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Abstract: Annual temperature cycle (ATC) models are widely used to characterize temporally
continuous land surface temperature (LST) dynamics within an annual cycle. However, the existing
ATC models ignore the spatiotemporally local correlations among adjacent LST pixels and are
inadequate for capturing the complex relationships between LSTs and LST-related descriptors. To
address these issues, we propose an improved ATC model (termed the ATC_GL), which combines
both the spatiotemporally global and local interpolations. Using the random forest (RF) algorithm, the
ATC_GL model quantifies the complex relationships between LSTs and LST-related descriptors such
as the surface air temperature, normalized difference vegetation index, and digital elevation model.
The performances of the ATC_GL and several extensively used LST reconstruction methods were
compared under both clear-sky and overcast conditions. In the scenario with randomly missing LSTs,
the accuracy of the ATC_GL was 2.3 K and 3.1 K higher than that of the ATCE (the enhanced ATC
model) and the ATCO (the original ATC model), respectively. In the scenario with LST gaps of various
sizes, the ATC_GL maintained the highest accuracy and was less sensitive to gap size when compared
with the ATCH (the hybrid ATC model), Kriging interpolation, RSDAST (Remotely Sensed Daily
Land Surface Temperature), and HIT (Hybrid Interpolation Technique). In the scenario of overcast
conditions, the accuracy of the ATC_GL was 1.0 K higher than that of other LST reconstruction
methods. The ATC_GL enriches the ATC model family and provides enhanced performance for
generating spatiotemporally seamless LST products with high accuracy.

Keywords: land surface temperature; thermal remote sensing; annual temperature cycle; global-local
interpolation; random forest

1. Introduction

Land surface temperature (LST) is one of the key parameters for determining land-
atmosphere energy exchanges and plays a crucial role in various applications, such as
the monitoring of the urban thermal environment [1,2], estimation of soil moisture and
evapotranspiration [3], and detection of forest fires [4,5]. Satellite thermal remote sensing
provides a straightforward and consistent method for obtaining regional LSTs. However,
due to cloud contamination and sampling error, more than half of the satellite-derived
LST image pixels are invalid or entirely absent [6], and thus, the associated potential
applications are severely limited.

Various methods have been proposed for generating spatiotemporally seamless LSTs,
including: (1) physical modeling [7,8], (2) analyzing statistical relationships between
LST and LST-related descriptors [9-16], and (3) incorporating spatial and/or temporal
information [6,17-22]. There is no clear boundary between these methods—spatiotemporal
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interpolation methods may also use auxiliary data [19,23]. Among these three meth-
ods, the spatiotemporal interpolation is widely used because of its general simplicity
and relatively high accuracy [6,18,19,21] and can be methodologically divided into spa-
tiotemporally local and temporally global interpolation. (1) The spatiotemporally local
interpolation reconstructs missing LSTs based on spatially and temporally local information,
using several algorithms, such as inverse distance weighted interpolation (IDW) [24-26],
spline interpolation [27,28], Kriging interpolation or co-kriging interpolation [11,27,29,30],
and Remote Sensed Daily Land Surface Temperature (RSDAST) [6]. (2) The temporally
global interpolation reconstructs missing LSTs by incorporating all available LST obser-
vations on a specific time scale. This group includes the annual temperature cycle (ATC)
model [17,19,22,23,31] and the diurnal temperature cycle (DTC) model [32,33].

Among the two spatiotemporal interpolation methods, the temporally global interpo-
lation method is simple and efficient in LST reconstruction with very few available LST
observations (or with large spatiotemporal gaps) at various time scales [19,22,23,28]. In
particular, the ATC model also belongs to the temporally global interpolation group—it
connects the inter-annual and diurnal models and enables a continuous description of LST
dynamics within an annual cycle with very few controlling parameters. The ATC model is
widely used to generate spatiotemporally seamless LST products [34,35], downscale LST
products into finer resolutions [36], and investigate the urban thermal environment [37],
and the improvement of this model has been the focus of many studies over the past few
years [19,22,23].

There are three types of ATC models: statistical or Fourier series, physical (quasi-
physical), and semi-empirical methods. (1) Statistical or Fourier series methods recon-
struct missing LSTs purely by statistical or Fourier methods, such as the statistical time-
series analysis [38] and Fourier time series analysis methods [39]. (2) Physical (or quasi-
physical) methods consider the surface energy balance within an annual cycle, and their
parameters are usually physically meaningful for quantifying surface properties and atmo-
spheric status [37,40]. Physical methods include the original ATC model with a single sine
function (ATCO hereafter) [40] and its improved version with two sine functions (ATCT
hereafter) [17]. (3) Based on physical (or quasi-physical) models, semi-empirical methods
integrate additional statistical methods (e.g., Gaussian process regression) [34] or auxiliary
data (e.g., surface air temperature (SAT)) and the normalized difference vegetation index
(NDVI) [19,22,23], for example, the enhanced ATC model (ATCE), which integrates SAT and
NDVI [22], the phenology-based ATC model (PATC hereafter), which integrates vegetation
phenology data [23], and the hybrid ATC model (ATCH hereafter), which involves multiple
harmonic functions and auxiliary data [19]. Compared with statistical and physical models,
semi-empirical ATC models more accurately capture daily LST fluctuations in response to
changes in synoptic conditions and vegetation phenology within an annual cycle [19,22,23].

Although great progress has been achieved on the development of ATC models,
two issues remain to be addressed. First, the existing ATC models are mainly based on
temporally global interpolations and ignore the spatiotemporally local correlations among
adjacent LST pixels. The accuracy of these models tends to decrease, particularly when
LST gaps are relatively small [19]. Second, most semi-empirical ATC models describe the
relationships between LSTs and LST-related descriptors with linear regression and are
therefore unable to capture the complex non-linear relationships between LSTs and the
associated descriptors [41,42].

To address these issues, here we proposed an improved ATC model based on both
spatiotemporally global and local interpolations (termed the ATC_GL). The ATC_GL
incorporates the advantages of temporally global and spatiotemporally local models in
reconstructing LSTs with large and small gaps, respectively. The ATC_GL employs the
random forest (RF) algorithm to analyze the complex relationships between LSTs and LST-
related descriptors and accurately capture daily LST fluctuations. The performance of the
ATC_GL and several popular methods were evaluated in different scenarios by the daytime
overpass of the Terra satellite in 2018. According to our findings, the ATC_GL provides
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more accurate LST estimates than conventional temporal, spatial, and spatiotemporal
interpolation methods in several scenarios. We propose that the ATC_GL will facilitate the
generation of high-accuracy spatiotemporal LST products.

2. Study Area and Data
2.1. Study Area

Eight regions (including Regions A to H) in China were selected as the study areas
(Figure 1) to evaluate the model performance of the ATC_GL under three scenarios. The
elevations of Region B and Region E differ greatly because they are located at the inter-
section of the first and the second steps of China. In terms of the main land cover types,
Regions A, C, and D are mainly covered by farmland or grassland, Region B is covered
by bare soil, while Regions E, F, G, and H are primarily covered by forest or grassland.
Specifically, (1) Regions A-G (Figure 1 and Table 1), each with an area of 300 x 300 km?, are
distributed in seven distinct geographical regions with different climatic and topographical
characteristics [43]. Considering the influences of different regions, Regions A-G were
used to evaluate the performance of the ATC_GL in a scenario with randomly missing
LSTs (see Section 3.2). (2) Region H, with an area of 600 x 600 km?, is in central-eastern
China. For frequent rain and cloud, Region H was used to evaluate the accuracy and
applicability of models in a scenario with LST gaps of various sizes. (3) Due to the coverage
of all-weather LST products (LSTyw), Region A was also used to evaluate the performance
of the ATC_GL under overcast conditions in east-central China (refer to Section 3.2).
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Figure 1. Study areas. The red boxes in the figure represent Regions A-G; the green box repre-

sents Region H; and subfigures (A-H) represent the land cover types in 2018 of the eight study
areas, respectively.
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Table 1. Detailed information of the study areas.
Study Area Geographical Zone Location Area (km?) LSTRIZ:LSfmg
A Northeast 122.5° E, 44.3° N 300 x 300 44.47%
B Northwest 92.4°E, 38.8° N 300 x 300 37.51%
C North 114.1° E, 38.6° N 300 x 300 53.00%
D Central 112.5° E, 30.9° N 300 x 300 69.98%
E Southwest 101.4° E, 29.4° N 300 x 300 61.01%
F East 118.0° E, 28.5° N 300 x 300 71.36%
G South 109.8° E, 23.7° N 300 x 300 85.07%
H East-central 114.5° E, 29.3° N 600 x 600 71.55%

* The LST missing rate is defined as the proportion of the missing LSTs within a yearly cycle in a certain region.

2.2. Data

This study employed satellite data (MODIS LST, NDVI, and land cover type), in
situ measurements (SAT), and auxiliary data (spatiotemporally seamless all-weather LSTs
(i-e., the LSTyw data) and DEM) (Table 2).

Table 2. Features of the data and products used in this study.

Data Type Variable Product Name Year Temporal/Spatial Resolution
Land Surface MOD11A1 2018 Daily/1 km
Temperature MYD11A1 2014 Daily/1 km
Satellite data Normalized Difference Vegetation Index MOD13A2 22%1121/ 16 day/1 km
Land cover type MCD12Q1 2018 Yearly/0.5 km
Surface Air . 2018/ Daily/—
Temperature 2014 y

In situ measurements

Land Surface

Temperature SURFRAD 2018 Daily /—
Digital Elevation Model SRTM3 2018/ Yearly/0.09 km
Auxiliary data & 2014 yIe
All-weather LST LSTmw 2014 Daily/1 km

2.2.1. Satellite Data

The present study used the daily LST product (MOD11A1/MYD11A1, with a spatial
resolution of 1 km) [44,45], 16-day NDVI product (MOD13A2, 1 km), and yearly land-
cover-type product (MCD12Q1, 0.5 km) (Table 2). These products were obtained from
NASA Earth Science Data. Daytime LSTs from MOD11A1 (~10:30) in 2018 were used
for LST reconstruction and model evaluation under clear-sky conditions (Strategy 1 &
Strategy 2). The quality control (QC) of MODIS products was used to identify clear-sky or
overcast conditions. The pixel was under cloud-free conditions when the corresponding
QC was labelled as 10" or “11". The NDVI product MOD13A2 (Section 3.1.2) and land
cover type product MCD12Q1 (Section 4.1.2) in 2018 were used as model inputs and
evaluations over different land cover types, respectively. The clear-sky LSTs of LSTysw and
the corresponding NDVI of MOD13A2 were used to reconstruct the LSTs under overcast
conditions (Section 3.2). Note that the spatial and temporal resolutions of MCD12Q1
(0.5 km) and MOD13A2 (16-day) were resampled to 1 km and 1 day, respectively, to match
those of the LST product by linear interpolation.

2.2.2. In Situ Measurements

In situ daily maximum and minimum SATs were derived from 2479 meteorological
stations in China from 2018. To match the resolution of the LST data, the SATs were
resampled to raster images with a resolution of 1 km after considering the impact of
evaluation on temperature [22,46]. The daily mean SAT calculated as the average of daily
maximum and minimum temperature was used to reflect the daily SAT fluctuations [46].
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Subsequently, we calculated the daily mean SATs of each pixel [22,46] and used these values
to quantify daily LST fluctuations.

In addition, in situ measurements obtained from seven Surface Radiation Budget
Network (SURFRAD) sites in 2018 were used to evaluate the ATC_GL under overcast
conditions (Figure 2). We calculated the in situ LST from the upward and downward
longwave radiation based on the Stefan—Boltzmann law [10,47], which can be expressed
as follows:

T — 4 RLong,up7(1*£b)RLong7down
- &0 )
&p, = 0.261 4 0.314¢37 + 0.411e3,

where Rpong up and Riong down represent the upward and downward longwave radiation,

respectively; o denotes the constant of Stefan-Boltzmann (¢ = 5.67 x 108 W-m~2.K~%);
g, denotes broadband emissivity estimated from MODIS; €31 and €3, represent narrowband
emissivity in MODIS Channels 31 and 32, respectively.
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Figure 2. The distribution of the seven SURFRAD sites.

2.2.3. Auxiliary Data

The LSTyw data were used to evaluate the performance of the ATC_GL under over-
cast conditions. The LSTyw data were generated by merging thermal and microwave
observations with the spatial and temporal resolutions of 1 km and 1 day, respectively [13].
The accuracy of LSTyw is about 1.5 K and there is no significant difference in accuracy
under clear-sky and overcast conditions [13]. The LSTyw has two advantages over in situ
LSTs: (1) the spatial and temporal resolutions of LSTyw are consistent with those of MODIS
LST, and therefore, errors in LST retrieval and scale differences between satellite-derived
and ground-based LSTs are reduced; and (2) the available pixel-based LSTymw data are
significantly larger than the ground-based LST data so that validations should be more
representative [18,35,48]. However, the LST\w only covers the northeast of China due to
some limitations of microwave data (e.g., limited data coverage). Therefore, the LSTyw was
used as the reference value for evaluating model performances under overcast conditions.

The yearly DEM product from SRTM3 was included in the quantification of daily LST
fluctuations. The DEM product, with a spatial resolution of 90 m, was resampled to 1 km
to match the resolution of the LST product.
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3. Methodology

This section describes the framework of both model construction and evaluation
(Figure 3). The construction of the ATC_GL involves (1) the temporally global reconstruc-
tion of annual LST dynamics (Section 3.1.1) and (2) spatiotemporally local estimation of
daily LST fluctuations (Section 3.1.2). In terms of model evaluation, the performance of the
ATC_GL was compared with that of several popular LST gap-filling methods in three sce-
narios: (1) with randomly missing LSTs, (2) with LST gaps of various sizes under clear-sky
conditions, and (3) under overcast conditions (refer to Section 3.2). In order to help readers
better understand the mathematical symbols, we have listed their associated meaning in

Table 3.
Al
O The ATCT [ The ATCT ] [ Resample } [ Resample ]
O
o ! !
T valid AT, AT, NDVI
E[QHLHJ][Jﬁ
%
O Search for RF establish
o' valid LSTs relationships
- T Recortstruct
< Increase of ‘ csing AT ‘
window size INSSINg s
| Reconstruct
| missing LSTs
I
o { | !
o { Under clear-sky Under overcast l
-— conditions conditions
= g | !
-— Randomly LST gaps of
¢>U missing LSTs various sizes
v v
2 Compared with Compared with Compared with
Q the ATCT and several gap-filling several gap-filling
© ATCE methods methods
o Scenario #1 Scenario #2 Scenario #3
E Section 4.1 Section 4.2 Section 4.3

Figure 3. The flowchart of the ATC_GL and the evaluation strategies in different scenarios. Ty denotes

the intra-annual LST cycle dynamics, ATs and AT, denote the daily fluctuations in LSTs and SATs,
respectively, and LST, SAT, NDVI, and DEM denote land surface temperature, surface air temperature,
normalized difference vegetation index, and digital elevation model, respectively.
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Table 3. All the mathematical symbols and their meaning in the following formulas.

Abbreviations Descriptions
Ts The modeled LST on day d relative to the spring equinox
Tg The general seasonal cycle of the intra-annual LST dynamics
AT The daily LST fluctuations
SATCT The Tg modeled by the ATCT
fRE The daily LST fluctuations modeled using the RF algorithm
X The synoptic and surface parameters
Ts The annual mean LST
Aq, Ay The two amplitudes of the ATCT
w1, Wy The two constants calculated as 2N~ and 47N 1 (N =365)
61,0, The corresponding phase shifts relative to the spring equinox
SATCT a The seasonal cycle in the intra-annual SAT dynamics determined by the ATCT
Az, Ay The two ATCT amplitudes of SAT

3.1. Modeling of Intra-Annual Land Surface Temperature Dynamics by Combining
Spatiotemporally Global and Local Interpolations

Intra-annual LST dynamics can be mainly decomposed into two temporal categories:
(1) the general seasonal (or monthly) cycle responding to solar radiation, and (2) the daily
fluctuations caused by variations in synoptic conditions and surface thermal properties [19,22].
The ATC_GL addresses these categories separately. At the temporally global (seasonal)
scale, the general seasonal LST dynamics (Tg) are modeled directly with the ATCT (see
Section 3.1.1), a frequently used ATC model [17,19]. At the spatiotemporally local scale,
the daily LST fluctuations (i.e., ATs) are statistically modeled using the RF algorithm and a
series of LST-related descriptors related to synoptic and surface property variations (see
Section 3.1.2). The general formula for the ATC_GL is written as follows:

Ts(d) =Tg(d) + ATs(d) =garct(d)+fre(X) ()

where T is the modeled LST on day d relative to the spring equinox; Tg and ATs are the
general seasonal cycles of the intra-annual LST dynamics and the daily LST fluctuations,
respectively; Tg and ATs are the intra-annual LST cycle dynamics and the daily LST
fluctuations, respectively; garct denotes the ATCT and is used to reconstruct the Tg; frp
represents the RF algorithm and is used to capture daily LST fluctuations through a series
of synoptic and surface parameters (X), such as SAT, NDVI, DEM, and so on.

3.1.1. Reconstruction of Seasonal LST Cycle at the Temporally Global Scale

The existing ATC models are temporally global interpolations that capture the an-
nual LST cycle by using sinusoidal functions to model periodical variations of solar
irradiation [17,31]. Previous studies have demonstrated that the accuracy of ATCT mod-
eled by a second harmonic function is generally better than the ATCO equipped with only
a sine function, mostly because the annual cycle of solar irradiation is characterized by two
annual maxima instead of one at low latitude regions [17,31]. To reconstruct seasonal LST
cycles (Tg), we employed the ATCT, which can be expressed as follows:

Tg(d) = gATCT(d) = Ts-f— Aq - sin(wld + 91) + Ap - Sil’l(wzd + 92) 3)

where garcr denotes the modeled LST on day d relative to the spring equinox, Ts is the
annual mean LST, A; and A, are the ATC amplitudes, §; and 6, are the corresponding
phase shifts relative to the spring equinox, and w; and w, are two constants calculated
as 2nN~! and 47N !, respectively, where N is the number of days in an annual cycle
(N =365).
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3.1.2. Reconstruction of Daily LST Fluctuations at the Spatiotemporally Local Scale

The available ATC models can describe the variation of LST within an annual cycle but
are not suitable for characterizing short-term LST fluctuations, e.g., on the daily scale. The
differences between the observed and fitted LSTs (denoted as the daily LST fluctuations)
can be expressed by Equation (4):

ATs(d) = Ts(d) — garer(d) )

In this study, we incorporated LST-related descriptors and the RF algorithm to simulate
the daily LST fluctuations (ATs) at the spatiotemporally local scale. The number of decision
trees and predictors of each split node were determined by the grid search method [48].
AT; is calculated using the following formula:

ATs = fre(X) 5)

The relationships between AT and the LST-related descriptors are determined by three
factors: (1) the type of LST-related descriptors, (2) the type of regression tool (or statistical
algorithm), and (3) the spatiotemporal window used for regression. For the type of LST-
related descriptors, ATy is closely related to surface parameters, such as NDVI and DEM,
and is also synchronized with SAT under different synoptic conditions [11,19,22]; thus, we
incorporated SAT, NDVI, and DEM to describe ATs. However, we did not incorporate
SAT directly but included its daily variations (i.e., AT,), which can be estimated with the
following formula:

AT, (d) = Ta(d) - gﬂCT_a(d) (6)
= Ta(d) — {Ta + As - sin(wyd + 63) + Ay - sin(wod + 64) }

where T, denotes the SAT, AT, denotes its daily fluctuations, and gatcT 2 denotes the
seasonal cycle in the intra-annual SAT dynamics determined by the ATCT. A3 and A4
are the ATC amplitudes of SAT; 6; and 6, are the corresponding phase shifts relative to
the spring equinox of SAT. For the regression tool, we used the RF algorithm to model
the regression between ATs and the LST-related descriptors. The RF algorithm shows
especially high performance in modeling complex relationships among parameters [49]
and is widely used in remote sensing communities [15,50]. For the spatiotemporal window
used for regression, we employed a spatiotemporally adaptive local window to incorporate
valid (i.e., cloud-free) pixels. The initial window size for the spatial dimension was set
to 9 x 9 km? and that for the temporal dimension was set to 1 day. The spatiotemporal
window was expanded when the number of valid LSTs was lower than the threshold.
Starting from the initial size, the spatiotemporal window size was iteratively increased
by 2 pixels and 2 days from the spatial and temporal dimensions, respectively. Further
discussions on the setting of the spatiotemporal window and the increased sizes of spatial
and temporal windows are provided in Figures A1 and A2 and Table Al of Appendix A.
We further repeated this process until there were sufficient valid pixels included. The
threshold of the valid pixel number was set to 10 [18]. Notably, the proposed ATC_GL
predicts each missing pixel separately during the reconstruction process.

3.2. Evaluation Strategies

The model performance was evaluated using three strategies and was quantified using
two statistical metrics including absolute root-mean-square errors (RMSE) and R? [51].

The ATC_GL combines both the spatially local information and LST-related descriptors
based on the existing annual temperature cycle model. Three strategies were employed to
evaluate the contributions of spatially local information, temporally global information,
and LST-related descriptors, independently. Strategy 1 compares the performances of
the ATC_GL and two classical ATC models (i.e., the ATCE and ATCT) when LSTs are
randomly missing. Given that, satellite-derived LST images are invalid in a relatively
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large area. Strategy 2 compares the performances of the ATC_GL with classical temporally
local interpolations, spatially local interpolations, and hybrid methods with varying LST
gaps. Strategy 3 evaluated the model performances of the ATC_GL and several popular
gap-filling methods under overcast conditions.

Strategy 1: For the scenario with randomly missing LSTs under clear-sky conditions,
the performance of the ATC_GL was compared with that of two typical ATC models
(i.e., the ATCE and ATCO). For this strategy, 70% of the clear-sky LSTs were randomly
selected as training data, and the rest were used for validation. This strategy considered
data for Regions A-G.

Strategy 2: For the scenario with LST gaps of various sizes under clear-sky conditions,
the performance of the ATC_GL was compared with that of several commonly used LST
gap-filling methods, including the ATCH, Kriging interpolation, RSDAST, and HIT. The
RSDAST, referring to a representative of spatiotemporally local methods, uses the distance
relationships between invalid pixels and adjacent LSTs in spatiotemporally local windows
to reconstruct missing LSTs [6]. The HIT is a hybrid method that integrates the observed
values at the other overpasses in the same day, the spatiotemporally local interpolation,
and the temporally global interpolation [18]. Ten LST images (each of a single day) of
Region H, with more than 80% valid pixels, were randomly selected. We then produced
14 gaps with different sizes in the selected LST images, which are labelled as GO1 (10 x 10)
to G14 (500 x 500). The sizes of the produced gaps were 10 x 10,20 x 20, 30 x 30, 40 x 40,
50 x 50, 60 x 60,70 x 70,80 x 80,90 x 90, 100 x 100, 200 x 200, 300 x 300, 400 x 400, and
500 x 500 pixels. The performances of the methods above were assessed by the original
valid LST values in the gaps.

Strategy 3: For the scenario of overcast conditions, Region A was selected to evaluate
the performances of the ATC_GL and several popular LST gap-filling methods (including
the ATCH, ATCE, Kriging, RSDAST, and HIT). For this strategy, the clear-sky values of
LSTmw in Region A were used as training data, while the LSTyw values labelled with a
cloud tag were used for validation. In addition, in situ measurements from seven SURFRAD
sites in 2018 were used to evaluate the ATC_GL under overcast conditions.

4. Results
4.1. Comparison of Model Performances in Strategy 1
4.1.1. Spatial Distribution of Model Performances

The overall performances of the ATC_GL, ATCE, and ATCO, as well as the accuracy
improvement of the ATC_GL when compared with the ATCE (termed Drmse_ATCE) and
ATCO (termed Drmse_ATCO), are shown in Figure 4. The mean RMSEs of the ATC_GL,
ATCE, and ATCO models were 1.1 K, 3.5 K, and 4.2 K, respectively. As for different regions,
the higher RMSEs of the ATC_GL occur in Regions B and E, and the relatively lower ones
occur in the other regions. This may be because Regions B and E are located in the north
and east of the Tibet Plateau, which is the junction of China’s first and second ladders.
The topography and climate conditions vary greatly in Regions B and E, causing drastic
variations between adjacent pixels and days [12,51]. Consequently, the performance of the
ATC_GL is lower in these high-heterogeneity regions than in other regions. Additionally,
the RMSE distribution of the ATC_GL shows a smaller range (0.7-2.0 K) than that of the
ATCE and ATCO (2.0-6.5 K; Figure 5) and the maximum frequency interval of the RMSE
of each model is slightly smaller than the mean value of RMSE. The spatial distributions
of the ATC_GL were relatively homogeneous within each study area when compared
with those of the ATCE and ATCO. This result indicates that the ATC_GL can better
predict spatiotemporally local variations during LST reconstruction than the other two ATC
models. In Regions A, B, and C (located in northern, northeastern, and northwestern China,
respectively), the accuracy of the ATC_GL was more than 3.0 K greater than that for the
ATCE and ATCO (Figure 4A4-C4,A5-C5); this result may be attributed to the high daily
and intra-annual LST variation in these regions, where barren and grassland areas are the
major land cover types [52-55].
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ATCO Drmse_ATCE Drmse_ATCO

Il W - - Il W _ - _ -
04K 30K 15K 6.0K 15K 60K 04K 35K 04K 35K
Figure 4. The RMSEs for the ATC_GL (A1-G1), ATCE (A2-G2), and ATCO (A3-G3) and the RMSE

differences between the ATCE and ATC_GL (A4-G4); Drmse_ATCE as well as the ATCO and ATC_GL
((A5-G5); Drmse_ATCO). The number in each subgraph denotes the mean RMSE of the entire area.
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Figure 5. The RMSEs estimated for the ATC_GL, ATCE, and ATCO for Regions A-G (see Figure 1).

The ATC_GL had the highest accuracy for all land cover types (Figure 6). The highest
and lowest RMSE for the ATC_GL was estimated in barren land (1.81 K) and farmland
(0.92 K), respectively. The RMSEs of the ATCE and ATCO were relatively similar (Figure 6);
both the ATCE and ATCO showed maximum RMSEs in barren land (5.29 K and 5.53 K,
respectively) and minimum RMSEs over water bodies (2.81 K and 3.04 K, respectively). The
pronounced differences in RMSE between the land cover types for the ATCE and ATCO
(more than 2.0 K) indicate that the performance of the ATC_GL remained relatively stable.
The accuracy enhancement of the ATC_GL was the highest in barren areas (exceeding 3.5 K),
with lower differences in accuracy observed between the models for forests, wetlands, and
water bodies (more than 1.5 K; Figure 6). This result may reflect the reduced degree of
LST fluctuation over dense vegetation and areas with high soil moisture because of higher
levels of evapotranspiration and specific heat capacity [52-55].
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Figure 6. The RMSEs of the ATC_GL, ATCE, and ATCO according to land cover type.
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The ATC_GL had the highest accuracy for all land cover types (Table 4). The highest
and lowest RMSE for the ATC_GL was estimated in barren land (1.8 K) and cropland
(0.9 K), respectively. The RMSEs of the ATCE and ATCO were relatively similar (Table 4);
both the ATCE and ATCO showed maximum RMSEs in barren land (5.3 K and 5.9 K,
respectively) and minimum RMSEs over water bodies (2.8 K and 3.3 K, respectively). The
pronounced differences in RMSE between the land cover types for the ATCE and ATCO
(more than 2.0 K) indicate that the performance of the ATC_GL (less than 0.9 K) remained
relatively stable. The accuracy improvement of the ATC_GL was the highest in barren
areas (exceeding 3.5 K), while there were relatively lower accuracies for forests, wetlands,
and water bodies (more than 1.5 K; Table 4). The R? of the ATC_GL (exceed 0.94) was
significantly higher than that of the ATCE (0.86-0.92) and the ATCO (0.87-0.94). A smaller
RMSE usually corresponds to a larger R? for various land cover types. This result may
reflect that the magnitude of the accuracy improvement depends on the LST fluctuation
magnitude of the ATC_GL method. The improvement is relatively small where LSTs keep
relatively stable, such as in forest, wetland and water body, probably because the ATCE
and ATCO can achieve high accuracy in these areas [19]. On the contrary, the improvement
is relatively higher where LSTs have high variations [56-58]. That is because the ATCE
and ATCO have poor performance in such areas, while the ATC_GL can better reflect the
spatial variations of LSTs in these areas by incorporating spatially local information.

Table 4. The performances of the ATC_GL, ATCE, and ATCO over different land cover types.

RMSE (K) R?
ATC_GL ATCE ATCO ATC_GL ATCE ATCO

Forest 1.2 34 3.7 0.95 0.90 0.89
Cropland 0.9 3.5 4.1 0.96 0.89 0.87
Grassland 1.1 3.6 4.1 0.95 0.88 0.87
Wetland 1.1 3.0 3.6 0.95 0.92 0.91
Barren 1.8 53 59 0.94 0.86 0.84
Built up 1.0 3.3 3.6 0.96 0.89 0.89
Water 1.1 2.8 3.3 0.95 0.89 0.89

4.1.2. Monthly and Daily Performance of the Models

On a monthly scale, the performance of the ATC_GL was the most stable when
compared with that of the ATCE and ATCO. Specifically, The RMSEs of the ATCE and
ATCO were 2.6-4.4 K and 3.2-5.2 K, respectively, far exceeding the RMSE of the ATC_GL
(0.9-1.7 K). Additionally, the RMSEs of the three models were relatively low from October
to November and relatively high from May to July (Figure 7). The main reasons are as
follows: the performances of the three models are generally related to the LST missing
rate of the original MODIS LST data. There is no adequate neighborhood information
when the LST missing rate is high; as a consequence, the spatiotemporal window will
increase until the number of observed LSTs is satisfied. However, the use of LSTs with a
large spatial or temporal distance can cause more uncertainties. Secondly, we speculate the
performances of the three models are related to the LST values. The LSTs are high in the
Northern Hemisphere in May to September, when the corresponding RMSEs of models
are relatively large. When the LSTs are high, an annual temperature cycle may not be fully
capable of capturing the seasonal variation of LSTs; as a consequence, the corresponding
model RMSEs are relatively large.
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Figure 7. Monthly RMSEs of the ATC_GL, ATCE, and ATCO. The histogram represents the monthly
missing rates of LST.

The ATC_GL can more accurately model detailed fluctuations within short intervals
than the ATCE and ATCO, with the estimated values being largely consistent with the
observed LSTs (Figure 8). The ATCO can effectively quantify intra-annual LST dynamics,
but is less capable of handling daily LST fluctuations. The ATCE is superior to the ATCO in
describing daily LST fluctuations (Figure 8b1-d1); however, the accuracy of the estimated
fluctuations is affected by overestimation or underestimation. These results indicate that,
although model performance can be enhanced by the inclusion of LST-related descriptors
with temporally global interpolation, the incorporation of spatiotemporally global and
local information along with appropriate statistical methods (i.e., RF) can more effectively
improve model performance (refer to Section 5.1).

4.2. Comparison of Model Performances in Strategy 2

The ATC_GL had the highest accuracy in most cases, and its performance was less
affected by the size of the LST gap (Figure 9). The RMSEs of the ATC_GL increased from
0.8 to 2.6 K with an increase in LST gap size. The performance of the Kriging interpolation
decreased gradually with an increase in gap size, although it remained stable (1.4-2.0 K)
at relatively small gap sizes (smaller than 50 x 50 pixels). The RMSEs of the HIT were
1.0-1.5 K higher than those of the ATC_GL, although the variation across time was similar
between the models. The accuracy of the RSDAST was slightly higher than that of the
ATC_GL at very small gap sizes (smaller than 20 x 20 pixels). However, its performance
decreased dramatically with an increase in gap size, and the RSDAST was the poorest
performing model at gap sizes larger than 80 x 80 pixels.
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Figure 8. The performance of the ATC_GL, ATCE, and ATCO at four randomly selected pixels in
Regions A-D (labelled (a-d)). Each randomly selected pixel corresponds to a specific subfigure.
Subfigures (a1-d1) are the enlarged insets of subfigures (a-d).

Compared to the other models, the ATC_GL had the highest accuracy (RMSE = 1.7 K)
and preserved the best spatial detail at the largest LST gap size (500 x 500 pixels; Figure 10).
The RSDAST (RMSE = 3.0 K) and Kriging interpolation (RMSE = 3.4 K) showed the
worst performance in estimating spatial variation. These findings indicate that spatially
local interpolations may be less effective or even unfeasible at large gap sizes. The HIT is
relatively capable of estimating the LST contrast in this region; however, its overall accuracy
was low (RMSE = 2.9 K). The ATCH (RMSE = 2.0 K) had the second highest accuracy among
the models and showed the greatest differences in accuracy with the ATC_GL in the regions
as shown by the red boxes in Figure 10g.
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Figure 10. The spatial details of the LSTs reconstructed using various methods with an LST gap size

of 500 x 500 pixels. Subfigure (a) denotes the LST gap on an image from 10 March 2018; subfigures
(b,c) are the original true LSTs; subfigures (d—h) represent the LSTs reconstructed by the ATC_GL,
RSDAST, Kriging interpolation, ATCH, and HIT, respectively; subfigure (i) presents the mean RMSEs

of the different methods.
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4.3. Comparison of Model Performances in Strategy 3

For the scenario of overcast conditions, the performance of the ATC_GL was again
compared with those of the LST gap-filling methods mentioned in Strategy 2 (the ATCE,
ATCH, RSDAST, Kriging, and HIT) (refer to Appendix C for the details of study areas
and data). The ATC_GL had the highest accuracy in overcast conditions (RMSE = 3.7 K,
R%2=0.93; Figure 11). The RMSEs of the ATCE, ATCH, Kriging interpolation, and HIT were
58K,5.1K,4.7K, and 5.2 K, respectively. Notably, the LSTs in overcast conditions may be
overestimated by the ATC_GL especially in the range of 275.0 K to 290.0 K, although the
level of overestimation is relatively lower when compared with other gap-filling models
(Figure 10). The overestimation may be associated with the inadequate capability of SAT
to fully grasp the LST dynamics under overcast conditions, especially for regions with
large LST gaps [19,59]. We further need to note that the ATC_GL is indeed a framework
for LST reconstruction, which can adjust parameter combinations in different scenarios.
The performance of the framework is expected to improve if more auxiliary parameters
related to overcast conditions (e.g., longwave and shortwave radiation and soil moisture)
are incorporated [41].
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reconstructed LSTs using different methods under overcast
conditions. Subfigure (g) shows the bias of different methods in different LST ranges.
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In addition, the performance of the ATC_GL was evaluated using SURFRAD LSTs
under both clear-sky and overcast conditions. Prior to the model evaluation, the systematic
differences between MODIS and SURFRAD LSTs were corrected mainly by referring to
previous studies [35,60,61]. The ATC_GL maintains high accuracy under both clear-sky
(RMSE ranges from 0.5 to 1.0 K) and overcast conditions (RMSE ranges from 2.1 to 4.1 K)
(Table 5). We believe that the performance of the ATC_GL may be further improved once
more auxiliary data under overcast conditions are employed.

Table 5. The performance of the ATC_GL at the seven SURFRAD sites.

RMSE (Unit: K)

Site Clear-Sky Overcast All-Weather Land Cover Type
BON 1.0 2.1 1.6 Cropland
BOC 0.6 3.1 1.6 Grassland
DRA 0.5 2.7 1.8 Desert
FPK 0.7 3.7 2.4 Grassland
GWN 0.6 3.8 2.7 Grassland
PST 0.5 4.1 3.3 Cropland
SXF 0.6 3.8 2.6 Grassland

5. Discussion
5.1. Advantages of the ATC_GL Reference to Previous Methods

Our assessments have shown that the ATC_GL has the highest accuracy when com-
pared with several commonly used gap-filling methods (i.e., the Kriging interpolation,
RSDAST, ATCE, ATCH, and HIT). The RSDAST and Kriging methods mainly use spatially
or spatiotemporally local information for LST reconstruction and exhibit relatively high
accuracy when LST gaps are small. However, as LST gap size increases, the performance of
these two methods decreases significantly, likely due to the lack of neighborhood informa-
tion and LST-related descriptors (e.g.,, NDVI and SAT), both of which are important factors
in LST reconstruction. By comparison, the ATCE and ATCH do incorporate LST-related
descriptors in a temporally global fashion, and their accuracies are generally insensitive
to the size of the LST gap [19]. However, the ATCE and ATCH ignore spatiotemporally
local information among adjacent pixels and only use linear regressions to characterize
the relationships between LST and LST-related descriptors; thus, their accuracy is usually
lower than those that incorporate spatially local information especially when the LST gaps
are relatively small [42]. For LST reconstruction, the HIT incorporates a dynamic spatiotem-
poral window to avoid error accumulation during repeated interpolations with the already
reconstructed LSTs [18]. However, similar to the RSDAST and Kriging methods, the HIT
does not use LST-related descriptors and therefore has a relatively low performance under
overcast conditions.

The ATC_GL incorporates both temporally global and spatiotemporally local inter-
polations. From the temporally global perspective (i.e., monthly or seasonal cycles), the
ATC_GL incorporates the seasonal cycle of solar radiation to reconstruct intra-annual LST
dynamics; therefore, it is insensitive to LST gap size, especially compared with the methods
based on spatiotemporally local interpolations. From the spatiotemporally local scale, the
ATC_GL incorporates the RF algorithm in obtaining the complex relationships between
daily LST fluctuations and a series of relevant factors (e.g., the daily SAT fluctuations, NDVI,
and DEM) within dynamic spatiotemporal windows. The ATC_GL is therefore suitable
for LST reconstruction with complex surface properties. Briefly, the ATC_GL presents the
following two key advantages when compared with previous ATC models: (1) the better
use of spatiotemporally local information within dynamic spatiotemporal windows, and
(2) a more realistic estimation of the relationships between LSTs and LST-related descriptors
with the RF algorithm. The ATC_GL is a simple yet robust model that is able to reconstruct
accurately spatiotemporally continuous LSTs. In addition, the ATC_GL is also independent
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of auxiliary data (i.e., only requiring globally acquirable LST and reanalysis data) and thus
applicable globally.

5.2. Contributions of LST-Related Descriptors in the Estimation of Daily LST Fluctuations

We quantified the contributions of the LST-related descriptors used in ATCT
(i.e., daily SAT fluctuation, NDVI, and DEM) with an attribution approach [62]. The
daily SAT fluctuation had the highest mean annual contribution (40.6%), followed by
NDVI (34.9%) and DEM (24.5%; Figure 12). These results also highlight the determinis-
tic role of daily SAT fluctuation and the indispensable contributions of NDVI and DEM
in LST reconstruction. The relevance of these factors to LST reconstruction comes from:
(1) the close correlation between LST and SAT under different conditions [63,64], and
(2) the regulatory effects of NDVI and DEM on the daily variation of LST [59,63]. Fur-
thermore, notable monthly variations were observed in the contributions of these three
variables: (1) The contribution of daily SAT fluctuation was relatively high from May to
September (exceeding 40.0%). This was likely owing to the increased amount of cloud
coverage during this period that consequently weakened the regulation of LST variation by
NDVI and DEM. (2) The contributions of NDVI were relatively higher in January, April,
October, and December than those in the other months; this finding could be explained
by sudden changes in plant cover (e.g., crop harvesting and sowing). (3) The contribution
of the DEM was relatively stable within the annual cycle, with the largest inter-month
difference of lower than 15.0%, probably because DEM remained unchanged throughout
the year.

160 I daily SAT fluctuation | NDVI [l DEM

(o]
o
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o

Contributions (%)

1 2 3 4 5 6 7 8 9 10 11 12
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Figure 12. Monthly contributions of the LST-related descriptors (including daily SAT fluctuation,
NDVI, and DEM) for the ATC_GL in LST reconstruction.

5.3. Limitations and Prospects

Regardless of its comparatively high performance in the modeling of intra-annual LST
dynamics, the ATC_GL has some limitations. First, the ATC_GL ignores the overpassing
time difference of MODIS LSTs (up to 2 h) within a daily cycle [65] and viewing angle
differences among temporally adjacent days [66-68]. Although previous studies have
shown that the accuracy enhancement after the normalization of overpassing time and
angle is limited [19], the ATC_GL is still expected to benefit if these factors are considered.
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Second, the ATC_GL is prone to overestimate LSTs in overcast conditions, proba-
bly because the used LST-related descriptors have less prediction ability in such con-
ditions. Microwave data can be used to directly obtain the surface thermal status un-
der overcast conditions and, therefore, could be useful for LST reconstruction. In situ
measurements under overcast conditions, such as the LST or other remote sensing data
that are directly related to LST (e.g., radiation), could also be helpful to minimize the
overestimation [10,13-15,41,69-75]. The performance of the ATC_GL is expected to im-
prove once these auxiliary data are integrated. Fortunately, the ATC_GL is not a specific
algorithm but a framework that can incorporate both spatiotemporally global and local
information, for which auxiliary data can be integrated directly as LST-related descriptors
during LST reconstruction. When applying the ATC_GL to LST reconstruction, practi-
tioners should consider both the availability of LST-related descriptors and the model
efficiency. The ATC_GL maintains high accuracy under both clear-sky (RMSE ranges from
0.5 to 1.0 K) and overcast conditions (RMSE ranges from 2.1 to 4.1 K). We believe that the
performance of the ATC_GL may be further improved once more auxiliary data under
overcast conditions are employed. In addition, the ATC_GL is expected to be applicable for
reconstructing LSTs with long time gaps such as the Landsat thermal data [28,70] (refer to
Appendix C for the details).

6. Conclusions

The existing ATC models are temporally global interpolations of nature, without
considering the spatiotemporally local information among adjacent pixels as well as the
complex relationship between LST and LST-related descriptors. These limitations translate
to relatively low-performance estimates under varying conditions. To overcome these
limitations, we proposed an improved ATC model (i.e., the ATC_GL) that integrates both
spatiotemporally global and local information and incorporates the RF algorithm and
a series of auxiliary data (e.g., daily SAT variation and NDVI) to model the complex
relationships between LSTs and LST-related descriptors.

Our assessments showed that, in the scenario with randomly missing LSTs under
clear-sky conditions, the RMSE of the ATC_GL was 1.1 K (2.3 K and 3.1 K lower than that
of the ATCE and ATCO, respectively). The performance of the ATC_GL was more stable
between land cover types when compared with the ATCE and ATCO. For the scenario
with LST gaps of various sizes under clear-sky conditions, our assessments revealed that
the accuracy of the ATC_GL was generally the highest when compared with several LST
gap-filling methods. The ATC_GL is a framework rather than a specific algorithm, as it can
directly integrate relevant LST-related descriptors in LST reconstruction. We believe that
the ATC_ GL would improve the accuracy of intra-annual LST dynamics estimation, LST
reconstruction, and other related applications.
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Appendix A

The size of the initial spatiotemporal window can affect model accuracy and
efficiency [6,71,72]. In order to identify the optimal spatiotemporal window, we exam-
ine the accuracy variations of the ATC_GL depending on the increase in spatial window
size (increasing from 5 x 5 pixels to 19 x 19 pixels, Figure A1) of Region H and the temporal
window size (increasing from 1 to 9 days, Figure A2). The assessments reveal that the
accuracy reaches the highest when the initial spatial window sizes are 9 x 9 pixels and
11x 11 pixels (i.e., w3 and w4 as given in Figure A1); and the associated mean RMSE for
these two window sizes is around 1.3 K. We therefore chose the size of the initial spatiotem-
poral window as 9 x 9 pixels for the ATC_GL. The model achieves the best performance
when the initial temporal window is 1 day with a mean RMSE of 1.2 K.

3.0+

0.5 1 1 1 1 1 1 1 1
w1 w2 w3 w4 w5 w6 w7 w8

Window size

Figure A1l. The accuracy of the ATC_GL along with the increase in the size of the initial spatial
window. wl-w8 denote the size of 5 X 5,7 x 7,9 x 9,11 x 11,13 x 13,15 x 15,17 x 17,and 19 x 19
pixels of initial spatial window, respectively.
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0.5 1 1 1 1 1 1 1 1 1
T™M T2 T3 T4 T5 T6 T7 T8 T9
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Figure A2. The accuracy variations of the ATC_GL depending on the increase in the size of the initial
temporal window. T1-T8 denote the size of 1-9 days for the initial temporal window, respectively.
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The ATC_GL performance shows different sensitivity in response to temporal and spa-
tial window sizes (Figures Al and A2). Therefore, the different combinations of increased
spatial and temporal window sizes may affect the ATC_GL performance. To investigate
the impact of different combinations of increased spatial and temporal window sizes on
the ATC_GL performance, a new experiment was conducted. The results show that the
accuracy of the ATC_GL rarely changes with different combinations of increased spatial
and temporal window sizes (Table A1). When using a different combination of increased
spatial and temporal window sizes, the ATC_GL performance varies by less than 14%
when referenced to the original spatiotemporal window sizes (i.e., 2 km and 2 days). This
suggests that the responsiveness of the ATC_GL performance to spatial and temporal
window sizes would not largely bias the major conclusions.

Table Al. The performance of the ATC_GL according to different combinations of increased size in
spatial and temporal windows, respectively.

Increase in Spatial

Increase in Temporal Window

Group Window Size (km) Size (Day) RMSE (K) R
A 2 2 0.95 0.95
B 4 2 0.97 0.94
C 6 2 0.98 0.94
D 2 4 1.03 0.92
E 4 4 0.97 0.93
F 6 4 1.04 0.91
G 2 6 1.08 0.89
H 4 6 1.04 0.91
I 6 6 1.05 0.92
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Figure A3. Study areas. The red boxes refer to the selected Regions I-O, which are located in
mid-temperate (MT), arid temperate (AT), warm temperate (WT), northern subtropical (NS), plateau
temperate (PT), mid-subtropical (MS), and southern subtropical (SS) climates, respectively. Subfigures
(I-O) represent the land cover types of the corresponding study areas.
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Appendix C

Land surface temperatures may be missing for a long time interval, e.g., the LST
missing gaps of the Landsat thermal data can be as large as half a month or more due to the
long revisit period of Landsat data and cloud contamination. To test the performance of
the ATC_GL when the LST missing gap is large, Region A was chosen as the study area for
evaluating model performances when the LST missing gap is as large as one month. Our
results show that the ATC_GL maintains a high accuracy when the LSTs are missing for a
long time interval. For example, the tests using Region A as the study area by setting the
LST missing time interval of one month indicate that the mean RMSE of the ATC_GL can
reach 3.3 K (Figure A4), an accuracy that is generally acceptable especially when compared
with other popularly used methods for such purposes. Therefore, the ATC_GL is expected
to be applicable for reconstructing LSTs with long time gaps such as the Landsat thermal
data. The ATC_GL should also be helpful for the generation of spatiotemporally seamless
LST products on a daily basis at the spatial resolution of Landsat thermal data (i.e., 100 m).

RMSE (K)
" ' . 50K

N

Rﬁ‘ R A

; ,.10K

Figure A4. The performance of the ATC_GL with the LST missing time interval of one month
(30 days).
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