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Abstract: The Chure Hills, already vulnerable due to their fragile nature, face increased landslide
risk, prompting the need for reliable susceptibility assessment. This study uses Poisson regres-
sion modeling to assess landslide susceptibility in two highly susceptible districts of the Chure
region. Variance inflation factor (VIF) tests were conducted to ensure robustness, indicating no
multicollinearity among the variables. Subsequently, Poisson regression analysis identified eight
significant variables, among which geology, lineament density, elevation, relief, slope, rainfall, solar
radiance, and land cover types emerged as important factors associated with landslide count. The
analysis revealed that higher lineament density and slope were associated with lower landslide
counts, indicating potential stabilizing geological and topographical influences. The categorical
variable, namely geology, revealed that middle Siwalik, upper Siwalik, and quaternary geological
formations were associated with lower landslide counts than lower Siwalik. Land cover types,
including areas under forest, shrubland, grassland, agricultural land, water bodies, and bare ground,
had a substantial significant positive association with landslide count. The generated susceptibility
map that exhibited a substantial portion (23.32% in Dang and 5.22% in Surkhet) of the study area
fell within the very-high-susceptibility categories, indicating pronounced landslide susceptibility in
the Dang and Surkhet districts of the Chure hills. This study offers valuable insights into landslide
vulnerability in the Chure region, serving as a foundation for informed decision-making, disaster risk
reduction strategies, and sustainable land-use and developmental policy planning.

Keywords: landslide susceptibility; Chure region; poisson regression; susceptibility map

1. Introduction

Landslides, a significant geo-hazard, have profound implications worldwide, causing
substantial loss of life, damage to infrastructure, and environmental degradation [1,2].
Nepal, nestled in the Himalayas, faces significant landslide challenges due to its rugged
terrain and complex geology, causing substantial economic and human loss [3]. One region
particularly susceptible to landslides is the Chure region of Nepal, located in the southern
foothills of the Himalayas. The Chure region’s unique topography, geological composition,
and anthropogenic activities contribute to its heightened vulnerability to slope failure and
landslides [4]. Understanding the causes and impacts of landslides in this region is crucial
for effective susceptibility assessment, mitigation, and sustainable development.

The Chure region of Nepal has key ecological and socioeconomic significance. It is
one of the country’s major carbon reservoirs, is rich in biodiversity, possesses high-value
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timber species, and is the efficient water supply source for the Terai region of the coun-
try [5]. Nearly four million populations from the Chure and Bhabhar regions depend on
the site’s local natural resources to generate livelihoods and income [6]. Despite its broad
ecological and socioeconomic significance, it faces substantial outside challenges. The envi-
ronment of the Chure region is undergoing unprecedented changes through illegal logging,
uncontrolled mining, and increased anthropogenic activities [7]. The other activities con-
tributing to the loss of its environmental assets are over-exploitation of natural resources,
free livestock grazing, and the illegal trade in forest products [8]. The region is delicate
and environmentally sensitive due to the composition of loose materials that are derived
from soft rocks [6]. Foreseeing its threat and considering its significance, the Government
of Nepal created the President Chure Terai Madesh Conservation Development Board in
2010 to conserve and manage the region’s land, water, and forest for ecological stability in
the region [9].

Technological advancements and data analysis tools have recently revolutionized our
understanding of landslides. Google Earth data, geographic information systems (GIS),
remote sensing, and modeling techniques have become indispensable for studying land-
slide dynamics and assessing their potential risks [10–12]. Google Earth’s high-resolution
satellite imagery provides valuable visual information, enabling researchers to identify
landslide-prone areas and study their geomorphological characteristics [13]. GIS facilitates
the integration and analysis of diverse spatial datasets, aiding in identifying the factors
contributing to landslide occurrences [14]. Furthermore, freely available high-resolution
data, such as the digital elevation models, have aided in precisely mapping terrain features
and monitoring landslide activity [15,16].

There are two major approaches in the landslide susceptibility assessment: qualitative
and quantitative methods. Qualitative methods are inventory-based and knowledge-driven,
whereas quantitative methods are data-driven and physically based models [17]. According
to its occurrence data, the qualitative methods classify areas with similar geomorphological
and lithological properties, ultimately indicating the region that is highly susceptible to
landslides [18]. On the other hand, the quantitative methods include statistical, proba-
bilistic, artificial intelligence-based, and deterministic approaches [19,20]. The quantitative
approach is more reliable as this technique’s prediction of landslide susceptibility is based
on actual data and interpretations [21,22]. Many techniques, such as statistical tools [23,24],
frequency ratios [25,26], the weight of evidence [27], and the analytical hierarchical pro-
cess [21,28], are used by many researchers to produce precise results with reasonable
accuracy for landslide assessment. Among the various approaches, the generalized lin-
ear model (GLM) is one of the most common statistical methods for landslide prediction
modeling [29]. GLMs offer greater flexibility in analyzing relationships among variables
because they can handle a wide range of continuous and categorical data [30].

Landslides occur at unexpected sites and uncertain times; thus, they are called stochas-
tic processes. These stochastic processes are often modeled using a probability-based
approach. The Poisson model, a mathematical framework that operates in a continuous
time and consists of random point-events (landslide) in ordinary time, which is treated as a
continuous and uninterrupted flow, is used for the calculation of the occurrence of random
point-events in time and is used commonly to model the occurrence of landslides [31,32].
Geographic information systems (GIS) have been found to play beneficial roles in the study
of landslides since they combine the functions of data collection, storage, manipulation,
display, and analysis with a spatial framework. Integrating GIS and multivariate statistics
is a fruitful approach in landslide mapping [14,33]. Previously, many studies have used
GIS and other evaluation techniques (frequency ratio, logistic regression method) for land-
slide hazard assessments [34,35]. However, limited research has been conducted focusing
specifically on the Chure Hills for landslide susceptibility and factors influencing it. Thus,
this study attempts to explore the application of the Poisson model and GLM, as it is
mainly based on actual data, requires less theoretical data, and enables the researchers and
policymakers to gain crucial insights into landslide dynamics and preparedness measures
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and develop sustainable land management strategies in similar geographical regions of
Nepal. Such comprehensive approaches will be instrumental to mitigating landslide risks
and fostering resilient communities in this vulnerable region.

2. Study Area

The Chure range of Nepal is a long strip spanning from its western to its eastern
boundary (Figure 1). It constitutes almost 26% of the total population of Nepal across
37 districts [36]. The Chure range accounts for 12.78% of the country’s land area, containing
14 forest ecosystems [37]. Climate-wise, the Chure range mainly falls under temperate
regions with an elevation of 120–2000 m, a temperature of 15.8–31.8 ◦C, and precipitation
between 1400 and 2000 mm per year [6,9]. The region is very young and geologically
composed of loose and soft rocks, which are very vulnerable to sedimentation during peak
monsoon due to a high number of gullies [4,6]. The physiography of the Chure range can
be divided into the main Chure hillslopes, the Bhawar Dun valleys, and the inner river
valley [38]. Among these different physiographical divisions of the Chure region, the hills
of Chure are in the greatest danger of landslides due to their weak geomorphic structure,
very dry summers, and high risk of erosion in monsoon due to the larger number of rivers
running throughout the hills [4]. In contrast, the Bhawar region is densely covered with
forests [39], reducing landslide risk.
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Meanwhile, the Dun and the inner river valley are mostly urbanized and agricultural
plain areas, which, when building landslide inventory, created a high number of non-
occurrence data. This can lead to a misbalance in occurrence and non-occurrence data,
leading to biases in predictive modeling [40]. Therefore, we only assessed the Chure Hills
area, neglecting the Bhawar and the valleys. The shapefile of the Chure hills in Figure 1
was downloaded from https://www.chureboard.gov.np/ (accessed on 15 July 2023).

As a case study approach, our analysis focused on two districts, namely Dang and
Surkhet. According to Petley et al. [3], population growth, land-use changes, urbanization,
and linear infrastructure development are the driving factors of landslides. Therefore,
the selection of these districts was made purposively with the following criteria: (1) a
high proportion of fragile Chure hills, (2) a high population growth rate, (3) biologically
significant areas, (4) land-use changes, and (5) the excavation of sand, gravel, and boulders.

Dang district comprises the largest portion of the Chure Hills, covering around 11% of
the total area, making it the largest district in the Chure Hills. Similarly, Surkhet district
ranks fifth, encompassing approximately 7% of the Chure Hills region. The total area
of Dang along with Surkhet is 5548.44 km2 (https://sthaniya.gov.np/gis, accessed on
20 July 2023), with the Chure hills in the region covering 2577.06 km2, which is nearly
half of the total area of these two districts in the Chure region. These two districts also
have very high population growth rates, with Dang and Surkhet having rates of 1.92% and
1.62%, respectively [36]. These two districts contain rich species diversity and are home
to various biologically significant areas. For instance, the Kakrebihar protected forest, ten
wetlands in Surkhet, and the Dang–Deukhuri foothills forest, which is a part of the Terai
Arc Landscape conservation, are key providers of the livelihoods of local people and harbor
various endangered species [37].

Despite their profound importance, the Chure hills in Surkhet and Dang are at high
risk of soil erosion, landslides, and river-bank cutting. This risk is mainly due to existing
excavation sites—nine in Dang and one in Surkhet—with the potential for a further increase
to eight in Dang and four in Surkhet [9]. Furthermore, the increased number of settlements,
intense land-use change, encroachment, geology, and many other anthropogenic factors
make this region prone to natural hazards, such as landslides and erosion [39].

3. Materials and Methods
3.1. Data Collection and Processing

Our methodology integrates advanced remote sensing technology, ArcGIS 10.3 soft-
ware, manual interpretation, field verification, and statistical modeling to investigate land-
slides. This study utilized Remote Sensing data from Google Earth™ and applied ArcGIS
10.3 software for interpretation and analysis. Firstly, the landslide inventory was manually
created by visually interpreting landslides in Google Earth in 2022. Each landslide-impacted
area was clipped into landslide polygons and converted into shape files to enable further
processing and analysis within the ArcGIS 10.3 software. Secondly, a comprehensive analy-
sis is needed to determine the distribution and frequency of landslide occurrences using
the compiled landslide inventory data. By employing this data-processing approach, we
aimed to enhance the effectiveness and accuracy of our study, providing valuable insights
into landslides in the specified timeframe. A subset of 10% of the total landslide incidents
was verified through direct field observations to validate the occurrence of landslides in the
study region (Figure 2). This verification process was conducted to ensure the accuracy of
our results. Finally, the analysis for the predictive assessment of the landslide-susceptible
area was conducted through a grid-based generalized linear model (GLM). The study area
was divided into grids with sizes of 5 × 5 km2 (i.e., (25 km2) grids (n = 620) using “Fish net”
tools in Arc GIS 10.3. We examined 1279 locations where landslides had occurred, allowing
us to derive comprehensive insights for our study.

https://www.chureboard.gov.np/
https://sthaniya.gov.np/gis
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3.2. Factors Influencing Landslides

Landslides, like many natural hazards, result from a combination of various factors
rather than a single, specific cause. There is no consensus about which variables give the
best outcome for landslide prediction and modeling; rather, various studies have utilized
various factors for landslide analysis [18,21,41,42]. In this study of landslide hazard as-
sessments, various factors influencing landslide occurrences were thoroughly examined,
analyzing the previous landslide research. Curvature, a key aspect impacting surface runoff
and ground infiltration, was found to play a significant role in surface erosion and ground-
water conditions [43]. As curvature values become increasingly negative, the likelihood of
landslides occurring escalates [43,44]. Elevation, a vital component in landslide susceptibil-
ity mapping, also influences environmental conditions on slopes, including human activity,
vegetation, soil moisture, and climate [43,45,46]. Past studies have suggested that higher
elevations are more prone to landslides than lower elevations [41,47]. The topographical
wetness index (TWI) was identified as another significant factor contributing to landslides,
as it quantitatively displays terrain control on soil moisture’s spatial distribution [43].

Slope angles are directly related to landslide occurrence, where steeper slopes increase
the likelihood of landslides [43,48,49]. Drainage density was also positively correlated with
erosion, making it a factor responsible for landslide occurrence [50]. Lineament distance, as
determined by Lee and Talib [44], was found to influence landslide conditions. Land cover
types were shown to have varying impacts on landslides [51–53], and, hence, land cover
was incorporated as a significant landslide conditioning factor in this research.

Geology emerged as a factor in accelerating landslides [54,55]. Previous studies
highlighted rainfall as another important factor involved in causing landslides [43,56]. Ad-
ditionally, annual solar radiation, expressed as the mean solar radiation at a specific pixel
over a year, significantly influences landslides [47]. Higher solar radiation in certain areas
intensifies sunlight, causing increased moisture evaporation from the exposed soil [57].
Consequently, this heightened evaporation can render these areas more susceptible to
landslides [58]. Hence, the solar radiation map was created by utilizing the digital elevation
model (DEM) using the “Area solar radiation” toolkit in ArcGIS and then converted to
KWH/m2 using a raster calculator. The relative relief of the study area, as demonstrated
by Singh and Kumar [59], profoundly impacted natural conditions, shaping the suscepti-
bility to landslides. Furthermore, the distance from roads emerged as a crucial parameter
affecting landslide occurrence, with road construction activities disrupting natural slopes
and rendering areas near the toe more vulnerable and weakened along highways [60].
Incorporating these factors into the study provides valuable insights into the complex
interplay between elements influencing landslide hazard assessment. Figure 3 illustrates
the comprehensive methodological framework employed in this study.

3.3. Data Analysis

The statistical data analysis process involved a series of sequential steps used to
comprehensively examine the features of landslide occurrences. Initially, the R Statistical
package v4.0.4 [61] was utilized for data analysis. They were systematically divided
into groups to enhance the understanding of the assigned predictors, as illustrated in
Table 1. Descriptive summaries of landslides were then computed using the Pivot table
function in Microsoft Excel 2013. Subsequently, a generalized linear model (GLM) was
employed, incorporating 15 independent variables (Figure 4) as predictors with a Poisson
error distribution. The GLM, known for its versatile utilization of variables through a link
function that accommodates categorical, continuous, and both types of data, was chosen
rather than traditional linear regression modeling [30]. Specifically, the Poisson family
GLM was utilized in this study, considering the presence and absence of the grid and the
frequency of data in each grid.
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Table 1. Description of the significant variables used in this study.

S.N. Variables Type Unit Source

1. Elevation Continuous Meter (LPDAAC, 2019, [62])
2. Curvature Continuous Degrees/m Delineated from DEM
3. Drainage density Continuous km/km2 Delineated from DEM
4. Lineament Continuous km/km2 Delineated from DEM
5. Rainfall Continuous Millimeter (Fick and Hijmans, 2017, [63])
6. Relief Continuous Meter Delineated from DEM
7. Slope Continuous (◦) Delineated from DEM

8. Topographical
wetness index Continuous Unit less Delineated from DEM

9. Geology (Lower
Siwalik = 0) Categorical Unit less (ICIMOD, 2020, [64])

10. Area of water
bodies Continuous m2 (ESRI, 2020, [65])

11. Area under
forest Continuous m2 (ESRI, 2020, [65])

12. Area of
grassland Continuous m2 (ESRI, 2020, [65])

13. Area of
agricultural land Continuous m2 (ESRI, 2020, [65])

14. Area of
shrubland Continuous m2 (ESRI, 2020, [65])

15. Distance from
road Continuous Meter (OCHA Nepal, 2021, [66])

16. Solar radiance Continuous KWh m−2 Delineated from DEM
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Once all the variables were finalized and compiled, they were resampled to the same
extent and resolution of 30 m for further analysis. This involved clipping the variables to
form 30 km2 cells. Model fitting was performed using the ‘DescTools’ package [67] and
the ‘manipulate’ package [68]. Prior to constructing the model, a multicollinearity test was
conducted using the VIF (variance inflation factor) function from the ‘faraway’ package [69]
for all variables. Importantly, none of the variables exhibited significant multicollinearity
(VIF value > 5), thereby allowing the inclusion of all variables in the model construction [70].
Weightage was assigned to each variable based on the coefficient values obtained from
the model to predict the potential landslide susceptibility map. ArcGIS 10.8 was then
employed to prepare the final landslide susceptibility map. The model’s effectiveness was
assessed through the AUC curve, ranging between 0 and 1, where a value of 1 is considered
the maximum. Models or classifications with an AUC value above 0.9 were regarded as
outstanding, those in the range of 0.8–0.9 were regarded as excellent, and those in the
range of 0.7–0.8 were regarded as acceptable. Values below 0.5 were considered false and
inaccurate [71].
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4. Results
4.1. Geospatial Analysis of Landslide

The spatial analysis of the landslide points was conducted to determine the spatial
pattern of landslides across variables. In examining the land cover within the study area,
disparities in the distribution of different land cover classes were identified. The forest
area emerged as the dominant cover class, constituting approximately 83% (n = 1041) of
the total landslide count. Shrubland and grassland followed with 15.2% (n = 189) and 3%
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(n = 49), respectively. Other land cover types, including water bodies, agricultural areas,
and bare ground, collectively accounted for less than 1% of the total landslides.

Concerning the geological divisions, the middle Siwalik region exhibited the highest
concentration of landslides, representing approximately 51% of the cases, while the lower
Siwalik, upper Siwalik, and quaternary divisions contributed 35% (n = 441), 11% (n = 142),
and 1% (n = 22) of the landslides, respectively. Proximity to roads played a crucial role in
landslide occurrence, with a notable increase in incidence within 2000 m. Furthermore,
areas at altitudes between 300 and 600 m above mean sea level demonstrated the highest
incidence of landslides, comprising a significant portion of the total landslides (n = 642).
The examination of relief, representing elevation variations between points, identified
the 50–60 m range as having the highest landslide frequency. Regarding drainage and
lineament density, the distribution of landslide data exhibited an uneven pattern. How-
ever, the 1–1.5 km/km2 drainage density range and the above 1.2 km/km2 lineament
density range were associated with the greatest number of landslides, accounting for 54%
(n = 671) of the cases. Landslides with slopes between 20 and 50 degrees, particularly
those with slopes above 35 degrees that are concave in nature, contributed to nearly 64% of
landslides (n = 539). Furthermore, concerning the climatic variables, it was observed that
regions characterized by rainfall exceeding 1800 mm/month exhibited the highest landslide
frequency, accounting for a substantial 81% (n = 1017) of the recorded cases. Similarly, areas
displaying a topographical wetness index (TWI) within the range of 5–10 constituted 53%
(n = 659), and solar radiance between 1300 and 1350 KWh m−2 demonstrated elevated
landslide occurrence (Figure 5).

Land 2023, 12, x FOR PEER REVIEW 10 of 20 
 

(n = 49), respectively. Other land cover types, including water bodies, agricultural areas, 
and bare ground, collectively accounted for less than 1% of the total landslides. 

Concerning the geological divisions, the middle Siwalik region exhibited the highest 
concentration of landslides, representing approximately 51% of the cases, while the lower 
Siwalik, upper Siwalik, and quaternary divisions contributed 35% (n = 441), 11% (n = 142), 
and 1% (n = 22) of the landslides, respectively. Proximity to roads played a crucial role in 
landslide occurrence, with a notable increase in incidence within 2000 m. Furthermore, 
areas at altitudes between 300 and 600 m above mean sea level demonstrated the highest 
incidence of landslides, comprising a significant portion of the total landslides (n = 642). 
The examination of relief, representing elevation variations between points, identified the 
50–60 m range as having the highest landslide frequency. Regarding drainage and linea-
ment density, the distribution of landslide data exhibited an uneven pattern. However, 
the 1–1.5 km/km2 drainage density range and the above 1.2 km/km2 lineament density 
range were associated with the greatest number of landslides, accounting for 54% (n = 671) 
of the cases. Landslides with slopes between 20 and 50 degrees, particularly those with 
slopes above 35 degrees that are concave in nature, contributed to nearly 64% of landslides 
(n = 539). Furthermore, concerning the climatic variables, it was observed that regions 
characterized by rainfall exceeding 1800 mm/month exhibited the highest landslide fre-
quency, accounting for a substantial 81% (n = 1017) of the recorded cases. Similarly, areas 
displaying a topographical wetness index (TWI) within the range of 5–10 constituted 53% 
(n = 659), and solar radiance between 1300 and 1350 KWh m−2 demonstrated elevated land-
slide occurrence (Figure 5). 

 
Figure 5. Landslide frequency across various variables: (a) land cover, (b) geology, (c) distance from 
road, (d) elevation, (e) relief, (f) drainage density, (g) lineament density, (h) slope, (i) curvature, (j) 
rainfall, (k) solar radiation, and (l) topographical wetness index. 

Figure 5. Landslide frequency across various variables: (a) land cover, (b) geology, (c) distance from
road, (d) elevation, (e) relief, (f) drainage density, (g) lineament density, (h) slope, (i) curvature,
(j) rainfall, (k) solar radiation, and (l) topographical wetness index.
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4.2. Influence of Variables on Landslides

We conducted a comprehensive analysis to understand the factors influencing the
occurrence of landslides in the study area. The Poisson regression model that we em-
ployed yielded valuable insights into the relationship between landslide count and several
environmental variables (Table 2).

Table 2. Generalized linear model with the Poisson structure for the probability of landslide occurrence.

Estimate Std. Error z Value Pr (>|z|)

(Intercept) −5.25 3.62 × 10−1 −14.503 <2.00 × 10−16 ***
Curvature −2.07 × 10−2 1.80 × 10−2 −1.155 0.248151

Digital elevation model 1.32 × 10−3 1.91 × 10−4 6.903 5.08 × 10−12 ***
Drainage density −1.37 × 10−5 4.68 × 10−5 −0.292 0.770134

Lineament −5.83 × 10−1 8.50 × 10−2 −6.86 6.91 × 10−12 ***
Rainfall 1.46 × 10−3 2.04 × 10−4 7.168 7.63 × 10−13 ***
Relief 6.42 × 10−3 1.93 × 10−3 3.324 0.000889 ***
slope −1.09 × 10−4 1.90 × 10−5 −5.719 1.07 × 10−8 ***
Solar 2.01 × 10−2 2.80 × 10−3 7.171 7.44 × 10−13 ***

Topographical wetness index 4.31 × 10−4 1.05 × 10−2 0.041 0.96737
Middle Siwalik −5.94 × 10−1 6.84 × 10−2 −8.673 <2.00 × 10−16 ***
Upper Siwalik −1.20 1.25 × 10−1 −9.636 <2.00 × 10−16 ***

Quaternary −1.32 2.66 × 10−1 −4.965 6.87 × 10−7 ***
Area of water bodies 1.24 × 10−6 4.79 × 10−7 −2.587 0.009679 **

Area of forest 2.73 × 10−7 2.72 × 10−8 10.03 <2.00 × 10−16 ***
Area of grassland 2.21 × 10−5 5.07 × 10−6 4.35 1.36 × 10−5 ***

Area of agricultural land 6.63 × 10−7 2.39 × 10−7 2.779 0.005454 **
Area of bare ground 2.08 × 10−6 8.61 × 10−7 2.414 0.015764 *
Area of shrubland 3.84 × 10−7 8.51 × 10−8 4.51 6.49 × 10−6 ***
Distance from road −3.06 × 10−6 1.73 × 10−5 −0.177 0.859502

Null deviance: 3965.54 on 620 degrees of freedom. Residual deviance: 926.22 on 601 degrees of freedom. AIC:
1612.8. Number of Fisher scoring iterations: 6. Significance codes: 0, ‘***’ 0.001, ‘**’ 0.01, ‘*’ 0.05, 0.1, 1.

Starting with the intercept, which represents the expected log of the mean landslide
count when all other variables are zero, we found it to be highly significant (−5.249,
p < 2 × 10−16). Among the continuous variables, we observed significant associations
between landslide count and several factors. Curvature did not significantly affect landslide
count (p = 0.248151). Elevation, as represented via the DEM (digital elevation model), had
a positive coefficient (0.00132, p < 5.08 × 10−12), suggesting that higher elevations are
associated with increased landslide counts. This is understandable since steep slopes at
higher elevations are more prone to slope instability and, thus, landslides.

Similarly, rainfall (0.001463, p < 7.63 × 10−13) was positively correlated with landslide
count, implying that regions with higher rainfall tend to experience more landslides. Lin-
eament was an important variable in our analysis, and it exhibited a significant negative
coefficient (−0.5829, p < 6.91 × 10−12). This suggests that areas with a higher density of lin-
eaments are associated with a lower incidence of landslides. Furthermore, relief (0.006422,
p < 0.000889) positively affected the landslide count. Conversely, slope (−0.0001088,
p < 1.07 × 10−8) had a negative coefficient, indicating that steeper slopes tend to have fewer
landslides. This finding suggests that beyond a certain threshold, highly steep slopes may
not provide the conditions necessary for landslides to occur.

For the categorical variable, namely geology, we included four categories: lower Siwalik,
middle Siwalik, upper Siwalik, and quaternary. Middle Siwalik (−0.5935, p < 2 × 10−16)
and upper Siwalik (−1.201, p < 2 × 10−16) both had negative coefficients, indicating that
these geological formations were associated with lower landslide counts compared to lower
Siwalik ones. Quaternary (−1.322, p < 6.87 × 10−7) also had a negative coefficient, implying a
similar trend.

Additionally, several other variables were significant predictors of landslide count. So-
lar radiation (2.007 × 10−2, p < 7.44 × 10−13) had a positive effect, implying that areas
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with higher solar radiation levels experience more landslides. This could be attributed to
the influence of solar radiation on soil moisture, vegetation growth, and erosion processes,
which, in turn, affect landslide activity. The area under water (1.239 × 10−6, p = 0.009679)
showed a negative coefficient, suggesting that the presence of water bodies might decrease
landslide counts. Several land cover types were also found to be significant predictors of
landslide count. The areas under forest (2.73 × 10−7, p < 2 × 10−16), grassland (2.207 × 10−5,
p < 1.36 × 10−5), agricultural land (6.629 × 10−7, p = 0.005454), bare ground (2.079 × 10−6,
p = 0.015764), and shrubland (3.836 × 10−7, p < 6.49 × 10−6) all had positive coefficients,
suggesting that larger areas covered by forests, grasslands, agricultural land, bare ground,
and shrubland positively influence landslide counts. Lastly, the distance to roads did not
significantly affect the landslide count (p = 0.859502). This indicates that the distance to roads
may not significantly influence landslide activity in the study area.

The model fit was assessed using the deviance statistic. The substantial reduction in
the residual deviance (from 3965.54 to 926.22) indicates that the included variables explain
a considerable portion of the variation in landslide counts. This suggests that the model
effectively captures the relationship between the predictors and landslide occurrence. The
low AIC value (1612.8) further supports the adequacy of the model fit, indicating its ability
to balance goodness-of-fit and model complexity.

4.3. Landslide Susceptible Map

Utilizing the modeling above result, we delineated the landslide susceptibility map of
the region in ArcGIS using the raster calculator toolkit, and this tool was further categorized
into five categories using the built-in Jenks natural breaks classification (Figure 6). It showed
that around 16%, or 414 km2, area of the Chure region of Dang and Surkhet district falls in
the very-high-susceptibility zone; about 69%, or 1793 km2, area lies in the high-susceptibility
zone; 12%, or 313 km2, area lies in the moderate-susceptibility zone; 2%, or 58 km2, area lies
in the low-susceptibility zone, and 0.03%, or 1 km2, area lies in the very-low-susceptibility
zone (Table 3). Overall, the Chure region of Dang is more vulnerable, with about 23% of
the area having very high susceptibility compared to around 5% in the Surkhet district.
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Table 3. The areas of Dang and Surkhet are located in different categories of the susceptibility map.

Risk Zone Dang (km2) Surkhet (km2) Total

Very high 360 (23.32%) 54 (5.22%) 414 (16.05%)
High 994 (64.38%) 799 (77.20%) 1793 (69.52%)

Moderate 159 (10.30%) 154 (14.88%) 313 (12.14%)
Low 31 (2.01%) 27 (2.61%) 58 (2.25%)

Very low 0 1 (0.1%) 1 (0.04%)
Total (km2) 1544 1035 2579

4.4. Validation

The validation was carried out for both the landslide points and the produced map.
Due to resource constraints, only around 10% (n = 124) of the randomly selected landslide
points were verified in the field. From the field verification, we found that around 72%
(n = 89) of the landslides represented accurate landslide occurrences, and 28% might have
been falsely identified as landslides. Furthermore, the produced landslide hazard map was
validated through the ROC/AUC curve. The validation was conducted using the ArcSDM
tool kit in ArcGIS, utilizing about 30% of the landslide points. The produced AUC value
for the map was 0.779, which shows that the results are accurate (Figure 7).
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5. Discussion

The main objective of this study was to assess landslide susceptibility in the highly
vulnerable districts of the fragile Chure region using Poisson regression modeling. Previous
studies have highlighted the geological fragility of the Chure region for landslides, and
our findings are consistent with this trend. We observed a higher frequency of landslides
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in the middle Siwalik, which aligns with the study by Bhandari and Dhakal [72] in the
Babai Khola watershed. However, our modeling results suggest that lower Siwaliks are
more susceptible to landslides. This could be due to the presence of a thicker weathered
mudstone layer in the lower Siwalik, making it highly vulnerable to erosion-induced
landslides [73]).

Moreover, improper drainage management and the likelihood of floods in the lower
Siwaliks [74,75] could exacerbate landslides and mass movement in this region. Another
significant variable in our analysis was lineament density. The negative relationship
indicates that higher lineament density reduces landslide susceptibility in this region. This
finding contradicts the results of Lee and Talib [44], who conducted a factor analysis of
landslides in Malaysia. Generally, higher lineament density is associated with more faults
and fractures, weakening geology through weathering and erosion, especially during
rainfall, when fractures induce soil movement [76,77]. However, in the case of our study
area, the negative relationship means that a lower density of lineament is associated with
a higher risk of landslides. According to Saha & Saha [78], areas with lineament density
above 1.5 km/km2 are highly susceptible to landslides, but in our study area, almost 81%
of the total areas were below the 1.5 km/km2 range.

The topographical variables found to be significant were elevation, relief, and slope.
In our study, elevation was found to positively affect landslides. This can be attributed to
various anthropogenic activities, such as development and agriculture, along the fragile
and sloping regions at higher elevations, as Gurung et al. [79] reported in the Indrawati
watershed of Nepal. Similarly, relief and slope were also found to be significant factors
causing landslides, which is in line with the results of Ghimire [80], who reported slope
and relief as proxy indicators for landslide susceptibility mapping in the Siwalik region.
Furthermore, our study suggests that the probability of landslide occurrence in the Chure
region decreases as the slope increases. Similar findings have been reported by Devkota
et al. [41] in the Mugling–Narayanghat road section of Nepal and Regmi and Poudel [42]
in the Patlu Khola watershed in Dang. This characteristic nature of landslides might have
been observed due to fewer anthropogenic activities occurring on higher slopes, which can
cause slope failure [79].

Among the three climatic variables, rainfall and solar radiation were significant in
our modeling results. We observed a positive relationship between rainfall and landslide
occurrence, suggesting that higher amounts of precipitation increase the risk of landslides.
This finding is in congruence with the study by Petley et al. [3], which reported a strong
correlation between the monsoon season and landslides in Nepal. Furthermore, solar
radiation was found to have a positive relationship with and be an important predictor of
regional landslides. Similar positive relationships between solar radiation and landslide
occurrences have been reported by Cheng et al. [81] in their landslide prediction study
conducted in Taiwan. The impact of solar radiation on landslides is similar to that of aspect,
as described by Du et al. [82], where southern aspects receiving higher sunlight are more
vulnerable to landslides [83]. The relationship between landslides and solar radiation
can also be explained by the fact that areas with higher solar exposure tend to have less
moisture and sparse vegetation, making them more susceptible to landslides [82,84].

Despite very low estimates, we found that areas under forest, shrubland, grassland,
agricultural land, and bare ground were significant and positively related to landslides.
Various studies have also reported the outburst of and debris flow from water bodies like
rivers, streams, and waterfalls, which are severe problems for landslides [85,86]. Similarly,
increasing unsustainable agricultural activities and unmanaged development activities
have also been reported by Alimohammadlou et al. [87] as major triggering agents for
landslides. Contrastingly, vegetation areas like forests have been reported as insignificant
variables in various studies worldwide [88,89]. The significant result in our case may be due
to the less productive land of the Chure region, resulting in a struggle for vegetation growth
and low stem volume per ha, along with the middle mountains [7]. Hence, restrictions
have been implemented in green felling to reduce the vulnerability of the Chure region.
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Furthermore, indicative growing stock increments for the Chure region have been limited
to 1% in forest management plans, out of which only 40% is allowed to be harvested in the
community forests of the Chure region of Nepal to minimize ecological degradation [90].
Similar actions and policies enforced in the region further support our results, as even
forests and other vegetative areas are prone to landslides in the Chure region.

We created a susceptibility map from the modeling results with five categories: very
high, high, moderate, low, and very low. Our findings indicate that most of the study area
falls into the very-high- (16%) and high (69%)-susceptibility categories, highlighting the
high vulnerability of the Chure region in the Dang and Surkhet districts. These results align
with the findings of Gyawali and Tamrakar [86], whose landslide susceptibility assessment
of the Chure Khola catchment area reported around 72.46% of their study area to be in the
very-high- and high-susceptibility categories.

To assess the accuracy of our susceptibility map, we employed the area under curve
(AUC) technique and obtained a value of 0.779 (77.9%). This indicates that our final
susceptibility map has accurate results and is consistent with other studies that used
different techniques in Nepal. For example, Dahal et al. [91] utilized a weight of evidence
modeling approach in the Lesser Himalaya range of the Kathmandu Valley and achieved
a prediction rate of 79%. Similarly, Gyawali and Tamrakar [92] reported a 78% accuracy
using their statistical index method. We recommend incorporating land cover changes into
the modeling process to further improve the model and its accuracy. Dynamic land cover
data can provide valuable insights regarding the changes in vegetation, urbanization, and
other land-use practices that may influence landslide occurrences over time. By considering
these temporal changes, the model can be better calibrated and adapted to the evolving
landscape of the Chure region.

Our analysis observed an insignificant relationship between the distance to roads
and landslide counts. This finding is consistent with the study conducted by Thapa
and Bhandari [35], which also reported a weak relationship between road networks and
landslide susceptibility in the Siwalik region. In contrast, we found that geology, climatic,
and topographical variables had higher influences on landslide susceptibility in our study.
The region’s high percentage of landslide-susceptible areas underscores the need to carefully
consider developmental activities and anthropogenic projects, such as sand mining, in the
Chure region. It is essential for such projects to undergo a comprehensive environmental
impact assessment (EIA) before their commencement.

6. Conclusions

Our comprehensive Poisson regression analysis of landslide occurrences in the sandy
Chure region revealed significant insights regarding the relationships between various
environmental variables and landslide counts. The results highlighted the significance of
geology, lineament density, elevation, relief, slope, solar radiation, and land cover types
as crucial predictors of landslide counts. Higher elevations and increased rainfall were
positively correlated with landslide counts, while lineament density and slope exhibited
negative relationships. Relief and solar radiation had positive effects, indicating that areas
with higher relief and solar exposure experienced more landslides. The categorical variable,
namely geology, highlighted lower landslide counts in middle Siwalik, upper Siwalik, and
Quaternary geological formations compared to lower Siwalik. The distance to the road
did not significantly affect landslide counts. The developed landslide susceptibility map
identified high-susceptibility areas in the Chure hills of the Dang and Surkhet districts,
emphasizing the urgent need for disaster mitigation measures and responsible land-use
planning. Dang, in particular, was identified as more vulnerable, with about 23% of the
area falling into the very-high-susceptibility zone, compared to around 5% in Surkhet. The
robustness of our model, which is supported by a 77.9% accuracy rate in the AUC analysis,
solidifies the reliability of our findings. Overall, this study provides valuable insights
into the factors influencing landslide occurrences in the Chure region, and the developed
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susceptibility map can serve as a valuable tool for decision-makers for prioritizing risk
management efforts and enhancing disaster preparedness in the study area.
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