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Abstract: Studies evaluating the complexity of models, which are suitable to simulate grass growth
at regional scales in intensive grassland production systems are scarce. Therefore, two different grass
growth models (GrasProg1.0 and APSIM) with different complexity and input requirements were
compared against long-term observations from variety trials with perennial ryegrass (Lolium perenne)
in Germany and Denmark. The trial sites covered a large range of environmental conditions, with
annual average temperatures ranging from 5.9 to 10.3 ◦C, and annual rainfall from 536 to 1154 mm.
The sites also varied regarding soil type, which were for modelling categorised into three different
groups according to their plant available water (PAW) content: light soils with a PAW of 60 mm,
medium soils with a PAW of 80 mm, and heavy soils with a PAW of 100 mm. The objective was to
investigate whether the simple model performed equally well with the given low number of inputs,
namely climate and PAW group. Evaluation statistics showed that both models provided satisfactory
results, with root mean square errors for individual cuts ranging from 0.59 to 1.28 t dry matter ha−1.
The model efficiency (Nash–Sutcliffe efficiency) for the separate cuts were also good for both models,
with 81% of the sites having a positive Nash–Sutcliffe efficiency value with GrasProg1.0, and 72%
with APSIM. These results reveal that without detailed site-specific descriptions, the less complex
GrasProg1.0 model can be incorporated into a simple decision support tool for optimising grassland
management in intensive livestock production systems.

Keywords: GrasProg1.0; APSIM; perennial ryegrass; North-West Europe

1. Introduction

Despite the importance of grasslands in sustaining ruminant livestock farming, infor-
mation about grassland productivity and its response to changing climatic conditions, with
increasing frequency and severity of extreme events, is scarce [1–3]. Simulation models
constitute a key tool to understanding and predicting the effects of climate variations and
management strategies on biophysical systems. Various models have been developed
and used for predicting grass growth. Modelling approaches vary from simple empirical
to complex mechanistic models, and operate on different hierarchical levels, from the
individual plant [4], to plant communities based on plant functional types [5,6], and to the
field [7–10] or even global scale [11,12].

Complex process-based models at the individual plant level include numerous plant-
physiological functions, which are very parameter intensive and data demanding [6,13].
For modelling at higher hierarchical levels, simple physiological and morphological plant
traits as well as statistical functions, which represent dynamic plant growth processes, have
been integrated into mechanistic models [7,10,14]. Some of these simpler dynamic and
mechanistic modelling approaches have also been integrated into decision support tools
for practical grassland management [15]. The compromise between model complexity and
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input data requirement has been addressed in several studies, and the selection of the
model for a given application depends, among other factors, on the expected performance,
data availability as well as the users’ familiarity with the model [16,17].

In Europe, grasslands amount to about 34% of the agricultural area [18], with a similar
share in Germany of 28% [19]. Grasslands provide a wide range of ecosystem services including
carbon sequestration, water filtering, and the provision of habitats for wildlife [20–22]. Apart
from delivering substantial ecosystem services, grasslands are a low-cost feed source
for ruminants. Perennial ryegrass (Lolium perenne) is the most important forage grass in
temperate climates due to its high dry matter (DM) productivity potential in combination
with a high forage digestibility and nutritive value throughout the grazing season [23].
However, temperature-limited herbage growth in spring and autumn and moisture-limited
growth in summer can result in feed deficits in intensively managed systems. Thus, future
grass growth and thus feed supply is highly uncertain within and between seasons and
locations. Extreme drought periods have been shown to prolong the start of growth after
rewetting, which has been referred to as the legacy effect. This can particularly occur in
shallow-rooted grasses such as perennial ryegrass, which further influences the annual
yield variability [24].

Due to climatic conditions, grass growth rates are highly variable both in time (within
and between seasons at one location), and in space (between locations). For example,
average annual dry matter (DM) yields of perennial ryegrass in Germany show substantial
inter-annual variations as well as large variations within the various states of Germany,
with annual DM yields in the last decade ranging from <3 t ha−1 to >9 t ha−1 (Figure 1).
This is due to differences in the soils (including availability of water and nutrients) as well
as the high temporal variability in weather conditions. For example, the extended summer
drought all over North-West Europe in 2018 is reflected in a substantial drop in DM yield,
with reductions ranging from 60 to 93% compared with the average of the last 10 years.
This high variability has direct impacts on the levels of forage produced on farms, and thus
the feeding management.
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Statistisches Bundesamt (https://www.destatis.de/DE/Themen/Branchen-Unternehmen/Landw
irtschaft-Forstwirtschaft-Fischerei/Publikationen/Bodennutzung/landwirtschaftliche-nutzflaeche
-2030312217004.pdf; accessed 11 January 2021).

Many model comparison studies have been conducted for cropping systems, and
the use of model outputs of model ensembles is gaining attention [25,26]. Only a few
comparisons of grass growth models with different complexities (deterministic and em-
pirical) have been conducted [27–29]. While these few studies suggest that empirical
models are often comparable to more complex deterministic models, further evaluation
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is required, especially with studies covering more diverse climatic conditions. Moreover,
evaluating the model complexity (i.e., the number of variables) is of importance as the
addition of new variables may increase the probability of additional errors and less accurate
simulations [30,31].

In mechanistic and process-oriented modelling approaches such as the Agricultural
Production Systems Simulator (APSIM; [32]), pools and fluxes of carbon, nitrogen, and
water are represented, with sub-models for soil, water, carbon, and nitrogen, and the
plant. Plant growth is calculated based on physiological processes at the plant scale
(i.e., considering the leaf photosynthetic rate and carbon accumulation based on incoming
radiation, carbon dioxide, temperature, water, nitrogen, plant respiration, fertility, and
tissue turnover including senescence and detachment of dead material) [33]. In more
simple semi-mechanistic models, detailed physiological processes are not considered in
detail. In the GrasProg model, for example, the simulations are based on functional growth
equations that consider more general physiological principles of perennial grasses. Here,
the relative growth rate and development of the leaf area index as a function of time are
integral parts of the model to account for the photosynthetic efficiency of the grassland
canopy with subsequent considerations of the growth limiting factors for temperature,
radiation, and precipitation [34].

The objective of the current study was to compare two models with different com-
plexity, GrasProg1.0, an updated version of GrasProg [34] and APSIM, for predicting grass
growth across Northern Europe using only basic soil information and typical fertilisation
rates. The evaluation was based on long-term variety trials with perennial ryegrass from
Germany and Denmark.

2. Materials and Methods
2.1. Trial Sites

For the comparison of the two models, the grass growth data from Germany and
Denmark were used (Figure 2). In Germany, data were obtained from the states’ variety
testing trials (Landessortenversuche; sourced from http://www.landwirtschaftskamme
rn.de/ accessed 12 April 2021), and in Denmark from the national trials recorded in the
Nordic Field Trial System (NFTS; https://nfts.dlbr.dk/Forms/Forside.aspx; assessed 14
June 2021). These testing trials run over a period of three years, after which another set of
new varieties is started. To represent the perennial character of permanent grassland and
avoid the effects of poor grassland establishment in the first production year, data were
limited to the second and third production/trial year. Additionally, only perennial ryegrass
varieties from the medium maturity group (including reference varieties) were selected.
These resulted in 28 sites for Germany and four for Denmark, spanning different soil types
and a range of climatic conditions, with mean temperatures ranging from 5.9 to 10.3 ◦C
and a mean annual rainfall from 536 to 1154 mm (Table 1).

According to the protocol in the trials from Germany, nitrogen (N) fertilisation ranged
between 300 and 360 kg N ha−1, of which 80–100 kg ha−1 was applied in early spring for the
first cut, which, according to the prescribed management protocols [37], should be carried
out at BBCH51 (Biologische Bundesanstalt für Land- und Forstwirtschaft, Bundessortenamt
und CHemische Industrie). For further details, see [38]. Depending on the site, cuts were
taken in an area of 10 to 12 m2, with four replications and cut to a height of 5–6 cm above
ground. The DM content of the herbage was determined after oven drying the subsamples
at 60 ◦C for 48 h. In Denmark, N fertilisation was applied according to the Danish Plant
Directorates standards of 340 kg N ha−1 yr−1 for a pure grass, with 40% applied in early
spring, 30% after the first harvest, 20% after the second harvest, and 10% after the third
harvest. The plot size was 18 m2, and the cutting height was 5 cm. Dry matter was
determined by oven drying the subsamples at 60 ◦C for 40 h.

For the modelling, the soils were categorised into three different groups based on their
plant available water content (PAW) in the rootzone, namely ‘low’ with 60 mm, ‘medium’
with 80 mm, and ‘high’ with 100 mm (with a rootzone depth for ryegrass set as 500 mm).

http://www.landwirtschaftskammern.de/
http://www.landwirtschaftskammern.de/
https://nfts.dlbr.dk/Forms/Forside.aspx
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For Germany, the PAW for the soils was derived from the Ackerzahl, which is based on
the German land appraisal system (Reichsbodenschätzung), which was initiated in 1932 to
rank soils according to their potential productivity [35]. The Ackerzahl is scaled from 1 to
100 (for highest productivity), and takes the soil type, formation, topography, and climatic
conditions into account. Soils with an Ackerzahl up to 25 were classified into the ‘low’
PAW soil group, those with an Ackerzahl 25 and 65 to the ‘medium’ soil group, and those
with an Ackerzahl larger than 65 to the ‘high’ soil group. For the Danish sites, soils were
grouped according to the Danish soil classification scheme [36], with JB1 (coarse sandy)
and JB2 (fine sandy soil) in the ‘low’ soil group, and JB5 and JB6 (sandy clay) in the ‘high’
soil group (Table 1).

Daily weather data were gathered from meteorological sites close by the trial sites. For
Germany, these were obtained from the Deutschen Wetterdienst (Germany’s National Me-
teorological Service, DWD; https://www.dwd.de/; accessed 12 April 2021). For Denmark,
they were obtained from the online database (http://agro-web01t.uni.au.dk/KlimaDB/;
accessed 14 June 2021) managed by Aarhus University.
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Table 1. Site descriptions and meteorological stations (Met Station) used for the modelling.
DWD (=Germany’s National Meteorological Service, Der Deutsche Wetterdienst) was used for
the modelling. Lon = longitude, Lat = latitude in degrees, Alt = altitude in meters above sea level,
PAW = plant available water (mm) in 500 mm depth, T = mean annual temperature (◦C), mean annual
RF = mean annual rainfall (mm), Lon Met = longitude in degrees of the meteorological station, Lat
Met = latitude in degrees of the meteorological station, * proximate values. Soil classification (Soil) in
Germany (DE) was based on the Ackerzahl [35] and on the Danish soil classification scheme [36] in
Denmark (DK).

Site Lon Lat Alt PAW Soil Met Station Lon Met Lat Met T RF

Aulendorf, DE 9.66 47.94 570 80 56 Weingarten 9.62 47.81 9.3 926

Burkersdorf, DE 11.88 50.65 594 80 36 Schleiz 11.80 50.57 8.2 652

Dasselsbruch, DE 10.02 52.56 35 * 60 20 Celle 10.03 52.60 10.0 679

Eichhof, DE 9.68 50.85 200 80 57 Bad Hersfeld 9.74 50.85 9.1 658

Eslohe, DE 8.17 51.25 370 * 80 40 Eslohe 8.16 51.25 8.5 1086

Forchheim 2, DE 13.27 50.71 565 80 33 Marienberg 13.15 50.65 7.3 890

Haufeld, DE 11.28 50.80 430 80 56 Jena 11.58 50.93 10.3 594

Hayn-Schwenda, DE 11.08 51.57 441 80 40 Harzgerode 11.14 51.65 8.0 582

Heßberg, DE 10.78 50.42 380 80 45 Lautertal 10.97 50.31 9.1 739

Hjerm, DK 8.65 56.43 30 * 100 JB5/6 Vemb 8.22 56.71 8.6 796

Hohenschulen, DE 9.99 54.32 30 80 50 Kiel-Holtenau 10.14 54.38 9.4 759

Iden, DE 11.90 52.78 18 100 67 Seehausen 11.73 52.89 9.6 565

Kalteneber, DE 10.14 51.32 450 * 80 45 Leinefelde 10.31 51.39 8.6 700

Kißlegg, DE 9.89 47.79 700 * 80 58 Weingarten 9.62 47.81 9.3 926

Kleve, DE 6.17 51.79 15 80 56 Kleve 6.10 51.76 10.3 837

Kranichfeld, DE 11.20 50.86 330 * 80 46 Erfurt-Weimar 10.96 50.98 9.0 536

Kyllburgweiler, DE 6.62 50.07 529 80 34 Manderscheid 6.80 50.10 8.6 887

Malchow/Poel, DE 11.47 53.99 10 * 80 34 Boltenhagen 11.19 54.00 9.3 597

Nørager, DK 9.63 56.75 40 * 60 JB2 Aars 9.51 56.76 8.3 706

Obershagen, DE 10.06 52.50 40 * 80 45 Celle 10.03 52.60 10.0 679

Oberstaudhausen, DE 11.95 47.86 500 * 80 Rosenheim 12.13 47.88 9.2 1068

Oberweißbach, DE 11.14 50.58 660 60 23 Neuhaus 11.13 50.50 5.9 1154

Osterseeon, DE 11.93 48.07 560 80 45 Ebersberg 11.99 48.10 8.7 1036

Ovelgönne, DE 8.42 53.34 0 * 100 88 Bremerhaven 8.58 53.53 10.1 753

Paulinenaue, DE 12.71 52.67 30 * 60 30 Neuruppin 12.85 52.94 9.6 620

Scharnhorst, DE 9.52 52.53 38 80 50 Wunstorf 9.43 52.46 10.3 650

Schoonorth-Otterham, DE 7.22 53.50 −0.3 100 85 Emden 7.23 53.39 9.4 823

Schuby, DE 9.45 54.52 42.7 60 22 Schleswig 9.55 54.53 8.6 885

Skælskør, DK 11.31 55.24 6 * 100 JB6 Flakkebjerg 11.39 55.31 8.9 581

Sophienhof, DE 9.06 49.81 453 100 72 Michelstadt-
Vielbrunn 9.10 49.72 8.5 1031

Steinach, DE 12.61 48.98 508 * 80 56 Straubing 12.56 48.83 9.2 691

Vemb, DK 8.38 56.35 6 * 60 JB1/2 Vemb 8.22 56.71 8.6 796

2.2. Model Descriptions
2.2.1. GrasProg1.0

The GrasProg model is a semi-mechanistic model for simulating grass growth for
intensively managed ryegrass (Lolium perenne) dominated swards with typical non limiting
N fertilisation rates. The model only requires a few input parameters, and aside from
proxies for the number of generative tillers and the tiller density, only the soil’s plant
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available water (PAW) and meteorological factors (global radiation, mean daily temperature,
precipitation, and evaporation) are necessary. The model has previously been calibrated
for intensively managed ryegrass dominated grass swards with typical non limiting N
fertilisation rates in North-West Germany (GrasProg; [34]). Now included in the updated
version, GrasProg1.0 is a drought legacy factor that accounts for a period of unusually dry
weather. Such extreme and long drought events can, aside from an immediate reduction
in canopy photosynthesis, have longer-lasting legacy effects on vegetation growth [39,40].
The drought legacy factor is assumed to start after a drought period of seven days, after
which the start of the grass growth is delayed by 7 days, where a drought is defined as the
soil having a water content ≤30% PAW.

The model was set up for the trial sites described above using the meteorological
data from the climate stations nearby (Table 1) and the site relevant soil PAW, either low
(PAW = 60 mm), medium (PAW = 80 mm), or high (PAW = 100 mm).

2.2.2. APSIM

APSIM is a modular process-oriented simulation framework maintained by the APSIM
Initiative (www.apsim.info; accessed 14 June 2021). APSIM is climate-driven and comprises
a range of submodels including SoilWat for simulating water movement, SoilNitrogen
for simulating N cycling, AgPasture for pasture growth and N uptake, and the Micromet
module [41] for computing evapotranspiration using the Penman–Monteith equation.
AgPasture is based on the physiological model of Thornley and Johnson [42], which has
been shown to simulate growth patterns and seasonal yields well [43,44]. In brief, grass
growth is modelled with a daily time-step calculation based on intercepted global solar
radiation, radiation use efficiency, and growth modifiers for temperature, soil water, and
N supply. APSIM with the AgPasture model has been used successfully for simulating
grass growth under a range of climatic conditions in New Zealand, mainly binary mixtures
of ryegrass/white clover [45], but also for diverse pastures [46,47] and for annual and
perennial ryegrass in Australia [48]. The model has also been tested for predicting seasonal
grass growth rates under different climatic conditions for New Zealand and using generic
soils with PAWs estimated from the land use capability classes [49].

The model was set up with a pure perennial ryegrass (Lolium perenne L.), a root-
ing depth of 500 mm, and three different soil profiles: light (PAW = 60 mm), medium
(PAW = 80 mm), and heavy (PAW = 100 mm). The soil organic carbon in the top 100 mm
was set according to averages for grassland and different soil types across Germany [50],
with 3.8% for sandy soils (used for the light soils), 3.9 for loamy soils (used for the medium
soils), and 2.9% for clay soils (used for the heavy soils). The grass was cut according to the
trial management, and fertiliser was applied via a manager script, with the amounts and
timings as described above. Meteorological data required by APSIM are daily values of
rainfall, minimum and maximum daily temperature, and radiation.

2.2.3. Data Analysis and Statistical Analysis

Grass growth data were screened for outliers using the linear regression of pasture
production of the first cut vs. global radiation sum and temperature sum from the beginning
of the growing season (taken after a temperature sum of 250 ◦C with a base temperature of
3 ◦C) to the date of the first cut (Figure 3). Cook’s distance, which measures the change
in fitted response for all observations with and without the presence of observation i, was
then used to identify outliers. Observations that have a Cook’s distance >4 times the mean
were classified as outliers.

The performance of GrasProg1.0 and APSIM were evaluated based on common mea-
sures including the coefficient of determination (R2), Nash–Sutcliffe efficiency (NSE), root
mean square error (RMSE), and percent bias. For these, the R package hydroGOF [51]
was used. Additionally, a paired t-test was conducted using the R function: t-test (x, y,
paired = TRUE, alternative = “two.sided”).

www.apsim.info
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These statistics were calculated for both the entire dataset and for the individual sites
using data from each individual cut. For the evaluation of the two models, the biomass of
individual cuts as well as the annual amounts were used.
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indicated data that were included in the analysis, and red symbols those that were excluded for the
years provided. Eh = Eichhof. Hb = Heßberg; Hs = Hohenschulen; Ke = Kalteneber; Og = Ovelgönne;
Sby = Schuby, Sch = Scharnhorst; Sh = Sophienhof; S/O = Schoonorth/Otterham.

3. Results
3.1. Inclusion of a Legacy Effect

The improvement in GrasProg1.0 with the legacy effect can be seen in some of the
data collected in 2018, which had a prolonged summer drought (Figure 4). While both
versions of the model predicted the first cut in Kyllburgweiler well, the second and third
were overestimated without the legacy effect. For Osterseeon, including the legacy effect
reduced the grass growth during June too much, but in August, the simulations were much
closer to the measurements. This shows that the inclusion of a legacy effect improved the
model, but better parametrisation and/or its description in the model is required.
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3.2. Measured and Predicted Dry Matter Production—Individual Cuts

Predictions of seasonal DM production (individual cuts) by GrasProg1.0 for four
selected sites from varying geographical areas, altitudes, and with different meteorolog-
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ical conditions (Aulendorf, Kleve, Osterseeon and Schuby with measurements over 11
to 12 years) showed generally good agreement with measurements (Figures 5–9). For
GrasProg1.0, the RMSE ranged from 0.59 to 0.77 t ha−1 and NSE from 0.55 to 0.71 for
these four sites (Table 2; Figure 9). APSIM showed a slightly less good prediction for these
four sites, with RMSE ranging from 0.59 to 0.91 t DM ha−1 and NSE from 0.22 to 0.54. In
some instances, GrasProg1.0 slightly underpredicted the first cuts while APSIM at times
overpredicted these. The underestimation may be because GrasProg1.0 was calibrated on
a dataset, which was more intensively defoliated (8 cuts yr−1) compared with the data used
for evaluation in the present study (4–5 cuts yr−1). The defoliation frequency influences
various plant traits such as tiller density, which greatly influence grass growth [52], which
might explain the disparities between the measurements and simulations.
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For the entire datasets with a total of 32 different sites and measurement periods
ranging 1 to 13 years, the RMSE values were acceptable, ranging from 0.59 to 1.28 t DM
ha−1 for GrasProg1.0 and 0.56 to 1.26 t ha−1 for APSIM (Table 2). Accurately predicting
grass growth with its high seasonal and interannual variation is not an easy task [28,53].
These RMSE values are lower to those reported with ranges from 0.7 to 2.1 t DM ha−1, using
three different models for predicting the first two cuts of timothy grass under northern
European conditions [29]. They concluded that there is a need for a better understanding
of the processes involved and how they are described in models. However, for some sites,
the individual cuts were vastly over- or underpredicted, and the NSE values are close to
zero or negative.
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While there are no explicit standards for evaluating model performance, we used the
suggested thresholds for monthly values to judge if the model results were satisfactory,
namely NSE > 0.3, R2 and p-value > 0.025 [54]. Out of the 32 datasets, GrasProg1.0 predicted
grass growth for individual cuts satisfactorily for 11 datasets according to these criteria,
and APSIM only slightly more with 13 datasets. Closer inspections also showed that
GrasProg1.0 did not predict grass growth for the sites in Denmark satisfactorily, with high
underestimation (high Pbias). This is not astonishing, as the model has not been calibrated
for high latitude sites with long day-lengths. The APSIM model seemed to capture this
slightly better, with two of the sites being satisfactorily simulated. Many of the datasets
that were not satisfactorily predicted also had very short observation periods of ≥5 years.

Looking at the NSE values, GrasProg1.0 predicted the pattern of grass growth (indi-
vidual cuts) on 81% of the sites better than just using the average values. When considering
only observations ≥5 years, 85% of the sites were better predicted than using the averages.

Over the entire datasets, the individual cuts were reasonably predicted with GrasProg1.0,
with a RMSE of 0.94 t DM ha−1 and NSE of 0.43, and an overprediction of 12.9% (Figure 10).
The performance of APSIM was slightly worse, with a RMSE of 0.99 t DM ha−1, a NSE of
0.29, and an underprediction of 12.8%.
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3.3. Measured and Predicted Dry Matter Production—Annual

Considering that the models were not tuned to any of the data at each site and the
weather data were not obtained directly on the sites, both models performed well with
a RMSE ranging from 0.12 to 2.85 t DM ha−1 for GrasProg1.0 and from 0.06 to 2.55 t DM
ha−1 for APSIM. The inter-annual variability in annual yield was well-reflected (Figure 11).
Furthermore, GrasProg was calibrated with a dataset from permanent grasslands, in which
perennial ryegrass was the dominant species, but in which other grasses were also present.
For accurate predictions, it has been suggested that the genetic variability between cultivars
should be accounted for [29]. In our study, data from the national trials were restricted to
the medium maturity group but comprised different cultivars. Furthermore, to increase
the accuracy of the model for simulating growth in spring, the soil temperature should be
considered, rather than the air temperature [34].
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Table 2. Model performance statistics GrasProg1.0 and APSIM for individual cuts with data from variety trials from national trials in Germany and Denmark,
spanning different numbers of years. Bold numbers indicate good model performance (NSE > 0.3, R2 > 0.5, and p > 0.025), and x indicates if the model satisfies all
three criteria.

Site RMSE R2 NSE P (Paired t-Test) Pbias Slope Years Evaluation

GrasProg APSIM GrasProg APSIM GrasProg APSIM GrasProg APSIM GrasProg APSIM GrasProg APSIM GrasProg APSIM

Iden 0.72 0.49 0.68 0.76 0.64 0.10 0.094 0.555 12.40 30.60 1.10 0.57 14 x

Kißlegg 0.69 0.70 0.55 0.55 0.43 0.40 0.009 0.649 −14.00 2.00 0.98 0.65 13 x

Hayn-Schwenda 0.92 0.76 0.42 0.60 0.32 −0.24 0.000 0.001 −18.50 19.70 0.99 0.48 12

Kleve 0.74 0.79 0.75 0.72 0.71 0.54 0.509 0.984 3.70 11.90 1.33 0.69 12 x x

Kyllburgweiler 0.68 0.73 0.56 0.49 0.56 −0.45 0.600 0.000 2.60 43.10 1.01 0.60 12 x

Osterseeon 0.59 0.59 0.67 0.67 0.62 0.29 0.004 0.000 −10.30 21.00 1.06 0.67 12

Aulendorf 0.77 0.91 0.66 0.52 0.55 0.31 0.019 0.374 11.60 24.80 1.53 0.77 11 x

Oberweißbach 0.80 0.70 0.06 0.28 −0.10 −1.86 0.015 0.006 −10.20 23.50 0.46 0.29 11

Scharnhorst 1.01 0.85 0.67 0.77 0.36 0.77 0.000 0.779 −35.50 −0.80 1.35 1.06 11 x

Schuby 0.68 0.60 0.57 0.66 0.56 0.22 0.187 0.000 −6.10 25.50 1.00 0.64 11 x

Steinach 0.80 0.95 0.38 0.13 0.29 −0.57 0.021 0.300 −11.80 6.70 0.77 0.31 11

Forchheim 0.60 0.56 0.37 0.44 0.36 −2.65 0.349 0.000 4.50 59.50 0.86 0.43 10

Burkersdorf 1.01 0.75 0.53 0.74 0.49 0.01 0.382 0.000 7.90 58.10 1.38 0.89 9 x

Eichhof 0.98 0.73 0.59 0.73 0.48 0.63 0.000 0.538 −20.70 3.90 1.22 0.73 9 x

Skælskør 0.96 0.82 0.39 0.56 0.29 0.11 0.007 0.000 −18.10 27.80 0.97 0.64 9

Hohenschulen 1 0.85 0.81 0.66 0.69 0.25 0.69 0.001 0.513 −27.40 −3.50 1.55 0.95 7 x

Paulinenaue 1.30 1.26 0.10 0.15 −0.15 −0.30 0.042 0.088 −26.50 −23.40 0.58 0.43 7

Dasselsbruch 1.21 0.93 0.16 0.21 −0.25 −0.19 0.032 0.173 −29.40 −14.10 0.63 0.47 6

Eslohe 0.68 0.57 0.53 0.66 0.54 0.15 0.378 0.002 −4.20 28.00 1.08 0.77 6 x

Heßberg 0.85 0.82 0.53 0.57 0.38 −0.10 0.100 0.459 −20.40 6.90 0.97 0.48 6 x

Malchow/Poel 0.92 0.69 0.51 0.73 0.46 0.49 0.479 0.023 −9.50 26.80 1.41 0.78 6 x

Hohenschulen 2 0.95 0.74 0.60 0.76 0.48 0.73 0.064 0.087 −16.80 12.50 1.42 1.02 5 x x

Kalteneber 0.90 0.81 0.56 0.58 0.55 0.09 0.196 0.912 −9.40 32.30 1.16 0.68 5 x

Kranichfeld 0.81 0.80 0.52 0.52 0.49 −0.38 0.879 0.004 −9.60 44.70 0.81 0.55 5 x



Land 2023, 12, 327 13 of 18

Table 2. Cont.

Site RMSE R2 NSE P (Paired t-Test) Pbias Slope Years Evaluation

GrasProg APSIM GrasProg APSIM GrasProg APSIM GrasProg APSIM GrasProg APSIM GrasProg APSIM GrasProg APSIM

Oberstaudhausen 0.70 0.75 0.43 0.36 0.24 0.10 0.216 0.638 −17.40 −3.30 0.91 0.54 5

Ovelgönne 0.95 0.94 0.66 0.67 −0.08 0.46 0.008 0.047 −37.30 −21.00 1.38 0.96 5 x

Schoonorth 0.74 0.72 0.75 0.76 0.01 0.66 0.005 0.087 −34.90 −14.40 1.63 1.01 4 x

Nørager 0.73 0.45 0.56 0.83 0.05 0.53 0.024 0.593 −31.70 4.00 0.98 0.62 3 x

Obershagen 0.39 0.52 0.83 0.71 0.60 0.33 0.012 0.701 −20.20 4.60 1.00 0.58 3 x

Sophienhof 0.97 0.82 0.71 0.79 0.40 0.78 0.119 0.964 −24.30 −0.50 2.03 1.23 3 x

Vemb 1.01 1.02 0.00 0.00 −3.34 −1.89 0.050 0.176 −48.70 -23.90 −0.33 0.15 3

Hjerm 1.28 1.10 0.33 0.51 −0.04 0.56 0.000 0.821 −36.70 -2.10 1.60 0.84 2 x
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4. Discussion

In practical grassland farming, information about yield often remains unknown or is
only roughly estimated because management in recent decades has been animal-focused,
rather than on grassland management [55]. The good prediction of grass growth by
GrasProg1.0 means that the model can be used to aid farm management, especially by
providing information on the best cutting or grazing times dependent on the climatic
conditions. The model can also be used to evaluate likely changes due to climate change
such as how increasing temperatures and temperature sums affect the cutting regimes and
grassland productivity. The inclusion of the legacy factor in Grasprog1.0 means that the
model can be employed to aid in the development of farm-level adaptations according
to changes in the productivity and seasonality of grasslands resulting from the expected
increases in drought and heat extremes [56]. Furthermore, model-based knowledge of
annual yields can help to assist in optimising fertilisation strategies and avoid the risks
of negative environmental effects due to N losses [57]. Knowledge about annual yields is
also crucial, because according to the new German fertiliser ordinance [58], the permitted
amount of N fertilisation needs to account for the yield of the grassland in previous years.

Trade-offs between model complexity and validation have been discussed [59] and
include a more complete entity representation by complex models at the cost for the need of
a greater requirement for validation and meta data. In contrast, simple models require less
validation data, and model parameters are more generalised, with a greater probability of
a large difference between the observed and estimated values. The APSIM model was not
tuned to any of the data at each site, and general data were used rather than site-specific
values such as soil hydraulic properties and organic carbon. The importance of accurate soil
parameterisation when using a complex model such as APSIM for simulating soil water and
nitrogen dynamics, and pasture production has also been emphasised by Craig et al. [60].

The similar fit between measurements and predictions by the two models means
that GrasProg1.0 is a suitable grass growth model for North-West European conditions,
especially where site-specific parameters are not available. This finding is in line with
other studies where Hurtado-Uria et al. [28] found that an empirical model performed
equally well as a complex model for predicting grass growth across Ireland, and Skinner
et al. [27] also found no difference in the ability to simulate the grass forage yield in
Pennsylvania, USA. The authors highlighted the need for better validation datasets for
a robust comparison and parameterisation of the models. In contrast to other grass growth
models such as GrazeGro [15], STICS [9], LINGRA [61], and even the simpler MoSt GG
model [8], GrasProg only requires a few input parameters (namely temperature, radiation,
rainfall, evaporation, and PAW soil group), and thus can be incorporated into a simple
decision support tool for use by farmers and advisers.

When evaluating models, uncertainties in the observed data and the exact manage-
ment of the sites should also be considered. The high spatial heterogeneity of botanical
composition, nutrient availability, and defoliation strategy influence the forage biomass
and quality, especially in permanent grasslands [62,63]. Additionally, due to the extreme
variability of individual plants even at a small scale, the determination of grass biomass is
very difficult [64], and the methodology of measurements influences the data of biomass
and quality [65,66].

Furthermore, although the data used for model evaluation in this study were from
national trials with prescribed management protocols, the specific management varied
slightly between sites and years including differences in the amount of N applied and
cutting regimes. However, the defoliation frequency can influence various plant traits such
as the tiller density, which greatly influence grass growth [52] and may lead to additional
disparities between the measurements and simulations. One limitation of GrasProg1.0 is
that it does not account for N fertilisation management and currently does not include
pasture quality indicators. This is mainly due to a lack of sufficient forage quality data
across regions with different climatic conditions, covering seasonal pasture growth data
under a range of fertiliser treatments. However, due to its generic structure, GrasProg1.0
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has been shown to be suitable to deliver the information of biomass yields for intensively
managed and perennial ryegrass dominated grasslands in Germany and northern Europe.

5. Conclusions

The hierarchical (plant, leaf, molecular) and spatial level (field, farm, landscape)
at which grass growth is simulated is strongly dependent on the subsequent practical
implementation of a model. For implementation as a decision support tool for grass-
land management, the simple semi-mechanistic model GrasProg1.0 is highly suitable and
showed similar results to the more complex and process-oriented model APSIM. Such
complex models are very data rich and require site-specific input parameters, which are
often not known. In contrast, GrasProg1.0 only requires a few input parameters including
meteorological data and the classification of the soil into a PAW class.
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