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Abstract: Assessing the impacts and drivers of urban expansion on terrestrial carbon storage (TCS) is
important for urban ecology and sustainability; however, a unified accounting standard for carbon
intensity and research on the drivers and economic value of TCS changes are lacking. Here, urban
expansion and TCS in the Yangtze River Delta were simulated based on Patch-generating Land
Use Simulation and Integrated Valuation of Ecosystem Services and Trade-offs models; scenario
simulation; Literature, Correction, Ratio, Verification carbon intensity measurement; and land use
transfer matrix methods. The results showed that (1) from 2000 to 2020, urbanization and TCS loss
accelerated, with 61.127% of TCS loss occurring in soil, and land conversion was prominent in riverine
and coastal cities, mainly driven by the urban land occupation of cropland around suitable slopes,
transportation arteries, and rivers. (2) From 2020 to 2030, urban land expansion and TCS loss varied
under different scenarios; economic losses from the loss of the carbon sink value under cropland
protection and ecological protection were USD 102.368 and 287.266 million lower, respectively, than
under the baseline scenario. Even if urban expansion slows, the loss of TCS under global warming
cannot be ignored. Considering the indirect impacts of urbanization, the failure to establish a regional
development master plan based on ecosystem services may affect China’s carbon targets.

Keywords: urban expansion; terrestrial carbon storage; PLUS model; InVEST model; scenario
simulation; YRD

1. Introduction

Terrestrial carbon storage (TCS) is the carbon stored in plant leaves, woody parts,
and soil during continuous exchanges between the atmosphere, soil, and plants. It is
widely recognized as an ecosystem service that plays an important role in understanding
the interactive response between climate and productivity [1]. Urban expansion is the
process of converting land-use attributes from non-urban to urban areas [2,3]. However,
the reduction in vegetation cover and increase in impervious surfaces severely limits the
provision of regional ecosystem services and ecological resilience, which in turn leads to an
increased loss of carbon storage in terrestrial ecosystems [4]. In recent decades, the world
has experienced significant urban expansion, with urban land growing from approximately
7.47× 105 km2 to 8.0× 105 km2 from 2001 to 2018 [5]. China underwent the most significant
urban expansion during this period, accounting for 47.5% of the total [5]. Therefore, a
timely and effective assessment of the impacts of urban expansion on ecosystem services
(e.g., TCS) has become a critical and urgent task to better understand urban ecology and to
achieve sustainable urban development.

The main methods currently used to estimate the impact of urban expansion on TCS
are field sampling, image interpretation, and model simulations [6–8]. Model simulations
are applied to estimate the impact of urban expansion on TCS owing to their advantages of
low cost, speed, and predictability [9]. For example, Seto et al. [10] used a grid-based land
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change model to project global urbanization development in 2030 and discussed its direct
impact on the carbon pool. He et al. [11] linked the Land Use Scenario Dynamics-urban
model and the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model
to simulate and predict the urban expansion process in Beijing from 1990 to 2030, and they
assessed the potential impacts on TCS. Wang et al. [12] integrated a scenario simulation
method, system dynamics model, and InVEST model to explore future changes in land use
and TCS under different climate scenarios in the Bortala Mongol Autonomous Prefecture,
Xinjiang, China, in 2050, which precisely guided local regional development planning.

Models such as CA-Markov, CLUE-S, and future land-use simulation (FLUS) have
become important tools for predicting future urban-land expansion [13–15]. However, it
is difficult to reveal the underlying factors of land-use change and dynamically capture
the evolution of each type of land-use patch [16]. In contrast, the Patch-generating Land
Use Simulation (PLUS) model uses the Land Expansion Analysis Strategy (LEAS) module
to explore the causal factors of various types of land use changes and simulate multiple
land use patch-level changes [17]. The InVEST model consists of a series of modules
and algorithms, of which the carbon module can directly combine land-use change and
TCS dynamics based on land-use maps and carbon density; thus, carbon density is a key
indicator for estimating TCS. Li et al. [18] conducted physical and chemical experiments to
determine soil organic carbon density by selecting typical sample areas and land types for
soil sample collection. Although field sampling methods are the most basic and effective,
they are difficult to implement in large-scale areas because they require cumbersome
processes. Moreover, the lack of uniform accounting standards for large-scale carbon
density estimation causes the carbon density of different land types in the same region
to vary significantly [19]. In the global market economy, the economic value of terrestrial
ecosystem carbon sink services has been widely recognized, and some scholars have used
the social cost of carbon to study the social and economic value of changes in TCS due to
urban expansion [20].

As a scientific innovation, industrial, and financial hub, the Yangtze River Delta (YRD)
has experienced rapid economic development and urban expansion since the Chinese
economic reform and opening-up [21]. From 1980 to 2020, the per capita gross domestic
product (GDP) of the YRD increased from CNY 602.526 to 103,962.565, the urbanization
rate increased from 16.395% to 70.847%, and the area of urban construction land increased
from 25,700 to 47,138 km2. It was shown that urban construction land in the YRD grew by
156.25% from 1990 to 2015, while all other land types declined to varying degrees, resulting
in an estimated loss of 1210.54 Tg of TCS [22]. These TCS estimates were based on the
consequences of shifts in all land types under the influence of climate change and human
activities. However, changes in TCS due to shifts in and out of urban land use have not
been accurately assessed.

This study aimed to clearly reveal the impact of TCS on urban expansion in the YRD
and set three objectives to achieve this: (1) assess the urban expansion and TCS changes
in the YRD from 2000 to 2020 based on the coupled PLUS and InVEST models using the
Literature, Correction, Ratio, Verification (LCRV) carbon intensity measurement method;
(2) analyze and predict urban expansion and the impact on TCS in the YRD in 2030 using
the scenario simulation method; and (3) explore the drivers of TCS changes from urban
expansion and the loss of the economic value of carbon sinks in different scenarios.

2. Materials and Methods
2.1. Research Area

The YRD is located at the “T” junction along the river and coast of China
(114◦54′–122◦12′ E, 27◦02′–35◦08′ N), with an area of approximately 350,396.447 km2,
accounting for 3.65% of China’s total area (Figure 1). The topography shows a trend of high
elevation in the southwest and low elevation in the northeast, with elevations ranging from
−210 to 1921 m, and mountains, hills, and plains are distributed sequentially. The YRD is
located at the intersection of warm temperate and southern and northern subtropical mon-
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soon climates, with an annual average temperature of 13.6–18 ◦C, an annual precipitation of
704–2000 mm, and the highest density of river networks in China, providing the region with
ideal water and heat conditions. The area has complex vegetation composition, high forest
cover, and a wide variety of soil types. The region includes Shanghai, Jiangsu (Nanjing,
Suzhou, Nantong, etc.), Zhejiang (Hangzhou, Ningbo, Wenzhou, etc.), and Anhui (Hefei,
Wuhu, Chuzhou, etc.) provinces. In 2020, the GDP of the YRD was CNY 24,471.353 billion,
and the resident population was 235.386 million.
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2.2. Data Sources

The land use data of the YRD were reclassified into six categories: cropland, woodland,
grassland, waterbody, built-up land, and unused land by referring to the land resource
classification [23]. Natural and socioeconomic factors are drivers of land use change. The
natural factors include elevation, slope, and aspect. Digital Elevation Model (DEM) data
were obtained by incorporating auxiliary data from ASTER GDEM, ICESat GLAS, and
PRISM datasets into STRM data and reprocessing them to a spatial resolution of 30 m.
Slope and aspect data were obtained using ArcGIS software to analyze the slope and
aspect based on DEM data. Socioeconomic factors included GDP, population, and basic
geographic information. The basic geographic information data were the distances from
general roads, highways, railways, rivers, cities, and downtowns, which were calculated
using the Euclidean distance method. To ensure consistency, the above data were all used
in a unified Universal Transverse Mercator (UTM), and the image element sizes were
resampled to 1000 m (Table 1).



Land 2023, 12, 297 4 of 16

Table 1. Data sources and descriptions.

Data Type Data Name Data Source Spatial
Resolution (m)

Land use data Land use in 2000, 2010, and 2020 GlobalLand30 dataset (http:
//www.globallandcover.com/) 30

Natural factors DEM NASA DEM (https:
//www.earthdata.nasa.gov/) 30

Slope 30
Aspect 30

Socioeconomic factors Population WorldPop dataset
(https://www.worldpop.org/) 100

GDP
Resource and Environment

Science and Data Center
(http://www.resdc.cn/)

1000

Distance to general roads OpenStreetMap (https:
//www.openstreetmap.org/) 1000

Distance to highways 1000
Distance to railways 1000

Distance to river
National Catalogue Service for

Geographic Information
(https://www.webmap.cn/)

1000

Distance to city 1000
Distance to downtown 1000

2.3. Research Methods
2.3.1. Research Framework

In this study, a coupled model consisting of LEAS and CA based on multiple random
seed (CARS) modules of the PLUS model and the carbon module of the InVEST model was
constructed to simulate urban expansion in the YRD and its impact on TCS (Figure 2). The
overall experimental process was as follows: First, land use data for 2000 and 2010 were
input into the PLUS model, and the extracted land use expansion data from 2000 to
2010 were used along with the data of the 11 driving factors to calculate the contribution
rate of the driving factors and the growth probabilities of each land use type using the
random forest method. Second, the 2000 land use data, growth probabilities of each land
use type, transition matrix, neighborhood weights, and land demand derived from the
Markov chain were incorporated into the CARS module, and the CA model was applied
to simulate the 2010 land use data. The simulation accuracy was compared to that of the
FLUS model to verify whether the PLUS model obtained a higher simulation accuracy. The
above parameters and adjusted parameters were used to simulate land use under three
scenarios in 2030: baseline scenario (BS), cropland protection scenario (CP), and ecological
protection scenario (EP). Finally, the past and future TCS and the economic value of carbon
sinks were calculated by combining the land use data of different periods and four types of
carbon density data using the carbon module of the InVEST model. Urban expansion and
the changes in TCS caused by it were then processed, handled, and analyzed using ArcGIS
software to obtain the final result.

http://www.globallandcover.com/
http://www.globallandcover.com/
https://www.earthdata.nasa.gov/
https://www.earthdata.nasa.gov/
https://www.worldpop.org/
http://www.resdc.cn/
https://www.openstreetmap.org/
https://www.openstreetmap.org/
https://www.webmap.cn/
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2.3.2. Urban Expansion Simulation Based on PLUS Model

The PLUS model is a model for patch generation land-use change simulation devel-
oped by the HPSCIL@CUG development team at the China University of Geosciences [24].
It includes two main modules, LEAS and CARS.

The LEAS module calculates the development probability of each type of land use
by extracting land-use expansion data using the random forest algorithm, and it analyzes
the contribution rate of the drivers of land use expansion [25]. The specific formula for the
random forest algorithm is:

Pd
i,k(x) =

∑M
n = 1 I(h n(x) = d)

M
(1)

where Pd
i,k(x) is the probability of growth of land-use type k in spatial cell i, function I is the

indicator function of the decision tree, and hn(x) is the prediction type of the nth decision
tree. A d of 1 indicates that there is a transition from other land classes to land class k, and a
d of 0 indicates any other land use conversion that does not include land class k.
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The CARS module simulates the automatic generation of patches in a spatio-temporal
dynamic manner under the constraints of development probabilities of various types of
sites combined with random seed generation and threshold-decreasing mechanisms [26].
The formula is as follows:

OPd = 1,t
i,k = Pd

i,k×Ωt
i,k×Dt

k (2)

where OPd = 1,t
i,k is the integrated probability that spatial cell i is in transition to ground

class k at moment t, Ωt
i,k is the domain effect of cell i, which is the proportion of land use

components of land class k that are covered in the next domain, and Dt
k is the effect of

future demand on land class k. The future demand for each land-use type was predicted
using the Markov Chain module [27]. The parameters of the neighborhood weights were
obtained by debugging the model based on previous research results and combining the
expansion area share of each land type in the YRD from 2000 to 2010 [17,24]. In the land
use transition matrix, 1 means conversion is allowed, and 0 means conversion is restricted
(Table 2).

Table 2. Neighborhood weight parameters and transition matrix for the 2010 land use simulation.

Land Use Types Cropland Woodland Grassland Waterbody Built-Up Land Unused Land

Neighborhood
weights 0.461 0.032 0.007 0.033 0.467 0.001

Cropland 1 1 0 1 1 1
Woodland 1 1 1 1 1 1
Grassland 1 1 1 1 1 1
Waterbody 1 1 1 1 1 0

Built-up land 1 0 0 1 1 0
Unused land 0 1 1 1 1 1

To ensure that the fitting accuracy of the PLUS model met the research requirements,
the same data were input into the FLUS and PLUS models for comparison and validation.
The results showed that the fitting accuracy of the PLUS model was higher, with a Figure of
Merit (FOM) coefficient of 0.237 compared to 0.178 or the FLUS model, indicating that the
use of the PLUS model for land change simulation in the study area is more reasonable than
the FLUS model. The obtained kappa coefficient was 93.3%, and the overall accuracy (OA)
was 95.6%. Generally, urban land, rural settlements, and others constitute built-up land.
Influenced by China’s unique national conditions, along with economic development, a
large-scale work force is clustered in urban areas, resulting in a rapid outward spreading of
urban land, while rural land shows idle or shrinking status. Therefore, for the convenience
of model simulation, all construction land was considered urban land.

This study referred to the outline of the YRD Regional Integrated Development Plan
(2019–2035), YRD City Cluster Development Plan (2015–2030), YRD Regional Ecological
and Environmental Co-protection Plan (2021–2035), and previous related studies [13,19]
to set up three future scenarios: (1) BS: Based on the important parameters simulated
in 2010, the land use pattern of the YRD under the historical trend was estimated by
combining the land use demand in 2030 obtained from the Markov chain projection (Table 3).
(2) CP: Based on the principles of national food security and social stability, guarding the
red line of cropland, eliminating urban sprawling development, and improving intensive
land use. Therefore, the transfer probability of cropland to built-up land was reduced by
30% compared to BS, and this was added to cropland. (3) EP: The YRD is not only the
leading economic and social development in China but is the pioneer area for ecological
protection. After more than 40 years of sloppy development methods, environmental
pollution and ecological damage are serious, and the YRD urgently needs to promote
sustainable economic development by transforming land use (protecting ecological land)
and adjusting the corresponding parameters. Under the EP, the transfer probability of
cropland to built-up land was reduced by 30% compared to CP, and the reduction was
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added to the conversion of cropland to woodland. The transfer probability of grassland
and woodland to built-up land was reduced by 40% compared to CP, and this was added
to grassland and woodland, respectively.

Table 3. The number of demand for each land use type in different scenarios in the YRD in 2030 (km2).

Scenario Cropland Woodland Grassland Waterbody Built-Up
Land

Unused
Land

BS 163,597 99,917 10,870 23,673 49,688 255
CP 164,664 100,250 10,683 23,098 49,045 260
EP 164,092 101,669 11,199 23,347 47,433 260

2.3.3. TCS Estimation Based on InVEST Model

The InVEST model provides a scientific basis for decision makers to weigh the benefits
and impacts of human activities by simulating changes in the quantity and value of
ecosystem services under different land cover scenarios [11]. The carbon module can
estimate TCS based on LULC data, which can generally be divided into four basic carbon
pools: aboveground carbon storage (AGC), belowground carbon storage (BGC), soil organic
carbon storage (SOC), and dead organic matter carbon storage (DOC). The calculation
formula is as follows:

Stotal= Sabove+Sbelow+Ssoil+Sdead (3)

where Stotal is the total TCS (Tg=106 t), and Sabove, Sbelow, Ssoil and Sdead are AGC, BGC, SOC,
and DOC, respectively.

Previous studies have shown that carbon density within a region varies significantly
by land type [11,24,28,29]. Therefore, this study developed an LCRV carbon density mea-
surement method. In this method (1) “Literature” refers to the collection of national level
soil organic carbon density data through the literature; (2) “Correction” means to use the
carbon density correction formula to modify the data to the actual soil organic carbon
density in the YRD; (3) “Ratio” refers to the measurement of the remaining three carbon
densities (aboveground carbon density, belowground carbon density, and dead organic
matter carbon density) in the YRD with the help of carbon pool biomass ratio-carbon con-
version rate [30–32]; (4) “Verification” refers to the selection of data (273 sampling points)
from the “dataset of carbon density in Chinese terrestrial ecosystems (2010s)” created by
Xu et al. [33] in the same latitude and longitude location as the YRD to verify the four types
of carbon density, of which the results showed that the measured carbon density data were
within their range and consistent with the regional reality (Table 4). The soil organic carbon
density correction equation and carbon pool biomass ratio-carbon conversion rate equation
were as follows:

Csp= 3.3968×MAP + 3996.1 (4)

Ksp= C1
sp/C2

sp (5)

Ctc= Cc_above/0.157 = Cc_below/0.103 = Cc_soil/0.72 = Cc_dead/0.02 (6)

CtW= CW_above/0.217 = CW_below/0.043 = CW_soil/0.72 = CW_dead/0.02 (7)

Ctg= Cg_above/0.118 = Cg_below/0.142 = Cg_soil/0.72 = Cg_dead/0.02 (8)

Ctw= Cw_above/0.025 = Cw_below/0.045 = Cw_soil/0.9 = Cw_dead/0.03 (9)

Ctb= Cb_above/0.175 = Cb_below/0.035 = Cb_soil/0.79 (10)

Ctu= Cu_above/0.217 = Cu_below/0.043 = Cu_soil/0.72 = Cu_dead/0.02 (11)

where Csp is the soil organic carbon density (t/hm2) obtained by correcting the average
annual rainfall; Ksp is the soil organic carbon density correction coefficient; MAP is the
average annual rainfall (mm) of 628, 640.1, 649, 1201, and 1283.403 mm for China, Beijing,
Shaanxi, Wuhan, and YRD, respectively; Ctc, CtW, Ctg, Ctw, Ctb, and Ctu are the total carbon
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densities of cropland, woodland, grassland, waterbody, built-up land, and unused land,
respectively; and Cabove, Cbelow, Csoil, and Cdead are the aboveground, belowground, soil, and
dead organic matter carbon densities, respectively, for each type of land use.

Table 4. Carbon intensity of each land use type in the YRD (t/hm2).

Land Use Types Aboveground
Carbon Density

Belowground
Carbon Density

Soil Organic
Carbon Density

Dead Organic
Matter Carbon

Density

Total Carbon
Density

Cropland 20.329 13.423 93.467 2.596 129.815
Woodland 43.151 8.622 143.371 3.983 199.127
Grassland 18.149 21.772 110.550 3.071 153.542
Waterbody 1.910 3.437 68.746 2.292 76.385

Built-up land 14.548 2.910 65.675 0.000 83.133
Unused land 14.249 2.847 47.342 1.315 65.753

3. Results and Discussion
3.1. Dynamic Evolution of Urban Land Expansion and TCS in the YRD from 2000 to 2020

From 2000 to 2020, the YRD experienced large-scale urbanization acceleration, which
was most evident in the riverine and coastal cities (Figure 3I). The urban land area of the
YRD increased from 30,138 km2 (8.660% of the total area of the YRD) in 2000 to 36,929 km2

in 2010 and 47,138 km2 (13.545% of the total area of the YRD) in 2020, an increase of
0.564. The expansion of urban land accelerated significantly throughout the study period,
with an increase of 6791 km2 from 2000 to 2010 (average annual growth rate of 2.053%)
and 10,209 km2 from 2010 to 2020 (average annual growth rate of 2.471%). Shanghai’s
urban land area increased from 1397 km2 (20.406% of Shanghai’s total area) in 2000 to
3000 km2 (43.821% of Shanghai’s total area) in 2020, and the expansion of the urban land
area occupied almost 1/4 of the total urban area. The urban land areas of Suzhou, Nantong,
and Nanjing increased by 1397, 722, and 714 km2, respectively, with average annual growth
rates of 4.355, 4.533, and 2.668%, respectively.
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Urban expansion leads to increasing TCS losses, most of which occur in soil (Figure 3II).
From 2000 to 2020, the YRD lost 90.189 Tg of TCS. Among the four carbon pools, SOC
decreased by 55.13 Tg, accounting for 61.127% of TCS loss, while AGC, BGC, and DOC
decreased by 13.208, 17.216, and 4.635 Tg, accounting for 14.645, 19.089, and 5.139% of
TCS loss, respectively. Shanghai’s TCS declined by 7.149 Tg, accounting for 7.927% of the
TCS loss in the YRD. The TCS loss in all four carbon pools was higher than that in the
remaining three case areas. Heterogeneity was observed in the proportion of TCS lost from
the four carbon pools in different regions. Nanjing’s TCS decreased by 3.437 Tg, which
was slightly larger than that of Nantong (3.112 Tg). The proportion of AGC loss in Nanjing
(12.656%) was higher than that in Nantong (10.312%), whereas the proportion of BGC loss
in Nanjing (20.502%) was lower than that in Nantong (22.812%). This stems from the fact
that different types of land have been transformed into urban land during urban land
expansion. Nanjing encroached on a large amount of woodland in the process of urban
land expansion, resulting in increased AGC loss. In contrast, Nantong converted a large
area of water bodies into urban land, resulting in increased BGC loss.

3.2. Simulation Projections of Land Use and TCS in the YRD in 2030 under Different Scenarios

Under the BS, the rates of urban expansion and TCS loss in the YRD declined sig-
nificantly (Figure 4I,II). Under this scenario, the urban land area of the YRD in 2030 was
49,688 km2 (14.278% of the total area of the YRD), showing an average annual growth rate
of 0.528% from 2020 to 2030. Compared to 2000–2020, the loss of TCS slowed to 13.194 Tg,
among which the loss of SOC was the most serious, accounting for 62.271% of the total
TCS reduction. In contrast, the loss of DOC was the lowest at 0.699 Tg, accounting for
only 5.298% of the loss. The rate of land expansion slowed in all cities, with Shanghai,
Suzhou, Nantong, and Nanjing increasing their urban land areas by 53, 48, 41, and 87 km2,
respectively. Nanjing had a relatively larger urban land expansion area, and will lose
much more TCS than the other three cities in 2030, at 0.493 Tg. AGC, BGC, SOC, and DOC
decreased by 0.081 Tg, 0.074 Tg, 0.313 Tg, and 0.025 Tg, respectively.

Compared to BS, the rates of urban expansion and TCS loss were further reduced
under CP (Figure 4III,IV). The urban land area of the YRD in 2030 is expected to be
49,045 km2 (14.093% of the total area of the YRD), with an average annual growth rate of
0.397% from 2020. Ecosystem function degradation would be mitigated in this scenario,
with only 8.909 Tg of TCS lost. For the four carbon pools, the proportion of TCS loss was
similar to that under BS and was, from highest to lowest, SOC (61.814%), BGC (20.462%),
AGC (12.044%), and DOC (5.68%). The urban land expansion area of Shanghai decreased
significantly, which was slightly higher than that of Nantong but significantly lower than
that of Suzhou and Nanjing. Shanghai’s urbanization process began early and developed
rapidly. After 2020, the land types were mainly built-up land and cropland, with little
change in urban land use, as cropland protection limited encroachment on cropland. The
TCS loss in Shanghai in 2030 is 0.135 Tg, and the losses of the four carbon pools are only
0.01, 0.032, 0.084, and 0.009 Tg, respectively.

Under EP, the YRD showed the lowest loss of urban expansion area and TCS
(Figure 4V,VI). The urban land area of the YRD expanded to 47,433 km2 (13.63% of the
total area of the YRD) by 2030, with an average annual growth rate of 0.062% from 2020 to
2030. The urban expansion area was significantly reduced, and the TCS loss was only
1.17 Tg. Moreover, owing to the strict control of the conversion of ecological land, such as
woodland and grassland, to urban land, the proportion of AGC loss in the EP decreased by
5.414% compared to that under BS. Suzhou and Nantong did not experience significant
urban expansion, growing by only 10 and 0 km2, respectively. The loss of TCS in Suzhou in
2030 was 0.02 Tg, with AGC increasing by 0.003 Tg due to the conversion of only a small
amount of cropland and waterbody to urban land and BGC, SOC, and DOC experiencing
losses of 0.006, 0.015, and 0.002 Tg, respectively.
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3.3. Main Reasons for the Decline of TCS during Urban Expansion in the YRD

To analyze the main causes of TCS loss during urban expansion in the YRD, this study
used the LEAS module of the PLUS model and the land-use transfer matrix to explore the
drivers of urban land growth and the main causes of TCS loss, respectively.

The slope, transportation arteries (general roads, highways, and railways), and rivers
were the main drivers of urban expansion in the YRD (Figure 5). This study used the
LEAS module to reveal the potential drivers of urban expansion and the strengths of their
contributions. Slope had the greatest impact on urban expansion, with a contribution
of 0.231, followed by distance to general roads, DEM, distance to highways, distance to
railways, and distance to rivers, with contributions of 0.166, 0.165, 0.136, 0.114, and 0.112,
respectively. These results indicated that additional urban land was mainly distributed
around transportation arteries with gentle topography and adjacent to the old city, which
was verified by Dadashpoor et al. [34] and Liang et al. [24], who studied the Tehran
Metropolitan Region (TMR) and Wuhan, respectively. Osman et al. [35] divided the Giza
Governorate of the Greater Cairo Metropolitan Region (GCMR) into three parts according
to the stage of urbanization and used a questionnaire to indicate that economic incentives,
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population increases, and administrative functions that were the most influential forces for
urban expansion in the central, northern, and southern parts of the city, respectively.
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Cropland occupation was the main cause of TCS loss in the YRD region (Table 5). The
urban land transfer matrix revealed that the amount of urban land transfer in the YRD
from 2000 to 2010 was small, but that from 2010 to 2020 was significant. From 2000 to 2020,
15,525 km2 of cropland was converted to urban land, accounting for 91.324% of the new
urban land. This directly led to a TCS loss of 72.474 Tg, accounting for 81.156% of the
total TCS loss, which differed from the 63.73% reported by He et al. [11] in Beijing, mainly
because of the different proportions of each land type from those in the YRD. In addition,
1352 km2 of woodland and 157 km2 of grassland were converted to urban land, resulting
in TCS losses of 15.682 and 1.105 Tg, respectively. The TCS of the water bodies and unused
land remained largely unchanged. The natural resource endowments and socioeconomic
development of different countries are heterogeneous; therefore, the carbon density and
land use transfer are different. Li et al. [36] and Hutyra et al. [37] found that deforestation
caused 5.0 ± 3.6 and 1.2 t/hm2 of TCS loss and was the main cause of TCS loss in the
Amazon region and Seattle metropolitan area, respectively. Together, these findings show
that when urban expansion occurs along the direction of gentle slopes, transportation
arteries (general roads, highways, and railways), and rivers, the majority of the occupied
land is cropland with a high carbon density, which leads to a serious loss of TCS.

Table 5. Urban land transfer matrix and its TCS changes in the YRD from 2000 to 2020 (km2/Tg).

Time Period - Cropland Woodland Grassland Waterbody Unused Land

2000–2010
Transfer out volume 9 0 0 20 0
Transfer in volume 6240 359 42 178 1

TCS −29.088 −4.164 −0.296 0.107 0.002

2010–2020
Transfer out volume 16,992 1230 177 1435 19
Transfer in volume 26,286 2223 292 1259 2

TCS −43.386 −11.518 −0.810 −0.119 −0.030

Note: Positive values indicate an increase in TCS and negative values indicate a loss of TCS.

3.4. Practical Implications

Carbon sinks have huge economic benefits and can effectively mitigate the loss of
carbon sink value under CP and EP conditions. Similar to She et al. [38] and Carr et al. [39],
this study used the InVEST model to assess the loss of economic value of carbon sinks
owing to urban expansion in different scenarios. Three important parameters were required
for the evaluation process: (1) the social cost of carbon emissions, which, according to
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Ricke et al. [40], was set as USD 24/t; (2) the market discount rate of the economic value
of carbon sinks, which was set at 10%, as used in the evaluation of the project by the
Asian Development Bank [41]; and (3) the interannual rate of change in the social cost
of carbon emissions, which was set at 0 with reference to available research results [42].
The results under BS found that the economic value of the carbon sink reduced by USD
315.221 million with an urban land expansion of 2550 km2 in the YRD; under CP, the area
of urban expansion and resulting economic value loss of carbon sink were 1907 km2 and
USD 212.853 million, respectively; and under EP, these values were 295 km2 and USD
27.955 million, respectively. Therefore, with the slowdown of urban expansion under CP
and EP, it is possible to reduce the economic losses from the loss of carbon sinks by USD
102.368 and 287.266 million, respectively.

In the context of global warming, future urban expansion of the YRD will further
aggravate the loss of TCS and pose a serious threat to the achievement of China’s ‘double
carbon’ target. TCS are highly vulnerable to climate change and human activity [43].
Prietzel et al. [44] found that carbon loss from deep soils due to global warming far exceeds
the increase in plant biomass and carbon storage in litter, which causes a decline in total TCS
and a further increase in global temperatures. In addition, urban expansion directly affects
TCS and indirectly affects anthropogenic carbon emissions [45]. Chuai et al. [46] argued
that human activities associated with anthropogenic carbon emissions always make land a
carrier. This study measured regional carbon emissions based on carbon emission factors
provided by the Intergovernmental Panel on Climate Change (IPCC) and found that urban
land is where carbon emissions are most concentrated and intense, and promoting intensive
land use can effectively mitigate the greenhouse effect. Since 2017, China’s economy has
moved to a stage of high-quality development, and ecological environmental protection
has received unprecedented attention and has gradually been integrated into all areas and
aspects of economic and social development. In 2020, China set a strategic goal of reaching
peak carbon emissions by 2030 and achieving carbon neutrality by 2060 [47]. However,
the carbon emission effect of future urban land expansion in the YRD will add to the
pressure on China to reduce carbon emissions and may undermine the “low carbon city”
development concept and China’s commitment to the Paris Climate Agreement.

Therefore, there is an urgent need to establish a regional development plan based
on ecosystem services. The loss of carbon sinks due to urbanization is not unique to the
YRD. Wang et al. [41] found that, under a natural development scenario, Wuhan’s urban
expansion will result in a direct loss of USD 26.5 million through carbon sink value loss
by 2035. At the same time, urban expansion is a serious threat to many other ecosystem
services. For example, Yuan et al. [48] found that China’s economic development has
been highly dependent on increased urban land area and quantified the value loss of
five ecosystem services (food production, water conservation, climate regulation, habitat
support, and cultural service) during urbanization in China and found a total loss of USD
110.95 billion over the last 30 years. Campbell et al. [49] optimized the land use structure
of Maryland, USA to reduce the potential loss of seven ecosystem services from increased
population and economic development. Ecosystem services are an important resource
for human survival and development, and their socio-cultural value should receive more
scholarly attention [50]. However, at present, at both national and individual levels, the
awareness of protecting ecosystem services is underdeveloped [30]. Therefore, in future
regional planning, we should strengthen the protection of ecological land such as cropland
and woodland, insist on the “reduction” of inefficient construction land, and establish the
concept of “smart growth” and “compact city”.

3.5. Limitations and Future Directions

Dynamic changes in land use refer to changes in land use patterns and utilization
levels caused by the interaction of elements in natural and human systems. In this study,
11 types of data, including DEM, slope, GDP, and population, were selected as drivers
for simulating the spatial layout of future land use, and multiple models were used for
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comparison and validation to select the best-fitting results. Despite the high accuracy of
the simulation results, the influence of policy factors, such as ecological protection red lines
and urban development boundaries, on land use change was not considered. Therefore,
to further improve the accuracy of land use simulations, relevant policy factors should be
incorporated into the driving factor system in the future. In addition, subsequent studies
using remote sensing data with a higher spatial resolution are needed.

The InVEST model is widely used to estimate the functions of ecosystem services
(e.g., water production and biodiversity) and their economic value. It has been commonly
applied by many researchers worldwide for its advantages of easy operation and visual
representation, and it has promoted the progress of research on ecosystem carbon storage
services; however, it has some limitations. The model oversimplifies the carbon cycle prin-
ciple by assuming that carbon density is homogeneous and constant, ignoring that carbon
density changes dynamically over time and as the environment changes [51]. Therefore,
to improve the accuracy of the assessment results, future studies should supplement and
correct carbon density using multi-year and continuous field observation data, and a more
detailed land-use classification system should be adopted to compensate for the lack of
spatial heterogeneity within land-use types [45].

4. Conclusions

Based on the coupled model of PLUS and InVEST, this study combined the scenario
simulation method, LCRV carbon intensity measurement method, and land-use transfer
matrix to simulate past and future urban expansion in the YRD and its impact on TCS. An
attempt was made to construct a unified accounting standard for carbon density on a large
scale, and the drivers and economic values of TCS changes during urban expansion were
explored in depth. The main findings were as follows: (1) The urban land area of the YRD
expanded 0.564 times from 2000 to 2020 (approximately 17,000 km2), and the expansion
rate accelerated significantly with time, with an average annual growth rate of 2.053% from
2000 to 2010 and 2.471% from 2010 to 2020. Meanwhile, the TCS declined significantly,
with an annual average reduction of 4.509 Tg. Of the TCS losses, 61.127% occurred in soil.
Land conversion and the loss of TCS were particularly prominent in riverine and coastal
cities with economic and population centers (Shanghai, Suzhou, Nantong, and Nanjing).
(2) The rates of land expansion and TCS loss in the cities of the YRD decreased to different
degrees under all three scenarios. Under BS, the urban expansion area was the largest at
2550 km2 and the associated TCS loss was 13.194 Tg. EP had the smallest urban expansion
area (295 km2) and lowest TCS loss (1.17 Tg). (3) The slope, transportation arteries (general
roads, highways, and railways), and rivers were the main drivers of urban expansion in
the YRD, with a combined contribution of 0.924. The main reason for the loss of TCS was
the encroachment of croplands by urban land. From 2000 to 2020, 91.324% of the urban
expansion land originated from croplands, which directly led to a TCS loss of 72.474 Tg.
Carbon sinks have huge economic benefits, and under CP and EP, the economic losses
from the loss of carbon sink value can be reduced by USD 102.368 and 287.266 million,
respectively, compared to that under BS.

Although we studied the impact of urban expansion on TCS in the YRD using model
simulation methods, there were some shortcomings in the study. The effects of policy
factors on land-use changes and the fact that carbon density changes dynamically with time
and geographical environment changes were ignored. In future studies, policy factors, such
as ecological protection red lines and urban development boundaries, should be included
in the driving factor system to improve the accuracy of land use simulation. Simultaneously,
carbon density should be supplemented and corrected using multi-year and continuous
field observation data. These will be explored by land-use planners and environmental
science scholars around the world because feeding this information back to urban planning
and management departments will help future sustainable urban development.
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