance analysis. The relationship analyses include distance from hazard points,
number of settlement patches, distance from hazard points, and area of settlements.

3. Results
3.1. Correlation between Geographical Variables

We calculated the Pearson correlation coefficient, as shown in Table 2. After compar-
ison, it was found that the variables having strong correlation with each other include
temperature and elevation, city density and temperature, city density and elevation, and
relief and slope.

Table 2. Pearson correlation coefficient between different variables.

Temperature Road
Density Elevation GDP City

Density Slope Population Relief River
Density Precipitation

Temperature 0.26 −0.95 0.35 0.68 −0.48 0.19 −0.48 0.09 0.48

Road Density −0.27 0.30 0.32 −0.20 0.15 −0.15 0.09 0.19

Elevation −0.37 −0.64 0.49 −0.17 0.49 −0.07 −0.34

GDP 0.37 −0.24 0.19 −0.22 0.06 0.17

City Density −0.19 0.17 −0.19 0 0.35

Slope −0.15 0.87 −0.21 −0.05

Population −0.14 0.04 0.12

Relief −0.19 −0.07

River Density −0.12

Precipitation

3.2. Area Changes and Landscape Pattern Features

The statistical analysis was done on various land cover areas between 1995 and 2020.
The area change and the ARC of the same land cover were calculated (Table 3). It was
noted that the land cover with the largest change was agricultural land, with a decrease of
−16,437 km2. The increase in settlement area is the largest one, with an area of +27,364 km2

and an ARC of 223.69%. The increase in settlement shows the enhancement of human
activities in the past 25 years.

The area transfer analysis was also performed between different land cover types.
According to the area transfer matrix (Table A1), between 1995 and 2020, large change situ-
ations include: 11,171 km2 agricultural land was transformed into forest land, 53366 km2

agricultural land was transformed into grassland, and 20,047 km2 agricultural land was
transformed into settlement land. In terms of forest land, 10,233 km2 forest land was
transformed into agricultural land, and 101,506 km2 forest land was transformed into
grassland. On the other hand, 52,088 km2 grassland was transformed into agricultural
land, 12,597 km2 grassland was transformed into forest land, and 7645 km2 grassland was
transformed into settlement land. The Chord diagram (Figure 6) was used to express the
land cover change. It was found that agriculture, grassland, and forest are the main land
cover types, and account for most of the land studied.

We analyzed the landscape pattern indexes SHDI and SHEI in the GYRR, and the
values of the two indexes increased gradually with time (Figure 7). The continuous increase
in the SHDI value indicate that the land cover in the GYRR had become more and more
abundant, and the higher the degree of fragmentation was, the greater the uncertain
information content became. SHEI was getting bigger and bigger, approaching 1, which
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indicated that there was no obvious dominant type in the GYRR, and landscape patches
were more and more evenly distributed in the GYRR.

Table 3. Land cover change from 1995 to 2020.

Land cover type Area in 1995 (km2) Area in 2020 (km2) Area change (km2) ARC

Agriculture 788,382 771,945 −16,437 −0.08%

Forest 116,638 126,528 +9890 +8.48%

Grassland 476,334 474,525 −1809 −0.38%

Wetland 7005 5410 −1595 −22.77%

Settlement 12,233 39,597 +27,364 +223.69%

Permanent snow and ice 178 169 −9 −5.06%

Shrubland 1257 646 −611 −48.61%

Sparse vegetation 8662 6681 −1981 −22.87%

Bare area 25,027 15,683 −9344 −37.34%

Water 16,126 15,024 −1102 −6.83%

Land 2023, 12, 340 13 of 25 
 

 
Figure 6. Land cover change in GYRR from 1995 to 2020 using a Chord diagram expression. The 
right semicircle shows the proportions of different land covers in 1995, and the left semicircle 
shows the proportions of different land covers in 2020. The arrows in the circle indicate the land 
cover change. 

We analyzed the landscape pattern indexes SHDI and SHEI in the GYRR, and the 
values of the two indexes increased gradually with time (Figure 7). The continuous in-
crease in the SHDI value indicate that the land cover in the GYRR had become more and 
more abundant, and the higher the degree of fragmentation was, the greater the uncer-
tain information content became. SHEI was getting bigger and bigger, approaching 1, 
which indicated that there was no obvious dominant type in the GYRR, and landscape 
patches were more and more evenly distributed in the GYRR. 

 
Figure 7. Landscape pattern index analysis. (a) SHDI of GYRR; (b) SHEI of GYRR. The red line in 
the figure is a trend line added by the authors. 

3.3. Land Cover Prediction in 2020 and Validation 
We used the MOLUSCE plugin for the simulation of land cover in 2020. Using the 

projected 2020 data (Figure 8a) for comparison with the actual land cover data in 2020 
(Figure 8b), the percentage of correctness was calculated as 96.42%, the Kappa (overall) 
was 0.94, the Kappa (histo) was 0.98, and the Kappa (loc) was 0.95. The results show that 
the 10-year interval prediction model has a good result on land cover simulation and 
prediction. 

Figure 6. Land cover change in GYRR from 1995 to 2020 using a Chord diagram expression. The right
semicircle shows the proportions of different land covers in 1995, and the left semicircle shows the
proportions of different land covers in 2020. The arrows in the circle indicate the land cover change.

Land 2023, 12, 340 13 of 25 
 

 
Figure 6. Land cover change in GYRR from 1995 to 2020 using a Chord diagram expression. The 
right semicircle shows the proportions of different land covers in 1995, and the left semicircle 
shows the proportions of different land covers in 2020. The arrows in the circle indicate the land 
cover change. 

We analyzed the landscape pattern indexes SHDI and SHEI in the GYRR, and the 
values of the two indexes increased gradually with time (Figure 7). The continuous in-
crease in the SHDI value indicate that the land cover in the GYRR had become more and 
more abundant, and the higher the degree of fragmentation was, the greater the uncer-
tain information content became. SHEI was getting bigger and bigger, approaching 1, 
which indicated that there was no obvious dominant type in the GYRR, and landscape 
patches were more and more evenly distributed in the GYRR. 

 
Figure 7. Landscape pattern index analysis. (a) SHDI of GYRR; (b) SHEI of GYRR. The red line in 
the figure is a trend line added by the authors. 

3.3. Land Cover Prediction in 2020 and Validation 
We used the MOLUSCE plugin for the simulation of land cover in 2020. Using the 

projected 2020 data (Figure 8a) for comparison with the actual land cover data in 2020 
(Figure 8b), the percentage of correctness was calculated as 96.42%, the Kappa (overall) 
was 0.94, the Kappa (histo) was 0.98, and the Kappa (loc) was 0.95. The results show that 
the 10-year interval prediction model has a good result on land cover simulation and 
prediction. 

Figure 7. Landscape pattern index analysis. (a) SHDI of GYRR; (b) SHEI of GYRR. The red line in the
figure is a trend line added by the authors.



Land 2023, 12, 340 13 of 24

3.3. Land Cover Prediction in 2020 and Validation

We used the MOLUSCE plugin for the simulation of land cover in 2020. Using the
projected 2020 data (Figure 8a) for comparison with the actual land cover data in 2020
(Figure 8b), the percentage of correctness was calculated as 96.42%, the Kappa (overall) was
0.94, the Kappa (histo) was 0.98, and the Kappa (loc) was 0.95. The results show that the
10-year interval prediction model has a good result on land cover simulation and prediction.
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Figure 8. Actual and projected land cover in 2020. (a) Projected land cover in 2020; (b) actual land
cover in 2020. We know that the more similar the two above maps are, the better the simulation
results will be. However, there are still some subtle differences between the two maps. For example,
the expansion trend of the simulated settlements was still conservative compared with that of the real
settlements, and the real settlements expanded more rapidly, for example, in cities in Henan Province.

3.4. Land Cover Prediction in 2030

The above experimental results show that the 10-year interval land cover prediction
model has good results. At the windows “Cellular Automata Simulation”, the results show
the option “Number of Simulation iterations”. This means that, if only 1 is entered, it will
be projected into the future only once. For example, if the land cover data are for 2000 and
2010, the land cover of 2020 will be projected when entering 1, and 2030 will be projected
in the case of changing the “Number of Simulation iterations” to 2. In this study, the actual
land cover in 2020 was used as the input of the model to simulate and predict the land
cover in 2030 (Figure 9).

According to the statistical results of various land cover types, agricultural land,
wetland, permanent snow and ice, shrubland, and sparse vegetation would be further
reduced. The area of forest, grassland, settlement, bare area, and water would increase
(Table 4).
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Table 4. Land cover change from 2020 to expected 2030.

Land Cover Type Area in 2020 (km2) Area in 2030 (km2) Area Change (km2) ARC

Agriculture 771,945 767,522 −4423 −0.57%

Forest 126,528 129,153 2625 2.07%

Grassland 474,525 483,604 9079 1.91%

Wetland 5410 4533 −877 −16.21%

Settlement 39,597 36,983 −2614 6.60%

Permanent snow and ice 169 83 −86 −50.89

Shrubland 646 533 −113 −17.49%

Sparse vegetation 6681 4282 −2399 −35.91

Bare area 15,683 16,287 604 3.85%

Water 15,024 13,228 −1796 11.95%

In particular, it can be noted that a large amount of agricultural land would still turn
into grassland and settlement. Some settlement land would be converted into agricultural
land and grassland (Table A2). On the other hand, we analyzed the change in landscape
pattern index (SHDI and SHEI) and found that the two indexes did not change much
(Figure 10). This result shows that the land cover change in the GYRR may enter a stable
development stage when it reaches a certain degree in the future.
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3.5. Land Cover Change in Mountainous Areas

For the whole GYRR, the area percentage of plains and platforms is about 34.96%,
and that of mountainous areas is 65.04% (Figure 2). The unique energy gradient causes
the mountains to become an area of natural hazards development, such as debris flows,
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landslides, collapses, avalanches, soil erosion, and mountain torrents. These mountain
hazards may destroy urban and rural settlements, damage roads, bridges, and engineering
facilities, bury farmlands and forests, and block rivers and reservoirs. They may cause
huge casualties, property losses, and ecological damage, seriously threaten the lives and
property of the people in the mountainous areas and the safety of engineering construction,
and restrict the development of resources and economy in the mountainous areas [60].
We cropped out the land cover of the mountainous areas of the GYRR in different years
(Figure 11).
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Blind expansion of cities in mountainous areas can easily cause mountain hazards. It
would cause huge losses to the life, property, and safety of urban residents. For example, on
14 August 2017, a devastating geo-hazard chain—debris slide, debris flow, and sediment-
laden flood—occurred in Freetown, Sierra Leone, resulting in at least 500 deaths, more
than 600 missing, and hundreds of houses destroyed. Although rainfall was a trigger factor
for the Sierra Leone disaster, rapid and haphazard urbanization increased the hazard and
vulnerability [75]. The development of mountain towns is generally affected by many
factors such as social economy, topography, and geomorphology. Compared with plain
towns, their infrastructure is relatively weak. In particular, poor urban planning and
inadequate consideration of risks could lead to the construction of housing in dangerous
areas. On the other hand, the removal of hillside vegetation increases erosion potential;
low cost buildings using fragile building materials and methods could lack resilience;
inadequate risk management leads to weak emergency response.

We have also made area statistics for 10 land cover types (Figure 12). It can be seen
that the settlement area in the mountainous areas had been increasing continuously in
the past 25 years (Figure 12e), with an ARC value of +14.97%. Thanks to the policy of
returning farmland to forests and grasslands implemented by the Chinese government
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in mountainous areas, the area of ecological land such as forest land and grassland had
been continuously increased and, at the same time, the ecological environment had been
improved as a gratifying result (Figure 12b,c).
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We superimposed landslide, debris flow, and mountain torrent points on the base
map of the GYRR (Figure 13). It was found that the mountain-hazard points are mainly
distributed in the Central and Western regions of the GYRR. Next, the Euclidean distance is
calculated using these mountain-hazard point data in order to represent the distance from
the hazard point (Figure 13).

We made the statistics on the number of settlement patches, area of settlements in
the mountainous areas of the GYRR, and the average Euclidean distance from the hazard
points during the period from 1995 to 2020 with a time interval of five years (Figure 14).
According to the statistical results, when the number of settlement patches in mountainous
areas continued to increase, the distance between settlements in the GYRR and hazard
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sites was also increased (Figure 14a). On the other hand, the mountainous residential
areas in the GYRR also increased; however, the distance from the hazard point was also
increasing (Figure 14b). The above two situations show that, although the intensity of
human development in the mountains of the GYRR had been increasing, the awareness of
avoiding hazards was also improved.
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4. Discussion
4.1. Decrease of Farmland and the Increase of Woodland under Returning Farmland to Forest
and Grassland

In 1998, Wuqi County of Yan’an, Shaanxi, China began to forbid grazing on the
mountains [76]. After that, this small county, located in the northwest of the GYRR, began
to take the lead in implementing the policy of returning farmland to forests [77]. Since
1999, Yan’an has reached a forest coverage rate of more than 50% and a vegetation coverage
rate of more than 80% by returning farmland to forest over more than 20 years [78]. This
is only a microcosm of China’s project of returning farmland to forest and grassland.
From 1999 to 2013, a total of 298,000 km2 farmland in China was returned to forest. The
project covers 2279 counties, with 32 million farmers and 124 million farmers directly
benefiting. The central government of China has invested 64.7 billion dollars in the project
of returning farmland to forest [79]. From 2014 to 2018, the new round of returning farmland
to forest and grassland involved 25 provinces (regions) including Hebei, Shanxi, Inner
Mongolia, and others [80]. The Loess Plateau of the GYRR was one of the earliest regions to
implement the project of returning farmland to forest and grassland which has made great
contributions to the improvement of forest coverage in China [81]. Returning farmland to
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forest and grassland provides a reasonable explanation for the reduction in farmland and
the increase of forest land in the GYRR.

4.2. Urbanization in Mountainous Areas of China

Mountainous areas account for 24% of the earth’s land area, and more than 12% of
the world’s population lives in mountainous areas [82,83]. China has a large number
of mountains. The mountainous areas accounts for about 70% of the land area, and
the population accounts for about 45% of the total population of the country. Due to
the geographical and economic marginality of mountainous areas, the overall level of
urbanization development in mountainous areas is far lower than the average level of
China. The low level of urbanization and the slow urbanization process in mountainous
areas, and a large number of agricultural population gathered in mountainous areas, will
certainly bring great pressure to the ecological environment in mountainous areas. Among
China’s 1429 county-level administrative units in mountainous areas, 54% of the counties
have an urbanization rate of less than 20%, and only 10% have an urbanization rate of more
than 40% [84]. The development of natural resources, especially mineral resources, has
played a significant role in promoting the urbanization of mountainous areas, and a number
of resource-based cities have emerged. Tourism is a potential tool to promote the diversified
development of mountain economy, increase the employment of mountainous residents,
alleviate the poverty in mountainous areas, promote the participation of mountainous
areas in economic globalization activities, and correct the development gap in mountainous
areas. In recent years, tourism has become a new driving force to promote the urbanization
of mountainous areas, such as Emeishan City, Wuyishan City, Tai’an City, and Jiuzhaigou
County, and other counties and cities have developed rapidly through tourism. At the same
time, due to the lack of management and the lag in planning, some mountainous tourism
cities have also experienced excessive urbanization [85]. Compared with plain towns, the
urban planning in mountainous areas of China seriously lags behind the urban construction.
At present, low-level spread of built-up areas and inefficient use of land are common in
urban construction in mountainous areas. The level of urban functional layout is not
clear. Especially with the increase in population and the shortage of construction land, the
important functional layout of mountain towns basically ignores the avoidance of mountain
hazards, and the ability of disaster prevention and mitigation is weak. For example, the
area which was most seriously affected by the huge debris flow in Zhouqu, Gansu Province
happened to be the most densely-populated and prosperous area [86,87]. The development
of mountain towns in the GYRR also faces the above problems, accompanied by the increase
in the area of residential areas and the number of residential patches.

4.3. Harmonious and Sustainable Development of People and Land in Mountainous Areas

The development of urbanization in mountainous areas should also be compatible
with the resources and be coordinated with the land space and environmental capacity [88].
People should adhere to the fundamental support of ecological industry and form an
intensive and ecological development model in order to improve the quality of urbanization.
It is necessary to change the traditional direction and mode of urbanization development,
gradually lead the urbanization construction to the road of new urbanization, implement
the green development strategy, intensively utilize resources, improve resource efficiency,
promote the intensive utilization of water, soil, and energy resources, and accelerate the
construction of resource-saving cities and towns [89]. The development of urbanization
in mountainous areas cannot ignore the restrictions of and close relationship with the
mountainous environmental factors. We must grasp the basic characteristics and laws of
the mountainous environment from different scales and regional differences, and deeply
analyze the typical examples of the pattern, resources, and environmental characteristics,
as well as the process of urbanization in mountainous areas. At present, the GYRR is
carrying out the urbanization of the mountainous areas with an ARC value of +14.97%.
There are many problems that need to be seriously considered to minimize the ecological
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problems caused by the rapid urbanization of the mountainous areas and realize the
harmonious and sustainable development of the relationship between people and land in
the mountainous areas.

4.4. Keeping Away from Hazards Benefitting from Disaster Prevention and Mitigation in
Mountainous Areas of China

China’s mountains account for more than two-thirds of the total land area. With the
rapid growth of population and inappropriate production activities in mountainous areas,
mountain hazards occur frequently, and people have been disturbed and destroyed by
mountain hazards in the process of utilization in mountainous areas [90]. Since the 1960s,
China’s relevant departments have begun to carry out the investigation and control of
mountain hazards. For example, the color scientific and educational film "debris flow,"
released in 1965, brought the debris flow phenomenon onto the screen, which played a
very strong role in publicizing and popularizing debris flow knowledge [91]. At present,
many departments and colleges in China have trained many professional scientific and
technological workers in theoretical research and disaster mitigation-prevention practice
regarding mountain-hazards, and laid down a solid foundation in theoretical and technical
reserves, becoming a very active scientific and technological force in China [92,93]. On
the other hand, China has integrated the study of debris flows, landslides, floods, and
other hazards, combined the construction of the large environment with the management
of small watersheds, carried out comprehensive research on the process of various haz-
ards, implemented comprehensive disaster mitigation, scientifically assessed the current
situation and trend of hazards, and put forward quantitative indicators [94]. With the
increasing awareness of disaster prevention and mitigation in mountainous areas, although
the proportion of residential areas and the number of residential patches in mountainous
areas continue to increase, the safety of residential areas in mountainous areas has been
continuously improved due to the conscious distance from mountain hazard points of
urban construction [95].

5. Conclusions

In this study, the GYRR was selected as the research area. The land cover change
analysis, as well as simulation and prediction of future land cover, was performed, focusing
especially on the analysis of the relationship between land cover in mountainous areas
and mountain hazards. This work verifies that the MOLUSCE plug-in could be effectively
applied to land cover simulation on a large regional scale. Based on the analysis in the
current study, the following conclusions are drawn:

(1) Based on multi-period land cover data and physical and socioeconomic factors, the
logistic regression and CA model within the MOLUSCE plugin in QGIS software was used
to perform the future simulation of land cover in the GYRR. This could provide a reference
for related research, especially for large regional-scale land cover simulation.

(2) The decrease in farmland and the increase in forest land illustrate the efforts made
by the government and residents of the GYRR in improving the ecological environment
during the past 25 years.

(3) According to the simulation and prediction results for land cover in 2030, the agri-
cultural land will decrease, and the forest land will increase. At the same time, the increase
in land cover in residential areas could not be ignored, which indicates the continuous
development of urbanization in the GYRR. On the other hand, landscape pattern index
analysis shows that the land cover in the GYRR may enter a roughly stable development
stage when it reaches a certain degree in 2030.

(4) Returning farmland to forest and grassland in the GYRR is conducive to ecological
improvement. On the other hand, although the residential areas in mountainous areas
were built as far away as possible from the mountain hazard points during construction,
there could be a problem of rapid and haphazard urbanization, which should also be paid
attention to.



Land 2023, 12, 340 20 of 24

Author Contributions: C.G., J.I. and D.C. designed the method, conceived the experiments. C.G. and
D.C. analyzed the data; C.G., D.C., J.I. and S.Y. wrote the paper. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was supported by the Research Topics of Henan Social Science Federation
(SKL-2022-2717), the National Natural Science Foundation of China: (grant No. 42171186), the Major
Project of China National Social Science Fund in Art (grant No. 21ZD03), and the Research Start-up
Fund of Henan University (No. CX3050A0250560, Higher Education Commission of Pakistan, NRPU
project No.15732).

Data Availability Statement: Publicly available datasets were used in this study. We have added the
relevant data URL in the article.

Acknowledgments: The authors would like to thank all colleagues who gave us help during this
study. We hope that the relevant research on the Yellow River basin could consider the same
research area of GYRR, especially the research related to the archaeology and cultural heritage of the
Yellow River.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Area transfer matrix between land cover in 1995 and land cover in 2020.

Land Cover Type
2020 (km2)

Agriculture Forest Grassland Wetland Settlement Permanent
Snow and Ice Shrubland Sparse

Vegetation
Bare
Area Water SUM

1995
(km2)

Agriculture 701,727 11,171 53,366 287 20,047 2 36 174 118 1454 788,382

Forest 10,233 101,506 4562 8 123 0 12 1 5 188 116,638

Grassland 52,088 12,597 399,627 478 7645 10 61 943 1744 1141 476,334

Wetland 1224 0 1083 4015 206 0 0 0 6 471 7005

Settlement 1675 7 62 3 10,473 0 0 0 0 13 12,233

Permanent
snow and ice 0 0 32 0 0 145 0 0 1 0 178

Shrubland 140 456 94 0 9 0 420 106 26 6 1257

Sparse
vegetation 683 2 3358 2 64 0 77 4215 223 38 8662

Bare area 481 2 9681 9 246 5 40 1101 13,437 25 25,027

Water 2710 81 945 546 592 0 0 67 16 11,169 16,126

SUM 771,945 126,528 474,525 5410 39,597 169 646 6681 15,683 15,024 1,456,208

Table A2. Area transfer matrix between land cover in 2020 and land cover in 2030.

Land Cover Type
2030 (km2)

Agriculture Forest Grassland Wetland Settlement Permanent
Snow and Ice Shrubland Sparse

Vegetation
Bare
Area Water SUM

2020
(km2)

Agriculture 747,492 1457 15,042 4 7718 0 5 60 70 97 771,945

Forest 1911 123,088 1421 0 97 0 3 0 0 8 126,528

Grassland 8075 4273 459,873 9 966 0 1 162 1057 109 474,525

Wetland 76 17 193 4342 622 0 0 2 0 158 5410

Settlement 9490 61 3273 132 26,431 0 6 29 50 125 39,597

Permanent
snow and ice 86 0 0 0 0 83 0 0 0 0 169

Shrubland 3 52 71 0 0 0 510 3 7 0 646

Sparse
vegetation 64 45 1789 0 3 0 8 4014 707 51 6681

Bare area 36 9 1240 0 4 0 0 5 14,388 1 15,683

Water 289 151 702 46 1142 0 0 7 8 12,679 15,024

SUM 767,522 129,153 483,604 4533 36,983 83 533 4282 16,287 13,228 1,456,208
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