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Abstract: Research on urban development patterns and urban sprawl in the Yangtze River Economic
Belt (YREB) has received wide attention. However, existing research has always made use of statistical
data, which are not often available. Considering the high availability of satellite data, this study
attempts to combine two satellite-acquired indexes, including urban area and night-time light, to
evaluate the urban development of the YREB during 2012–2019. The methods included using growth
index, rank-size law, and the Markov transition matrix, as well as constructing urban night-time
light density and unbalanced index of night-time light, derived from the Gini Index. Some important
patterns were revealed. Firstly, the three reaches (Upper Reaches, Middle Reaches, and Lower
Reaches) in the YREB have all shown rapid growth in urban area and night-time light, and they all
have increased in urban density. Secondly, from the perspective of regional disparity, the Upper
Reaches have the highest growth rate of the urban area, while the Middle Reaches have the highest
growth rate of night-time light; and the Upper Reaches have more urban sprawl, while the Middle
Reaches have shown more compact growth. Thirdly, higher urban density is related to more balanced
development across cities. Our study suggests new knowledge can be obtained by combining the
two indexes for understanding urban development in the YREB.
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1. Introduction

Since its Reform and Opening-up in 1978, China has experienced fast economic growth
along with urbanization over the last four decades. Urbanization has increasingly become
the main engine of urban economic development in China [1]. Therefore, the expansion of
urban land is playing an essential role in economic growth at multi-scales. However, the
rapid urbanization in China has resulted in accelerating urban sprawl, which is threatening
the environment, the ecosystem, and socioeconomic sustainability. Generally, urban sprawl
refers to the development of low density and low efficiency urban expansion, leading to
inefficient land resource utilization [2]. Urban sprawl causes a series of environmental
and social problems, such as traffic congestion [3], excess carbon emission [4,5], and
environmental pollution [2,3,6]. The studies on urban sprawl have attracted increased
attention. For example, Fulton et al. proposed an urban sprawl index (USI) by comparing
the matching degree between the growth rates of the urban population and the urban
area [7], which has been widely used in different regions to measure urban sprawl [8–10].
Li et al. integrated urban land census data and urban population data to investigate the
pattern of urban sprawl and find disparities [11]. As urban sprawl refers to urban expansion
with low efficiency, urban efficiency has been widely studied for urban development.
From the perspective of land use supply, high urban efficiency is reached when a given
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output, such as GDP, is achieved with minimum input from urban land resources, or when
maximum output is produced based on given input. To evaluate urban efficiency, the most
frequently used methods are data envelopment analysis (DEA), including the traditional
DEA model [12], the super-efficiency DEA model [13], and the slacks-based measure (SBM)
model [14], etc.

The Yangtze River Economic Belt (YREB) is defined as the region comprising the
economic areas around the Yangtze River, which is the longest river in China [15], and the
YREB was promoted in priority of state strategy in 2014. The YREB covers 11 provincial
regions with an area of 2.05 million km2. At present, studies on the YREB mainly include
urbanization [16–18], ecological environment [19–22], and sustainable development [23–25].
Urbanization in the Yangtze River Economic Belt has attracted widespread attention in
the academic community and government. In terms of the relationship between urban
expansion and the economy, Xie et al. explored the impact of urban construction land
growth on regional economic growth in the YREB using spatial analysis and the econometric
model, and the results suggest that urban expansion in the YREB has had a positive impact
on economic growth [16]. Liu et al. explored the relationship between urban land expansion
and the scope of human activities in the YREB based on Landsat and nocturnal light
data [26]. As for urban spatial patterns, Li et al. mapped their evolution in the YREB using
the rank-size law and the unbalanced index [27]. Guan et al. simulated and predicted
the urban sprawl trend in the YREB [15], suggesting that the urban area in the YREB will
continue to spread and present unbalanced patterns.

Under continuous urban sprawl, an in-depth analysis of the urban expansion and
efficiency in the urban development in the YREB is of great practical significance. In the
past stage of rapid urbanization growth, the extensive expansion of cities in the YREB
has led to problems such as the waste of urban land resources, which impeded the im-
provement of urban efficiency [28]. Some recent research has used a variety of methods
to assess urbanization efficiency in the YREB. For example, Jin et al. applied stochastic
frontier analysis to evaluate the urbanization efficiency of more than 100 cities over the
YREB [17], and it suggests that the urban efficiency shows a trend toward growth, but it
also shows large intra-provincial and inter-provincial variations. Liu et al. adopted the
super efficiency SBM model to analyze urban land use efficiency in 11 provinces and cities
in the YREB [28]. Wang et al. used the space-time interaction method to explore the match
between land expansion and population growth in the entire YREB and the major urban
agglomerations [29].

Evaluating urban efficiency of the YREB is important for formulating reasonable plans
for sustainable urban development in the region. Therefore, establishing a technical frame-
work for evaluating the urbanization process in the YREB is urgently needed. However,
previous studies measuring urban expansion and land-use efficiency in the YREB, made
use of statistical data, such as investment data, GDP and population, which are not always
available for some regions and years in YREB. On contrast, remote sensing data from satel-
lite is acquirable at large scale across different years, among which the satellite-observed
night-time light can be viewed as output of urban development [30,31] and thus it can be
utilized to measure the urban efficiency. This study attempts to measure the urban growth
patterns and urban efficiency in YREB from two different satellite products, night-time
light imagery and impervious maps derived from Landsat images. These datasets are
completely derived from satellite observation, making them available and comparable
in both spatial and temporal dimensions. Based on these data sets, we will analyze the
spatiotemporal patterns of urbanization in YREB during 2012 and 2019 and evaluate urban
growth efficiency by constructing a new index. This methodology may help to provide
a new way to measure urban growth and urban efficiency in YREB as well as other regions.
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2. Materials and Methods
2.1. Study Area

The concept of YREB was first proposed in 2013 and was promoted to state strategy
in 2014. The Yangtze River Economic Belt is also the largest economic zone in China
with the highest economic density. It is responsible for realizing China’s future economic
sustainable development. The YREB, as illustrated in Figure 1, includes nine provinces
(e.g., Jiangsu, Zhejiang, Anhui, Jiangxi, Hubei, Hunan, Sichuan, Yunnan, and Guizhou)
and two municipals (e.g. Chongqing and Shanghai). The YREB is divided into three sub-
regions, Upper Reaches (Sichuan, Yunnan, and Guizhou and Chongqing), Middle Reaches
(Jiangxi, Hubei and Hunan) and Lower Reaches (Jiangsu, Zhejiang, Anhui and Shanghai).
Among them, the Upper Reaches includes Yangtze River Delta Urban Agglomeration,
which is the largest urban agglomeration with strong economic vitality and the highest
developed region in China.
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2.2. Study Data

In this study, there are two main data sources. The night-time light images and
impervious surface map.

2.2.1. Night-Time Light Images

Previous studies show that night-time light in cities are highly correlated to GDP,
electricity consumption, and urban population [32,33]; thus it is viewed as a comprehensive
proxy for urban and economic development. Furthermore, considering that the statistical
data have some bias and are sometimes not comparable in temporal and spatial dimension,
night-time light has widely been used as a proxy for urban and social development [34–37].
Accordingly, night-time light images have been increasingly used in the urbanization
research of the YREB. For example, Xu et al. evaluated the urbanization process of the
YREB at different scales using DMSP/OLS night-time light images [38]. Zhong et al.
adopted the landscape index, standard deviation ellipse and spatial correlation analysis to
quantify the spatial and temporal evolution of urban land expansion and its driving factors
in the YREB by using DMSP/OLS night-time light images [39]. Our study also employed
night-time light as the index to measure the economic activities in the urban area of YREB.

We select the Black Marble product suite, produced by National Aeronautics and Space
Administration (NASA), as the night-time light images, which have been widely used in
recent years [40,41]. The Black Marble is produced from Day/Night band (DNB) of Visible
Infrared Imaging Radiometer (VIIRS). The annual composites (VNP46A4 product) of the
Black Marble was produced by averaging the daily product (VNP46A2) in which stray
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light, moonlight, atmospheric effects and vegetation effect were removed [42]. Normally,
clouds will impact quality of the daily product because the satellite is not able to receive
a night-time light signal in cloudy weather, but this effect is not significant in the annual
composite (VNP46A4), as it is rare that a region is covered by clouds through all the
days in a year; therefore, the annual composites are robust to reflect the spatio-temporal
distribution of night-time light. The All-Angle_Composite_Snow-Free product from the
VNP46A4 was selected, which is downloadable at the NASA website (https://ladsweb.
modaps.eosdis.nasa.gov/, accessed on 27 December 2022). In the Black Marble product,
the global areas were divided into image tiles, with each tile covering 10◦ × 10◦ area. To
cover the entire YREB each year, eight tiles were downloaded, and the images for 2012 and
2019 were mosaicked as shown in Figure 2.
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Figure 2. The night-time light images for YREB: (a) 2012; (b) 2019. Note: the radiance higher than 15
was set to 15 for demonstration.

2.2.2. Impervious Surface Data

In urban expansion and urban efficiency analysis, the urban area is viewed as
a major index for urban development. Although statistical books on China provide urban
area data, their comparability is not reliable because the statistical scale varies among dif-
ferent cities.s To overcome this problem, we use a satellite-derived impervious map in this
study, as satellite remote sensing is able to map the urban extent accurately without human
interferences. The data set is 30-m time-series globally impervious surface area (GISA) [43]
and can be downloaded at Zenodo (https://zenodo.org/record/6476661#.Y1Sh9bZBw2y,
accessed on 27 December 2022). The dataset, derived from Landsat images at 30 m resolu-
tion, was validated with accuracy of 93% [43], suggesting that it is feasible for evaluating
urban expansion. The impervious maps for 2012 and 2019 were shown in Figure 3. We will
transform the impervious map to urban land cover data in the following section.
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2.3. Methodology
2.3.1. Data Preprocessing

For the Black Marble, the product of night-time light used in this study, the original
data format is HDF5, and it is converted to the GeoTiff format for convenience in analysis.
The mosaicked images were reprojected into Albers Equal Area Projection in WGS84
coordinates, and the spatial resolution is 500 m.

For the GISA dataset, it is composed of tiles with 5◦ × 5◦ spatial coverage. The
original spatial resolution is 1 arc second. The downloaded tiles were mosaicked; they were
reprojected onto the Albers Equal Area projection in WGS 84 coordinates, and the final
spatial resolution was 30 m. Consequently, we converted the binary impervious map (value
in 0 or 1) at 30 m resolution into a proportion map of impervious surface at 500 m resolution.
Finally, an urban mask is defined as pixels, where proportion of impervious surface is larger
than 20%, in the National Land Cover Dataset by the United States Geological Survey [44];
it has been successfully applied to mapping urban extent on a large scale [45]. The urban
mask, at 500 m resolution, will be used to calculate urban areas in the following sections.

2.3.2. Measuring Urban Size and Density from Night-Time Light

In this study, we used two satellite-acquired indexes to measure the urban size with
two indexes, urban area and total urban night-time light. The urban area is calculated
from the urban mask of a city as defined in Section 2.3.1. The total night-time light is
calculated as

TNL =
n

∑
i=1

radi (1)

where TNL denotes the total night-time light inside an urban mask, radi denotes radiance
of ith pixel of the VIIRS image, and n denotes the number of VIIRS pixels inside the urban
mask. The night-time light per area for a city is defined as

Density =
TNL
Area

(2)

where Area denotes the urban area of a city. Considering that the unit of TNL is nW/cm2/sr
and unit of area is km2, the unit of Density is nW/cm2/sr/km2, which is overly complex
to understand. Therefore, we use the number of urban pixels to replace the urban area in
Equation (2), by considering that Area = nSpixel where n is the number of urban pixels and
Spixel is the pixel size which is a constant in this analysis. Therefore, we constructed urban
night-time light density (UNLD) as:

UNLD =
TNL

n
(3)

where UNLD denoted the night-time light density inside an urban region, TNL denoted
the total night-time light inside an urban area defined by an urban mask, and n denoted the
number of pixels inside the urban area. UNLD is proportional to night-time light per urban
area as defined in Equation (2), and thus it can represent the light density in the urban area.
The advantage of using UNLD to reflect the urban density is that its unit is nW/cm2/sr,
which is understandable from a physical perspective. The design of UNLD is to represent
urban density and urban efficiency, as a previous study indicates that night-time light per
urban area can represent the GDP density [30], of which the higher value represents higher
urban efficiency.

2.3.3. Measuring Distribution of Urban Size

In this study, we used two methods, rank-size analysis and the Markov transition
matrix to analyze the urban size distribution and its evolution in YREB.

• Rank-size law
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The rank-size law has been widely utilized to describe distribution of urban size,
especially to quantify the degrees of agglomeration or dispersion of cities in a region. The
rank-size law was firstly proposed by Felix Auerbach [46], and was then improved by
Singer [47] and Zipf [48]. A general rank-size law is presented using the following equation:

Pi = P1R−q
i (4)

The above equation can be logarithmized to:

lgPi = lgP1 − qlgRi (5)

where Pi denotes the size of the ith largest city, P1 denotes the size of the largest city,
Ri denotes the rank of the ith largest city, and q is the Zipf index. The Zipf index is
important for reflecting urban size distribution, and it is equal to one when urban size is
optimally distributed. Big cities are more agglomerated when q is larger than one, and they
are dispersed when it is less than one. The Zipf index is the key index showing the rank-size
law. Historically, many variables, including population, urban area, GDP and night-time
light have been used to reflect urban sizes and thus can be the inputs for Pi [49–52]. In
this study, urban area and total night-time light (TNL) are both employed to describe the
urban sizes.

• Markov transition matrix

The rank-size analysis is able to show the entire distribution of urban size inside
a region, but the dynamics of individual cities and their statistics cannot be reflected in
the analysis. Here, we employed the Markov transition matrix to analyze how cities
transformed from one level into another. A typical Markov transition matrix is used to
analyze the urban size transition from year to the next year (or 2 adjacent years) [53]. Night-
time light has some irregular fluctuations during short periods due to sensor degradation
or errors in producing image composition [54], resulting in the phenomenon that the night-
time light may show a small decline from one year to the next year in cities with economic
growth. A simple way to reduce this kind of abnormality is analyzing night-time light
change over a long period rather than a short period [35], so that we only focus on urban
size transition during 2012–2019, in which night-time light changes in most of the cities
are large enough to suppress the data abnormality. In other words, we only compare the
night-time light in 2012 and 2019, in which the effect of data abnormality is relatively small
compared to the real night-time light change.

To take Markov transition analysis, we sort all cities into types A, B, C and D based on
previously established criteria [55,56]:

xi =


A, si ≤ 0.5m

B, 0.5m < si ≤ m
C, m < si ≤ 2m

D, 2m < si

 (6)

where s is the size of ith city, m is the average size of all cities, and xi ∈ {A, B, C, D} defining
the city type. For the year 2012, each city has a type based on Equation (6), and the city has
a same or different type in the year 2019. In the ith column and jth row of the transition
matrix, the value nij denotes the number of cities which were classified into Class i in 2012
and into Class j in 2019. In this study, both urban area and total night-time light were
used to describe the urban size so that the transition matrices were generated from the
two indexes.

2.3.4. Measuring Urban Growth Patterns

We calculated the change rates of three variables including urban area, total night-time
light, Urban Night-time Light Density (UNLD), and Unbalanced Index of Night-time Light
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(UINL), which will be defined in Section 2.3.6, to evaluate the urban growth patterns in the
YREB. The growth rate is defined as:

ri,j =
xj − xi

xi
(7)

where ri,j denotes growth rate of x in a region between ith year and jth year, xi and
xj denotes the value of x in the ith year and jth year, respectively. Based on the Equation (3),
urban area grows slower than the night-time light if the growth rate of UNLD is positive,
and urban area grows faster than the night-time light if the growth rate of UNLD is negative.
Therefore, the negative growth of UNLD reflects over-growth of urban area compared to
the night-time light, indicating that urban sprawl occurs in the city and urban efficiency is
decreased. We have to note that i and j are set to 2012 and 2019, respectively, in this study.

2.3.5. Spatial Statistics

• Spatial autocorrelation analysis

In this study, we need to analyze spatial patterns of urban growth, especially the
aggregation pattern, by employing different indexes. Spatial autocorrelation analysis can
explore the aggregation, discrete, or random distribution of elements according to their
location and value [57]. By calculating spatial autocorrelation index, geographic patterns
can be described from qualitative to quantitative. Specifically, Global Moran’s I and local
Moran’s I can well represent spatial similarity or spatial disparity, which will be utilized in
this study. For evaluating urbanization in the YREB, the spatial autocorrelation analysis
will help to explore the aggregation of different indexes and their change rate, which are
related to urban forms and growth. Technical details of spatial autocorrelation analysis can
be found in the literature [58].

• Geographically weighted regression

Geographically weighted regression (GWR) is a spatial analysis method used to
address spatial heterogeneity, which explores the spatial variation and related driving
factors by establishing a local regression equation at each geographic location. Since GWR
takes into account the local effects of spatial objects, it has higher accuracy compared to
traditional methods and advantages in the process of modelling and prediction. GWR has
been widely applied in exploring information and knowledge included in the night-time
light images [59,60]. In this study, we will use GWR to model unbalanced development,
which will be described in Section 2.3.6, by urban density which was defined in Section 2.3.2.
Considering that GWR has systematic and complicated theories, technical details of how to
use GWR refer to the literature [61].

2.3.6. Measuring Unbalanced Development in Urban Area

In economics, the Gini Index is widely used to measure inequality of income distribu-
tion, and higher Gini represents higher inequality of income inside a society [62,63]. Based
on the same principle, to measure inequality of regional development, Elvidge et al. pro-
posed the Night-time Light Development Index (NLDI), based on night-time light images
and population density map [64]. The NLDI describes the inequality of night-time light
per capita, by measuring the mismatch between night-time light and population, and it
was applied for studies on unbalanced development in different areas [64,65]. Considering
that the population density map includes a lot of uncertainties, and its accuracy is difficult
to measure, we used the simplified NLDI, called the unbalanced index of night-time light
(UINL), which only considers the distribution of night-time light inside urban area.

The principle of the UINL is simple: if all the night-time lights are concentrated in
one spatial grid of urban area, the distribution of night-time light is totally unbalanced;
contrarily, if all the lights are equally distributed in all the spatial grids inside a city, the
distribution of night-time light is totally balanced. To illustrate the principle of constructing
the UINL, a Lorenz curve, which was used to define the Gini Index, is drawn in Figure 4.
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The steps for computing the UINL is as follows. Firstly, extract all the radiance values of
the VIIRS images inside the urban mask at 500 m resolution, and sort the values from low
to high. Consequently, a curve of cumulative percentages of night-time light, measured
by radiance, is drawn as in Figure 4, and this is the Lorenz Curve. Finally, get the UINL
by calculating the area size of the UINL = A/(A + B), as illustrated in Figure 4. Given
that the night-time light is equally distributed in the urban land, A = 0, and UINL = 0; if
night-time light is only concentrated in a small region of the urban land, UINL is very close
to 1. These cases show that a larger UINL represents larger unbalanced development inside
an urban region.
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Figure 4. The Lorenz curve for calculating the Unbalanced Index of Night-time Light (UINL).

3. Results
3.1. Distribution and Evolution of Urban Size

Using the indexes of urban area and total night-time light, we calculate the urban sizes
during 2012–2019 as shown in Figures 5 and 6. To keep the two sub-figures comparable in
colors, the high values (also low values) were set to the same values. For example, in fact
the largest urban area in 2012 is less than 4000 km2, and it is larger than 4000 km2 in 2019.
This strategy of demonstration is also applied to Figure 6, Figure 11 and Figure 13. It was
found that in 2012 the largest three cities in the YREB are Shanghai, Suzhou, and Xuzhou,
measured in urban area, and the cities are Shanghai, Suzhou and Ningbo, measured in
total night-time light. In 2019, the largest three cities in the YREB are Suzhou, Shanghai
and Xuzhou, measured in urban area, while the three cities are Shanghai, Suzhou and
Chengdu, measured in night-time light. We will analyze the urban sizes and distributions
using rank-size law and transition matrix as follows.
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• Rank-size law

Using the rank-size law, we draw the rank-size curves based on urban area and total
night-time light, with results shown in Figure 7. The rank-size model fits the data well, with
R2 values all larger than 0.6 for the four data groups as shown in Figure 7, suggesting that
the rank-size model can reflect the urban size distribution. The q values of the rank-size law
based on urban area are 0.6039 and 0.5383 for 2012 and 2019, respectively. In contrast, those
of the total night-time light are 0.9331 and 0.8187 for 2012 and 2019, respectively. We find
that: (1) the q values based on the night-time light are larger than those of the urban area,
suggesting that the urban system of the YREB shows a higher aggregation degree when
measured with night-time light compared to urban area; (2) the urban system in the YREB
was becoming more dispersed during 2012–2019 as the q values based on the two indexes
are all reduced. In summary, the rank-size law analysis has different results when using
urban area and total night-time light, but both indexes show the YREB is becoming more
dispersed during 2012–2019.
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• Transition probability

The above results show that the city ranks based on urban area and total night-time
light are different, and both shift from 2012 to 2019. To quantify the shift pattern, we used
the transition matrix, as introduced in Section 2.3.3. The results were listed in Tables 1 and 2.
From the perspective of the urban area, cities in lower levels tend to transition to higher
levels, with probabilities of 0.0328, 0.0714, and 0.1364, in transitions of A→B, B→C and
C→D, respectively. For the highest ranked cities (e.g., types C and D), there is somewhat
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of a downward trend in ranking, with probabilities of 0.2105 and 0.0909, in transitions
of D→C and C→B, respectively. From the perspective of total night-time light, the shift
in ranking is relatively larger; for example, type B has transitions to both types A and
C, with probabilities of 0.1250 and 0.1875, respectively, while type B does not fall into
type A measured in urban area. Similar findings exist for type C. In summary, transitions
of urban sizes are different measured according to the two different indexes: (1) when
measured with urban area, the city levels change less than that of the total night-time light;
(2) cities with smaller sizes tend to rise in ranking based on urban area, but the change
trend measured with night-time light is not obvious, as smaller sized cities can shift to both
lower and higher levels with certain probabilities.

Table 1. The transition matrix for the evolution of urban size, measured with urban area, in YREB
during 2012–2019.

Original Class
Number of Transitions Probability of Transitions

A B C D A B C D

A 59 2 0 0 0.9672 0.0328 0 0

B 0 26 2 0 0 0.9286 0.0714 0

C 0 2 17 3 0 0.0909 0.7727 0.1364

D 0 0 4 15 0 0 0.2105 0.7895

Table 2. The transition matrix for the evolution of urban size, measured with total night-time light, in
YREB during 2012–2019.

Original Class
Number of Transitions Probability of Transitions

A B C D A B C D

A 74 10 0 0 0.8810 0.1190 0 0

B 2 11 3 0 0.1250 0.6875 0.1875 0

C 0 1 10 2 0 0.0769 0.7692 0.1538

D 0 0 1 16 0 0 0.0588 0.9412

3.2. Urban Growth Patterns

Figure 8 illustrates the urban growth rates based on urban area and night-time light
in the YREB. From the perspective of growth, the three fastest growing cities are Tongren,
Bazhong, and Diqing Tibetan Autonomous Prefecture, measured based on urban area, and
the cities are Guangan, Qiannan Buyi, and Miao Autonomous Prefecture, and Zhangjiajie,
measured with total night-time light. It is interesting to find that the Shennongjia Forestry
District and Panzhihua are the regions with a decline in night-time light during 2012–2019.
Panzhihua is a resource-depleted city [66], and Shennongjia Forestry District is a forestry-
protected region where the population had moved out in recent years. Tables 3 and 4 list
the stratified number of cities of different growth rates (r). It is clear that the cities in the
Upper Reaches have the most rapid growth in urban area, with 44.68% of cities having
50% < r ≤ 100% and 31.91% of them having 100% < r, while these rates are much lower
in the Lower Reaches. In contrast, the Middle Reaches have the most rapid growth in
night-time light, with 59.52% of cities having 100% < r, which is higher than the Lower
Reaches and the Upper Reaches.
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Table 3. Growth rates (r) of urban area of cities in the three reaches.

Range
Cities in Upper Reaches Cities in Middle Reaches Cities in Lower Reaches

Number Ratio (%) Number Ratio (%) Number Ratio (%)

r ≤ 25% 1 2.13 2 4.76 6 14.63

25% < r ≤ 50% 10 21.28 14 33.33 23 56.10

50% < r ≤ 100% 21 44.68 25 59.52 10 24.39

100% < r 15 31.91 1 2.38 2 4.88

Table 4. Growth rates (r) of night-time light of cities in the three reaches.

Range
Cites in Upper Reaches Cities in Middle Reaches Cities in Lower Reaches

Number Ratio (%) Number Ratio (%) Number Ratio (%)

r ≤ 25% 2 4.26 3 7.14 4 9.76

25% < r ≤ 50% 11 23.40 2 4.76 7 17.07

50% < r ≤ 100% 12 25.53 12 28.57 22 53.66

100% < r 22 46.81 25 59.52 8 19.51

As shown in Figure 9, the Upper Reaches have the fastest growth in urban area (e.g.,
60.49%), and the Middle Reaches have the fastest growth in night-time light (91.11%), while
the Lower Reaches have the lowest growth in both urban area (40.05%) and night-time
light (51.66%).These results suggest that the Middle Reaches has a more compact growth
than the Upper Reaches, although these two reaches both have rapid urban growth. Not
surprisingly, the Lower Reaches have the lowest growth rates in both urban area and
night-time light, but the absolute values of rates are still very high (40.05% and 51.66%).

Using the autocorrelation analysis, the LISA cluster map and significance map were
generated, as shown in Figure 10. The values of global Moran’ I index for change rates
of urban area and night-time light are 0.3539 and 0.2617, respectively, indicating that
the growth of urban area and night-time light tends to agglomerate in geography. From
Figure 10, we learn that east of the Upper Reaches has the largest high-high agglomeration
of urban area growth, while the Lower Reaches has the largest low-low agglomeration.
For the night-time light growth, east of the Upper Reaches has the largest high-high
agglomeration of high-high growth, while southwest of the Upper Reaches and center
of the Lower Reaches have a major low-low agglomeration of night-time light growth.
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These results suggest that the growth patterns of urban area and night-time light have clear
spatial patterns, but they are different.
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3.3. Urban Density Patterns

Urban density, measured with the UNLD, was mapped over 130 cities in Figure 11,
and the UNLD values for the three reaches were shown in Figure 12. In 2012, the three cities
with the highest urban density are Shanghai, Panzhihua and Meishan, and the cities are
Shanghai, Meishan and Nanchang in 2019. In addition, the three cities with the highest
urban density growth are Yibin, Ezhou and Shangrao. It is also surprising to see overall
urban density in Upper Reaches is the highest in both 2012 and 2019 (Figure 12a), this
might be explained by the fact that cities in the Upper Reaches are more likely to be located
in mountainous region where developable land is limited, so that the urban density has to
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be high compared to the cities in the plain regions (e.g., the Middle Reaches and Lower
Reaches). From Figure 12b, the three reaches all show that urban density increased during
2012–2019, while the Middle Reaches show the largest increase in urban density, and the
Upper Reaches shows less of an increase in urban density but a still higher value than
the Lower Reaches. The urban density pattern can explain why night-time light growth
is much higher than urban area growth in the Middle Reaches, which was revealed in
Section 3.2.
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To show the UNLD changes in different cities more clearly, we calculate the change
rate of the UNLD (Figure 11c), and we define r < −0.1 as a decrease in UNLD, define
−0.1 ≤ r ≤ 0.1 as stable, and 0.1 < r as an increase. In Table 5, we found that 21.28% of
cities in the Upper Reaches have decreases in density, much more than do those in the
Middle (4.76%) and Lower Reaches (4.88%), suggesting that the Upper Reaches have more
urban sprawl cities, where urban efficiency declined, than in the Middle Reaches and
Lower Reaches.

Table 5. Change rates (r) of urban density in 130 cities in the three reaches in YREB.

Range
Upper Reaches Middle Reaches Lower Reaches

Number Ratio (%) Number Ratio (%) Number Ratio (%)

r < −0.1 10 21.28 2 4.76 2 4.88

−0.1 ≤ r ≤ 0.1 12 25.53 6 14.29 11 26.83

0.1 < r 25 53.19 34 80.95 28 68.29

3.4. Unbalanced Urban Development

The above analysis focused on the growth in urban area and night-time light, showing
the regional disparity among various cities and regions, while the intra-city disparity has
not been evaluated. Using the UINL as defined in Section 2.3.6, we analyze the unbalanced
development inside cities in the YREB. For all the 130 cities, the UINL for 2012 and 2019
was mapped. As shown in Figure 13, some spatial patterns are clear. Firstly, the west
of the Upper Reaches is in a more unbalanced development pattern than that of the east
in both 2012 and 2019; this finding is consistent with a previous analysis showing that
regions with sparse populations develop in more unbalanced ways than do the densely
population regions in China [67], and most of the cities in this region are becoming more
unbalanced. Secondly, for the Middle Reaches, the north cities are obviously becoming
more unbalanced, while several cities in the south become more balanced. Thirdly, the
south of the Lower Reaches is more balanced than the north, and the south is becoming
more balanced compared to the north. Although there are some disparities in the UINL
for different cities inside reaches, the unbalanced development of different reaches as
a whole do not show much difference: As shown in Figure 14, the UINL are all around
0.6 for the three reaches for both 2012 and 2019; the Upper Reaches are becoming more
unbalanced, while the other two reaches are becoming more balanced although with very
low change rates.

Previous studies suggest that regional inequality in Chinese cities is negatively cor-
related to urban density by analyzing DMSP/OLS night-time light [67]; therefore, we
hypothesize that the unbalanced development is correlated with urban density in the YREB.
To test this hypothesis, we make a linear regression chart between the UNLD and the UINL
over 130 cities in the YREB. As Figure 15 shows, urban density is significantly negatively
correlated with the UINL, with linear regressions R2 of 0.2584 and 0.4258 for 2012 and 2019,
respectively. As night-time light is an efficient proxy for infrastructure development [31],
this analysis result shows that higher density of infrastructure and economic activities tends
to correlate with more balanced development across cities, and this finding is consistent
with previous studies using DMSP/OLS data [67].

To incorporate local spatial information for modelling, we model the UINL on the
UNLD in the YREB based on the GWR, which was compared to the OLS regression
(Figure 15). The following findings (Tables 6 and 7) were derived: (1) For the GWR method,
its R2 and R2 adjustment values are both higher than 0.57, which shows much better
performance than the OLS regression, indicating that the UINL can model the UNLD
well, and that there is a positive relation between the two variables; (2) The corrected
Akaike Information Criterion (AICc) is a measure of model performance; the model with
a lower AICc value is considered to be a better model. In this study, the AICc value of
GWR is significantly smaller than the AICc value of OLS, which means that the GWR,
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considering the impact of geographical location, is more accurate in the regression between
the UINL and the UNLD; (3) The residuals of a suitable regression model will be randomly
distributed, and clustering of the residuals indicates that at least one key explanatory
variable is missing. Calculating the global Moran’s I index for the regression residuals,
we can analyze whether the residuals are clustered. In this study, the Moran’s I of the
GWR residuals is less than 0.05 and not significant (p > 0.1), and the Moran’s I of the OLS
residuals is around 0.4 and significant (p < 0.01), indicating that the GWR model has a good
regression performance, and it is better than the OLS model. The above findings suggest
that higher urban density may generate more balanced development, and the relationship
is stronger by considering local spatial information.
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Table 6. GWR and OLS regression results of UNLD and UINL for 2012.

Variable GWR OLS

AICc −368.604028 −308.548948
R2 0.6570 0.2584

R2 Adjusted 0.5763 0.2526
Moran’s I of regression

residuals −0.01465 0.4803

Table 7. GWR and OLS regression results of UNLD and UINL for 2019.

Variable GWR OLS

AICc −386.039664 −341.888953
R2 0.6982 0.4258

R2 Adjusted 0.6278 0.4213
Moran’s I of regression

residuals 0.02668 0.39615

4. Discussion
4.1. Contribution and Findings

Optimizing regional development in the YREB is a national strategy of the Chinese
central government, and there have been a number of discussions on the urban issues in the
YREB [17,28,29]. Urban size is viewed as an important indicator for regional development
processes, and urban population [49,68] and urban area [69,70] are two commonly used
measures for urban size.

Considering that the population census in China is taken only every 10 years, the
availability of urban population data is limited. In comparison, urban area can be estimated
from satellite imagery from both night-time light imagery [71] and daytime imagery [72],
and thus it has been used for analyzing the urban size distribution and evolution in
YREB. The night-time light imagery was mainly used to extract the urban boundary in
YREB [26,27,71,73]. However, due to coarse resolution of night-time light images and
uncertainties about applying the threshold [74], the extracted urban boundaries involve
a lot of uncertainty; therefore, researchers have turned to using the Landsat imagery to
extract urban area data in the YREB [72]. In fact, there are a number of remote sensing
based land cover products at medium resolution [44,75,76], which provide more accurate
urban boundary information than that from the night-time light products. In this study, to
analyze the urban size distribution and evolution, we made use of the urban land cover
product, and this strategy would help to get more accurate information on the urban areas.

While previous studies mainly employed urban area as the index for urban analysis
in the YREB, this study analyzed the urban size from two perspectives, urban area and
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night-time light. The night-time light is able to reflect development of urban infrastruc-
ture as well as economic activities, so it has been widely used as an economic proxy by
economists [30,36], as well as for analyzing urban size and evolution by geographers [77,78].
Combining the two indexes, the evolution of urban system in the YREB can be revealed
from different perspectives. Notably, the urban night-time light density (UNLD), a newly
derived index, has been analyzed for the YREB based on the two variables, and the evo-
lution of this index helps to understand different expansion patterns. For example, we
found that the Upper Reaches has more urban sprawl than the Middle Reaches and Lower
Reaches, a pattern that is consistent with previous findings that the urban sprawl in the
YREB is uneven [15]. In addition, cities in the YREB have increases in urban density, which
is viewed as proxy for urban efficiency, as shown in Table 5 and Figure 14. This finding
supports the previous study that urban efficiency of the YREB is increasing according the
trend shown [17]

We have to know that urban density, measured with UNLD, is purely retrieved
from remote sensing products, the GISA dataset, and VIIRS night-time light imagery.
Considering that the remote sensing data can be acquired objectively compared to statistical
data, this study provides a new and simple way to analyze urban evolution patterns, which
helps to better understand the urban evolution in the YREB. Moreover, considering that
the proposal method is totally based on a remote sensing product that is available to the
public, it would help central and local governments in China to monitor the urban sprawl
in the YREB with less cost in budget and time.

4.2. Limitation and Future Work

In this study, we made analyses for 2012 and 2019. The limited temporal information
hindered us from comprehensively understanding the urban evolution in the YREB. The
reason for using limited temporal data was that both the GISA and the VNP46A2 Black
Marble have some annual fluctuation from data abnormality; therefore, we only compared
and analyzed the data for 2012 and 2019, of which the temporal duration was long enough
so that the data abnormality did not affect the result significantly. However, future studies
should make full use of urban extent and night-time light information in the long-term, so
that urbanization patterns in the YREB can be reconstructed. We acknowledge that this
planned future work depends on urban land cover products and VIIRS night-time light
with improved quality [42,43]. From a general perspective, night-time light images have
suffered from a blooming effect that makes the dark area around the urban region appear
bright due to the skyglow phenomenon [79]. Since no existing night-time light products
have corrected it, this issue may have introduced some uncertainty for the analysis result
in this study.

Actually, higher resolution of urban mask data helps to estimate the indexes such
as the UINL and the UNLD more accurately. The spatial resolution of the VIIRS night-
time light imagery is 740 m, which was resampled to around 500 m in the Black Marble
product, while the urban land cover data from the GISA product has a 30 m resolution;
this indicates that a large amount of land cover information was discarded as it was
converted to 500 m resolution to match the night-time light imagery. For example, the UINL
and UNLD are calculated based on 500 m resolution data, and thus these two variables
were not estimated accurately. In addition, we directly used the definition of urban area
that considers the impervious proportion to be more than 20% larger than in previous
studies [45]. However, to what extent this kind of urban map can differentiate an urban
area from a rural settlement still needs careful investigation for the YREB in future work.
In 2021, the Chinese Academy of Sciences (CAS) launched the SDGSAT-1 satellite, which is
able to map night-time light at 10 m resolution, and the data has global coverage with a
number of applications already [80,81]. Future work will take such fine resolution images
to match the urban land cover product at 30 m resolution, and that will help to retrieve
urban information in the YREB more accurately.
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This study follows research methods that made use of satellite-observed night-time
light combined with other data to analyze urban growth without considering details of
land use change [35,52,82–85]. However, the land use change information, which was not
used in this study, is crucial for understanding the aftermath of urbanization. For example,
it is important to know whether the new urbanized area was converted from previous
agricultural land or not, as protecting agricultural land is a state policy for food security
in China. Similarly, other natural land uses such as forest, grassland, and water are also
important for environmental protection. Thus, in future studies, it would be valuable to
utilize more information on past land use and changes in it to systematically evaluate
whether economic and environmental development are balanced against the background
of urbanization in the YREB.

This study focused on the spatiotemporal patterns of urban development in the YREB.
The factors behind these patterns, which are important to understanding urbanization in
the YREB, have not been discussed. For example, previous studies show that the GDP, total
fixed asset investments, and urban population affect urban expansion in the YREB [40], and
economic linkage can reduce the speed of urban land expansion in the YREB [86]. Thus, it
is also important to apply policy analysis such as quantifying policies of urban planning,
industry and environmental protection as well as their impacts, which are important to
understand urban development in the YREB, by using attribution analysis methods.

5. Conclusions

This study proposed the use of two remote sensing based indexes, urban area and
night-time light, to characterize the urban development patterns in the YREB during
2012–2019. Findings show an overall increase in urban density and efficiency but great
regional disparity in urban development inside the YREB. Firstly, the urban system is
evolved to be more dispersed according to both of the indexes, and the urban system is
measured to transition less when gauged according to urban area rather than according to
total night-time light. Secondly, the Upper Reaches has the largest growth rate of urban
areas, the Middle Reaches has the largest growth rate in terms of night-time light, and the
Lower Reaches has a relatively low growth rates using either of the two indexes. Thirdly,
although most of the cities in the YREB have increased in urban density, the Upper Reaches
has experienced more urban sprawl than the Middle Reaches and Lower Reaches; the
Middle Reaches has shown more compact growth. Finally, the unbalanced development
inside different reaches are very similar, and higher urban density and efficiency tends to
be related to more balanced development.

This study suggests that combining two widely used indexes of urban size helps to
provide more insight into urban development in the YREB, and this methodology can be
combined with existing methods of urban efficiency evaluation. It can also be expanded for
use on a national or global scale.
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