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Abstract: Wildfires are a pervasive natural phenomenon in Mediterranean forest ecosystems, caus-
ing significant ecological imbalances that demand immediate restoration efforts. The intricacy of
reinstating the ecological balance necessitates a proactive approach to identifying and assessing
suitable restoration sites. The assessment and investigation of the most suitable restoration sites is of
particular importance both for the relevant authorities and for planning and decision making by the
state. This study proposes the development of a user-friendly model for evaluating and identifying
the most suitable restoration sites immediately after a fire, using geoinformation technologies. For
the purposes of demonstrating the method’s applicability, the 2016 fire of “Prinos”, Thasos, Greece,
an area that has been repeatedly affected by forest fires, was chosen as a case study. The methodology
evaluation was carried out by applying the weighted multicriteria decision analysis method (MC-
DAM) and was based on a number of variables. The analysis, processing and extraction of the results
were performed using primarily remote sensing datasets in a geographical information system (GIS)
environment. The methodology proposed herein includes the classification of the individual criteria
and their synthesis based on different weighting factors. In the final results, the restoration suitability
maps are presented in five suitability zones based on two different scenarios. Based on this study,
the integration of geospatial and remote sensing data offers a valuable and cost-effective means for
promptly assessing post-fire landscapes, with the aim of identifying suitable restoration sites.

Keywords: wildfires; forest restoration; geographical information systems; multicriteria analysis;
normalized burn ratio index; remote sensing; earth observation

1. Introduction

Forest ecosystems, as natural formations, are vulnerable to a range of natural and
anthropogenic threats, which have significant impacts on ecosystem health and are often
directly related to their degradation [1–4]. Wildfires are one of the threats that bring
devastating results at environmental, economic and social levels [5,6]. Although it is a
natural phenomenon that occurs extensively in all Mediterranean forest ecosystems, the
frequency and magnitude of its occurrence in recent decades highlight the magnitude of the
problem. According to the European Commission’s 2020 technical report on wildfires [7],
climate change is directly related to the increase in incidents, both at the level of fire
initiation and in the indirect change in vegetation and fuel characteristics. The EU Strategy
for Adaptation to Climate Change recognized the severity of the problem and promotes
a series of measures in different sectors and activities, including reforestation initiatives,
vegetation management, community engagement and awareness, early warning systems [7].
Thus, climate change with prolonged periods of drought, combined with an increase in
average temperatures, especially during the summer months, has resulted in more frequent,
but also more severe, fires. If all of this is combined with the abandonment of the Greek
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countryside, the increase in urbanization in recent decades and the lack of management
of forest ecosystems, along with a consequent increase in fuel use, it is concluded that the
impacts of wildfires are even more devastating [8–10].

The Mediterranean landscape, with its special characteristics, the varied topography,
the mountain ranges and the abundance of flora and habitats, has been significantly af-
fected by fires [11]. Fire, as an integral part of the Mediterranean landscape, is therefore
a factor that has shaped and influenced the terrestrial ecosystems of the Mediterranean,
especially the Mediterranean vegetation zone and, to a lesser extent, the Mediterranean veg-
etation zone (vegetation zones as defined by the Braun–Blanquet classification system) [12].
These areas are dominated by species such as evergreen shrubs and trees, low shrubs and
toadstools, herbaceous plants and geophytes that mainly flower in spring and autumn.
In Greece, for example, there are mainly pure forests of coniferous conifers, pine halepensis
(Pinus halepensis) and Pinus brutia, while, to a lesser extent, there are stands of Pinus pinea,
Cupressus sempervirens, etc. Similarly, evergreen broad-leaved shrubs are spreading in
the southern and island regions, but also widely throughout the country, creating forests
and woodlands with species such as holly (Quercus coccifera), schisin (Pistacia lentiscus),
heather (Erica arborea), etc. These areas and forest species are primarily subject to the largest
number of wildfires occurring annually in the country during the fire season, from May to
October. These ecosystems and their species, in order to cope, have developed mechanisms
of adaptation to fires (such as resprouting or epicormic regeneration, thick bark, serotiny,
fire-adapted seeds, etc.) and are therefore considered to be fire-loving or fire-resistant
species [13]. However, even these fire-adapted ecosystems, when affected by repeated fires
or subjected to particularly severe destructive effects, are often unable to cope. As a result,
they are at immediate risk from soil erosion and landslides, but also in the long term from
loss of forest vegetation and the possibility of desertification [14].

The change in climatic conditions and the occurrence of increasingly frequent recurrent
fires in the same areas of thermophilic Mediterranean species, as well as in areas of higher
altitudes with cold-tolerant conifers, have resulted in these ecosystems being irreversibly
affected. In these cases, restoring ecological balance is particularly difficult and requires
immediate restoration measures, including protection of soil capital, erosion control, flood
control and artificial regeneration (reforestation) [15–18].

A government authority is not in a position to carry out reforestation in the entire
affected area mainly because of the high economic costs of reforestation works. However, it
must know which areas will be selected for intervention and which are most at risk after
the fire has passed. For this reason, it is particularly important to assess and investigate the
most suitable locations for implementing restoration measures. Moreover, according to a
Greek ministerial decision, it is foreseen that, within 15 days from the outbreak of a fire, the
competent services should be able to propose the areas and their parts that need immediate
restoration/reforestation. The ability to select suitable restoration sites in a timely manner
is important both for the competent authorities and for planning and decision making by
the Greek Government.

The advances in modern technologies and, in particular, of Geoinformation have
played a key role in decision-making systems and on the solution of complex problems.
The development of specialized and easy-to-use software, the increase in the power and
capabilities of computer systems have brought significant changes in spatial analysis and
in the field of wildfires compared to earlier analog methods of analysis and processing.
The advantages of these new Geoinformation technologies include the possibility of easy
recording and observation; the use of open data; the possibility of monitoring ecological
and socioeconomic parameters; and the evaluation, design and management of a decision-
making system [19–23].

The use of geographic information systems (GISs) as part of Geoinformation technolo-
gies is of great significance in the planning and analysis of complex spatial problems [24].
These are used to transform geographic data, process them, analyze and visualize re-
sults [25–27]. In particular, through GIS it is possible to achieve the identification of areas
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which carry a combination of features, the application of multicriteria parameter analysis to
solve complex phenomena, statistical data processing and the creation of decision making
models [28].

At the same time, remote sensing (RS) provides a wealth of high-resolution satellite
data available in recent years, and technological advances in science offer the possibility
of timely, remote and highly accurate spatial information, as well as a wide range of
possibilities [29–31]. They can contribute to parameter mapping and change detection, as
well as assessment and indicator generation [32–35].

The assessment of areas affected by catastrophic wildfires and the selection of areas
in need of immediate restoration is a complex and multifactorial process [17]. Through
the science of Geoinformation and its advantages, the analysis of the factors and criteria
related to the phenomenon becomes more accessible. While Geoinformation provides
valuable insights, it is crucial to recognize the inherent limitations, especially in cases where
ecosystems are exposed to novel climatic conditions. This approach enhances our under-
standing and helps us draw informed conclusions, acknowledging the potential impact
of imperfect ecological knowledge [36]. The development of an easy-to-use tool for the
direct, targeted and low-cost assessment of areas requiring further post-fire rehabilitation
is possible through modern technologies. The combination of geospatial and RS data to
investigate potential reforestation sites can provide useful and meaningful results [37,38].
These results, with the help of modern internet technologies and web-based GIS (WebGIS),
can be easily available and accessible to the general public. In recent years, there has
been a rapid advancement of the internet which has followed the general development of
the IT sector. This development has not been lacking in the field of GIS, where WebGIS
services have been developed for the processing, analysis and dissemination of geographic
information. These capabilities were based on a series of services and standards such as
WMSs (Web Map Services) and WFSs (Web Feature Services) based on the specifications of
the OGC (Open Geospatial Consortium). These services allow for easy and fast sharing
of geographic data with the public at large, as well as the possibility of editing by remote
users [39,40].

GIS and RS together have been used extensively in recent years to exploit and analyze
spatial information, to disseminate results in map form in an understandable way and to
facilitate decision making (e.g., [17,29]). They have been exploited in a multitude of studies
and are widely applied in the environmental field, particularly in wildfires and post-fire
succession and restoration [17,41–43].

Already in the previous decades, GIS had started to be used in relevant studies and
played an important role in data analysis and processing. In San Bernandino National
Forest, California, a fire prediction system developed, taking into account available geo-
graphic data and making use of GIS to calculate relevant indicators and the probability of
occurrence [44]. Epp and Lanonville [45] developed an intelligent fire management system
for Northwestern Canada, using GIS and remote sensing data. They included procedures
for fire risk prediction, fire progression and response planning. Later, in another study,
Ruiz-Gallardo et al. [46] generated a priority map of intervention after a forest fire in the
Southeastern Iberian Peninsula, taking into account fire severity, slope and exposure. They
propose a semi-automatic method to identify the areas that are most at risk of erosion,
using GIS technology and related remote sensing indicators.

In the contemporary literature, for example, Schulz and Schroder [47] used GIS to
evaluate areas with Mediterranean climate characteristics in Central Chile which are facing
deforestation and need immediate implementation of restoration programs. Their study
applied the spatial multicriteria analysis to identify sites for reforestation that meet mul-
tipurpose forestry, using land cover data. The use of such new tools of geoinformatics,
combined with data that can be quickly and easily assessed from satellite data, has been
applied in several works aimed at evaluating areas for restoration; for example, [35,48,49]
studied the rates of new vegetation emergence after a fire in a maritime pine forest in
Northwestern Spain, using high-resolution satellite data (WorldView-2). Fernández-Manso
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et al. [25] used radar and LIDAR datasets, combined with optical and thermal data, to map
the destruction and regrowth of Mediterranean pine forests after wildfires. The synergy
between the two sciences thus offers a wealth of advantages and opportunities, particularly
in the field of wildfires and restoration. In these fields, the study areas cover large areas, the
natural environment is dynamic and constantly changing, and, as a result, data collection
and field measurements are time-consuming and costly [18]. Therefore, the combination
of modern information technologies can provide easy, economical and accurate results to
identify and evaluate ecological restoration sites in post-fire landscapes [50].

The aim of this paper is to use geoinformatics technologies to create an easy-to-use
model which provides the possibility to evaluate and identify the most suitable sites for
restoration after a wildfire. For the purposes of this work, the boundary of the catastrophic
fire of 2016 in the area of Prinos, Thasos Island, was chosen as the study area. The selection
was made by taking into account all available data and the physical and geographic
characteristics of the area. It was also taken into account that this forest ecosystem has been
repeatedly affected by wildfire events and is a representative Mediterranean thermophilous
coniferous forest.

2. Materials and Methods
2.1. Study Area in General

The island of Thasos (Figure 1) is located in the North Aegean Sea and is considered the
northernmost island of Greece (40◦41′34′′ latitude and 24◦39′1.95′′ longitude). The coastline
of Thasos is about 115 km, and the island’s area is 378.8 km2. Administratively, it belongs to
the Region of Eastern Macedonia and Thrace and the Regional Unit of Thasos, according to
the Kallikratis program (the Kallikratis program is a reform of the administrative divisions
of Greece). It is about 24 km away from Kavala, but it is also connected by sea transport to
the town of Keramoti. The capital of the island is Limenas, and the other main settlements
are Limenaria, Prinos, Theologos and Kallirachi. Thasos is a mountainous island with an
intense relief, presenting extensive ridges and several trenches. The highest peak is the
Ipsario Peak at 1203 m in altitude.

Land 2023, 12, x FOR PEER REVIEW 5 of 24 
 

 

 
Figure 1. The study area. 

2.1.1. Vegetation 
Thasos Island features Pinus brutia forests, alongside stands of black pine (Pinus nigra) 

at higher altitudes and some hybrid spruce (Abies borissi-regis) in cooler spots. The island 
also hosts evergreen broadleaves like holly (Quercus coccifera), arbutus unedo, Quercus ilex 
and Pistacia lentiscus. The understory mainly consists of heather (Erica arborea), vital for 
beekeeping, and there are occasional appearances of broad-leaved species like the plane 
tree (Platanus orientalis), chestnut (Castanea sativa), poplar (Populus tremula) and willow (Sa-
lix sp.) Thasos is rich in flora, including endemic and rare species. Thasia is found only in 
this region. The Mediterranean vegetation zone (Quercetalia pubescentis) is found at alti-
tudes between 300 and 800 m and includes the predominant species of the island, rough 
pine [13]). 

2.1.2. Climate–Meteorology 
This study used the data from a meteorological station in Thasos, the National Ob-

servatory of Athens in Prinos, which was recently put into operation and has meteorolog-
ical data only after 2020. This station is located next to the study area. The yearly average 
temperature is 15.3 °C. The highest average monthly temperature is 26.1 °C and was ob-
served in July, while the minimum is 5.6 °C and was observed in January. Similarly, the 
average minimum monthly minimum temperature of 1.8 °C is observed in January, and 
the average maximum of 30.2 °C is observed in August. The annual rainfall is 466.2 mm. 
A higher amount of rainfall occurs in the winter months, and it decreases significantly in 
the summer months. The highest average rainfall is observed in December, i.e., 78.4 mm. 

2.1.3. Geology 
Thasos belong to the Rhodope crystal-rich complex of metamorphic rocks. It is dom-

inated by crystalline schistose and exfoliated rocks of the Pre-Paleozoic period and for-
mations of the Mesozoic century, as well as metamorphic limestones. The younger layers 

Figure 1. The study area.



Land 2023, 12, 2183 5 of 23

The island of Thasos is chronically affected by forest fires. In the Region of Eastern
Macedonia and Thrace, the three worst fires for the period 1983–2006 were recorded in
the prefecture of Kavala. A large percentage of the areas of Thasos has been affected at
least twice by catastrophic fires. Also, about half of the island’s surface area was burnt
between 1984 and 2000. Specifically, in 1984, 1985, 1989 and 2000, major catastrophic fires
occurred in the western and southern part of the island which incinerated almost the
half of the total area of the island. Forest fires broke out again in the western part of the
island in 2004, 2008 and 2013. One of the worst years for the island of Thasos was 2016, as
68,870 ha was burnt again in three areas of the southern and western parts of the island. In
particular, on 10 September 2016, four fire fronts occurred in different parts of the island
which developed into the major fires of 2016. The outbreaks were caused by an abundance
of lightning recorded in the area, without the presence of rain. This rare phenomenon of
“dry thunderstorms” affected Eastern Macedonia and Thrace but mainly occurred on the
island of Thasos. The increased dryness of the fuel, due to the absence of rainfall in the
previous period, allowed the fire fronts to burn for three consecutive days and cause great
damage to the natural environment and infrastructure.

2.1.1. Vegetation

Thasos Island features Pinus brutia forests, alongside stands of black pine (Pinus nigra)
at higher altitudes and some hybrid spruce (Abies borissi-regis) in cooler spots. The island
also hosts evergreen broadleaves like holly (Quercus coccifera), arbutus unedo, Quercus ilex
and Pistacia lentiscus. The understory mainly consists of heather (Erica arborea), vital for
beekeeping, and there are occasional appearances of broad-leaved species like the plane
tree (Platanus orientalis), chestnut (Castanea sativa), poplar (Populus tremula) and willow (Salix
sp.) Thasos is rich in flora, including endemic and rare species. Thasia is found only
in this region. The Mediterranean vegetation zone (Quercetalia pubescentis) is found at
altitudes between 300 and 800 m and includes the predominant species of the island, rough
pine [13]).

2.1.2. Climate–Meteorology

This study used the data from a meteorological station in Thasos, the National Obser-
vatory of Athens in Prinos, which was recently put into operation and has meteorological
data only after 2020. This station is located next to the study area. The yearly average
temperature is 15.3 ◦C. The highest average monthly temperature is 26.1 ◦C and was ob-
served in July, while the minimum is 5.6 ◦C and was observed in January. Similarly, the
average minimum monthly minimum temperature of 1.8 ◦C is observed in January, and
the average maximum of 30.2 ◦C is observed in August. The annual rainfall is 466.2 mm. A
higher amount of rainfall occurs in the winter months, and it decreases significantly in the
summer months. The highest average rainfall is observed in December, i.e., 78.4 mm.

2.1.3. Geology

Thasos belong to the Rhodope crystal-rich complex of metamorphic rocks. It is
dominated by crystalline schistose and exfoliated rocks of the Pre-Paleozoic period and
formations of the Mesozoic century, as well as metamorphic limestones. The younger
layers of Neogene, Tertiary and Quaternary deposits are found in places. According to
the geological map, the center of the island, especially in the more mountainous parts, is
dominated by compact semi-metamorphic limestones of amphibolite and gneiss. At lower
altitudes around the island, crystalline limestone and marble are found at lower altitudes.
To a lesser extent, mainly in the coastal zone, newer layers of sediment, sandy loams and
sandstones are restricted to the coastal zone. The dominance of crystalline schistose and
metamorphic rocks, especially in mountainous areas, may impact vegetation types and fuel
availability, potentially influencing fire behavior. Additionally, the presence of sedimentary
formations, such as sandy loams and sandstones in the coastal zone, might contribute to
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different fire dynamics compared to the compact semi-metamorphic limestones found in
the mountainous center of the island.

2.2. Study Datasets

The evaluation of the burnt area of Prinos, as to the optimal restoration sites, will
be based on a series of characteristics and elements of the area that need to be analyzed
and combined with each other. The data, in this particular case, arise after the review and
thorough research of the international literature and are divided into two distinct categories:
ecological and economic criteria. The ecological criteria refer to the parameters that favor
or hinder the growth of vegetation, based on the climatic and physical–geographical
characteristics of the area. The economic criteria refer to the factors that increase or reduce
the cost of afforestation, depending on the location where it is carried out. The next table
(Table 1) presents the data used for the proposed methodology.

Table 1. The data used.

Data Type Source

Vegetation Vector Vegetation map (Ministry of Environment)
Soil Vector Soil map (Ministry of Agriculture)
Burnt area Raster Sentinel 2A (Copernicus Program)
Digital Elevation Model (DEM) Raster Greek Cadaster
Settlements Vector Google Earth
Road network Vector Google Earth

2.3. The Proposed Methodology

The aim of the study is to develop a model for the evaluation of optimal rehabilitation
sites based on a set of criteria that will be used in combination. The solution to this
which is proposed herein is based on variables such as vegetation, soil, burnt area, digital
elevation model (DEM), settlements and road network. The existence of a multitude of
criteria that must be combined with each other to evaluate a situation and draw the final
conclusions necessitates the use of the multicriteria decision analysis (MCDA). This method
incorporates quantitative indicators to determine the importance of each criterion and
proceed to the synthesis of the individual criteria [28,51–53]. Since the phenomenon under
consideration and the variables of the model have spatial characteristics, the model of the
weighted multicriteria analysis with cartographic superposition was adopted [54].

The analysis that follows in the next section, in the first phase, presents the actions
required to develop the 7 variables from all available data. The ArcGIS Pro 3.0 and SNAP
8.0 software packages were used for the tasks and data processing needs. The following
figure (Figure 2) shows, in diagram form, the workflow and procedures followed to create
the individual criteria from the primary data.

The repetition of criteria and variables in this study arises from a deliberate alignment
between the chosen spatial parameters and the fundamental components of our evalua-
tion model. These factors were meticulously selected due to their intrinsic importance in
post-fire landscape assessment. The term “scenarios” encapsulates the various conditions
or situations resulting from the interplay of these variables, forming the core of our work.
Each scenario represents a unique combination of spatial parameters, facilitating a compre-
hensive evaluation of optimal rehabilitation sites. In response to the reviewer’s valuable
feedback, we provide an enhanced explanation in the manuscript, elucidating the critical
role of these variables in shaping different scenarios and their significance in achieving the
study’s objectives.

In the next phase, after the configuration of the individual variables, all the necessary
actions are applied to allow for the synthesis of each individual criterion. In the following
(Figure 3), the workflow diagram of the weighted multicriteria analysis for the development
of the sites’ rehabilitation evaluation model is presented.
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The final variables used are as follows:

i. Vegetation

The state and composition of vegetation both play a pivotal role in the recovery process
of ecosystems following a wildfire event. GIS technology allows for the detailed mapping
and analysis of vegetation types, their density and their health. By considering these
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factors, restoration planners can make informed decisions about the suitability of a site
for restoration efforts. Assessing the pre-fire and post-fire vegetation can help identify
areas where native species have been severely impacted or invasive species have taken
hold, guiding the prioritization of restoration efforts. Additionally, vegetation data can
help determine the ecological significance of a site, its potential for natural regeneration or
the need for active intervention like reseeding or planting.

ii. Soil

Wildfires can significantly impact soil properties, including the nutrient levels, compo-
sition and stability. GIS technology facilitates the analysis of soil characteristics, helping to
assess the extent of damage caused by the fire and identify areas that may require restora-
tion interventions. Understanding soil conditions is essential for determining the suitability
of a site for ecological restoration, as it influences the success of plant establishment and
overall ecosystem recovery. Soil data can inform decisions about the choice of plant species,
erosion control measures and the need for soil amendments. Table 2 presents the different
rock types and soil depths identified at the study area’s boundary. They are classified into
four classes of suitability, based on their ability to accommodate new seedlings and provide
the appropriate supplies for their growth. Gneisses are clearly superior soils to limestone
for vegetation establishment [55].

Table 2. Soil classification.

Bedrock Soil Depth Class

Gneisses 2 I
Gneisses 4 II
Hard limestone 6 III
Gneisses 8 III
Hard limestone 8 IV

iii. Differenced Normalized Burn Ratio (dNBR)

The calculation of the NBR requires the use of satellite data. It is based on the wave-
lengths of the electromagnetic spectrum of the near infrared (NIR) and shortwave infrared
(SWIR), according to the following equation [56,57].

BR =
(NIR− SWIR)
(NIR + SWIR)

(1)

The analysis and calculation of the severity index was based on images from the Sen-
tinel 2 satellite. Specifically, images of the Sentinel 2A and Level 1C logger were selected as
recorded in the table below. The images of this level were atmospherically corrected, and the
values of reflected electromagnetic radiation recorded are affected by the atmosphere. These
images (1st image ID: S2A_MSIL1C_20160819T091032_N0204_R050_T34TGL_20160819T091
026119-8-2016, 2nd image ID: S2A_MSIL1C_20160918T090622_N0204_R050_T35TKF_20160
918T090923/18-9-2016) are close to the 10 September event and also show little to no cloud
cover in the region of interest, while their spatial resolution is 10–60 m.

The figure (Figure 4) below shows the situation in the northwestern part of Thasos after
the devastating fire (Figure 4a), and the situation before the fire on 19 August (Figure 4b).
The determination of the difference in the severity index between the two pre-fire and
post-fire images had to be developed as a different channel so that it would include the
information for the whole area.
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This geometric process was performed by combining the two images into one, taking
into account and combining the values of each image cell. The image taken on 19 August
was designated as the main image, and the one taken on 18 September as the subordinate.
In the new product created, the function is as follows:

dNBR = Pre f ireNBR− Post f ireNBR (2)

iv. Aspect

Aspect is a fundamental geospatial parameter that plays a crucial role in assessing
and identifying ecological restoration sites in post-fire landscapes within the context GIS.
Aspect refers to the compass direction that a slope or landform faces, influencing the
amount of sunlight and moisture an area receives and ultimately impacting the distribution
of vegetation and ecological conditions. In a geospatial approach to identifying and
evaluating restoration sites, aspect data are instrumental for assessing the suitability of
potential sites for restoration efforts. It helps in understanding how solar exposure and
moisture patterns vary across the landscape, which, in turn, aids in selecting sites that can
support the regeneration of vegetation and the restoration of ecological balance in areas
affected by wildfires. In this study, aspect was derived from the DEM in a mosaic form,
with a resolution of 10 m.

v. Compound Topographic Index (CTI)

The Compound Topographic Index (CTI) is an indicator which is related to the accu-
mulation of surface water runoff and the slope of the soil. It is calculated according to the
following equation proposed by Beven and Kirkby [58].

CTI = Ln
(

As
tanβ

)
(3)
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The index is defined as the natural logarithm of As times the tangent of β, where As is
the runoff accumulation based on the scale of analysis, and β is the slope of the terrain in
radians. The calculation of the CTI index was based on the digital elevation model (DEM)
of the study area. Runoff accumulation, a variable required to determine the CTI index, is
derived from the level of runoff direction. Any point on the ground that has an elevation
less than its neighbors is given the value of the sum of the cells contributing to runoff up to
that point. The sum of the overlying cells depends on the direction of runoff movement,
with the result that the highest values are observed in the stream beds and estuaries.

The denominator of the CTI index equation includes the soil slope criterion, which
was calculated based on the DEM. The slope plane generated was converted from degrees
to radians, where each cell was assigned a slope value based on the following equation:

β = slope ∗
(

π
2
)

90
(4)

vi. Distance from Settlements

The distance from settlements is a critical parameter in a geospatial approach to
identifying and evaluating ecological restoration sites in post-fire landscapes. As wildfires
can pose significant threats to human settlements, it is essential to consider the proximity
of restoration sites to inhabited areas. GIS technology enables the analysis of this distance,
helping to ensure the safety of both local communities and restoration crews. It also
plays a pivotal role in the strategic planning of restoration efforts, as selecting sites far
removed from settlements reduces the risk of potential conflicts, resource competition and
interference with ongoing recovery efforts.

vii. Distance from Road Network.

The road network is a crucial parameter in a geospatial approach to identifying and
evaluating ecological restoration sites in post-fire landscapes. Roads can have a signifi-
cant impact on the environment, affecting wildlife habitat, soil erosion and water quality.
In this context, GIS technology is invaluable for assessing the accessibility of potential
restoration sites in relation to the existing road network. Analyzing the road infrastruc-
ture allows restoration planners to make informed decisions regarding site selection. The
presence of nearby roads can facilitate logistical aspects of restoration efforts, such as the
transportation of equipment and personnel. However, it is essential to strike a balance,
as excessive road proximity may result in increased human disturbances and associated
negative ecological impacts.

Each variable will be introduced into the model as a different thematic level after the
necessary processing. The analysis is based on converting the criteria into a mosaic format
so that each point in the space is given a separate value based on its characteristics. This
is followed by classifying the individual criteria and their synthesis based on different
weighting factors obtained through the Analytical Hierarchy Process [59]. Two different
scenarios are applied, assigning each one more weight to the ecological or economic criteria.
The spatial resolution to be used is 10 m so that there is extensive detail for the study area
to allow for detailed planning by managers during the decision-making process.

After reclassifying the criteria, the subsequent crucial step in the analytical process
involved the homogenization of variables to establish a consistent scale spanning from 1
to 5. This harmonization was undertaken with the primary objective of creating a stan-
dardized platform for evaluating and comparing all the variables within the study. The
process served to eliminate any disparities stemming from varying measurement units
or scales employed for different criteria. This standardization not only facilitated direct
and equitable comparisons between the variables but also simplified the overall analysis,
rendering it more comprehensible and user-friendly for interpretation and decision making.
The uniform scale ensured that each variable held an equal footing in the evaluation process,
contributing to a more balanced and objective assessment. Furthermore, this standardized
1–5 scale offered an efficient means of conveying the results and recommendations to stake-
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holders, project team members or decision makers, enhancing the clarity and effectiveness
of communication within the context of the project.

The final stage of the methodological approach was the synthesis of the homogenized
variables from the previous procedure based on specific weighting factors. For this reason,
two scenarios of weighted variable composition were chosen to be applied.

• Scenario 1 prioritizes ecological constraints and favors the importance of optimal
vegetation growth conditions.

• Scenario 2 gives greater weight to the economic and social benefits of restoration,
favoring the criteria of distance from settlements and roads.

The determination of the weighting coefficients was based on the Analytical Hierarchy
Process, as described by Saaty [59]. According to the method, the variables are compared
pairwise in an aggregate comparison matrix. The comparison was made on a scale of 1 to 9.
The higher the preference for one criterion over another, the higher the score tends toward
9, while the lowest criterion in the comparison pair automatically receives a score below
one (e.g., 1/9 = 0.11).

3. Results and Discussion
3.1. The Parameters Used
3.1.1. Vegetation

The vegetation variable was converted to a raster layer, as described by the workflow
(Figure 3). The vegetation in the wider area before the catastrophic fires includes herbaceous,
bushy and wooded areas. Most of the affected area was covered by black pine. The
remaining areas were occupied by bushy species, such as juniper, oak and holly. Barren
land and grassland belong to the same herbaceous vegetation category. The areas that are
suitable for afforestation include mainly open areas of low vegetation and burnt areas of
coniferous species where there is a high probability that they will not regenerate naturally.
Shrub and rocky areas should be avoided for afforestation. Moreover, black pine, as a
cold-hardy conifer, should be given priority in restoration work over rough pine [1,2].
The next figure presents the initial vegetation map (Figure 5a) and the reclassified one
(Figure 5b), which is one of the parameters of the methodology used.
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3.1.2. Soil

The soil characteristics map records the bedrock and soil depth, characteristics that
relate to the potential for vegetation growth and the quality of a site. The codes used to
describe the type of parent material and soil depth have values from 1 to 9, where 1–3 is
deep, 4–6 is deep to shallow, and 7–9 is shallow to rocky soil [60]. The soil classification is
presented within the figure that follows (Figure 6).
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3.1.3. dNBR

The applications of dNBR formula (2) produce, as a result, a new image with a spatial
resolution of 10 m that includes the NBRprefire, NBRpostfire and dNBR channels. The final
dNBR map and its reclassification are presented in the following figure (Figure 7).
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3.1.4. Aspect

The creation of the aspect layer was based on the DEM of the study area. The next
figure presents the calculation of the aspect (Figure 8a) for the study area and its reclassifi-
cation (Figure 8b).
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Figure 8. (a) Aspect and (b) reclassification of aspect.

Aspect data are valuable for selecting appropriate planting sites during ecological
restoration. These data allow practitioners to match plant species with the prevailing
microclimate conditions, increasing the chances of successful revegetation.

3.1.5. Compound Topographic Index (CTI)

The following figure presents the CTI calculation (Figure 9a) for the study area and its
reclassification (Figure 9b). The parameter of runoff accumulation, As, which is used in
the numerator of the CTI index, was related to the size of the analysis applied. The index
values ranged from 1.81 to 18.87, with a mean of 5.09 and a standard deviation of 1.585.
Higher values identify, to a greater extent, the drainage network, while lower values are
associated with steep slopes, peaks and low water concentration.
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3.1.6. Distance from Settlements

This criterion is related to both economic and aesthetic and protective purposes. Both
the establishment and restoration of vegetation around settlement boundaries enhance the
landscape and provide relief to the local community. However, they also performs other
roles, such as protecting soil from erosion and potential landslides and improving local
climatic conditions [61,62]. For the calculation of the distance from the nearest settlement,
a maximum distance of 4 km was set as a parameter so that there is overlap between the
points and to cover the entire study area. The figure that follows shows the distance from
the settlement map (Figure 10a) and its reclassification (Figure 10b).
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3.1.7. Distance from the Road Network

The areas that are close to the road network, at a short distance from the deck, are
more favorable locations for reforestation activities, as they significantly reduce the cost of
the individual works. The transport of materials, staff labor and the necessary equipment
increases as we move further away from the existing road network. An example is the
watering of young seedlings, where the necessary hoses and infrastructure increase dramat-
ically as we move away from a road [1]. For the variable of distance from the road network,
three suitability zones of 50, 200 and more than 200 m applied. This classification of the
distance from the Road Network (Figure 11a), together with its reclassification (Figure 11b),
is shown in the next figure. The red lines in Figure 11a represent the initial Road Network.

3.2. Criteria Synthesis Results

After reclassifying criteria, the analytical process included homogenizing variables
to a 1–5 scale. This standardized approach eliminated disparities, enabling equitable
comparisons and facilitating clear communication of results and recommendations to
stakeholders. The next table (Table 3) presents this homogenization of the variables.
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Table 3. Parameters classification.

Variable Value Suitability

Vegetation

Cool-weather conifers 5
Thermophilous conifers 4
Herbaceous vegetation 4

Shrubby vegetation 1

Soil

I 4
II 3
III 2
IV 1

dNBR

High 5
Medium–high 3
Medium–low 3

Low 1
Not burned 0

0–45◦ 4
45–135◦ 3

135–225◦ 2
225–315◦ 2
315–360 4

CTI
High 5

Medium 4
Low 2

Distance from settlements
0–500 m 5

500–1000 m 4
>1000 m 3

Distance from Road Network
0–50 m 5

50–200 m 3
>200 m 2

The variables under consideration encompass a diverse range of both quantitative
and qualitative attributes, each possessing distinct characteristics that cannot be readily
aggregated due to their inherent disparities (such as the juxtaposition of quantitative
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measures like distance in meters and qualitative assessments related to vegetation by
species). To address this challenge and enable a more cohesive and meaningful analysis, a
crucial methodology was employed: the reclassification of each variable onto an ordinal
scale spanning from 1 to 5. Within this scale, a value of 1 signifies a condition of very low
suitability for reforestation, whereas a value of 5 denotes a state of very high suitability
for reforestation. This systematic reclassification process not only harmonized the diverse
variables into a common framework but also allowed for a nuanced and standardized
assessment of their individual contributions to the overall analysis. By ascribing these
values, we not only achieved a clear and consistent means of evaluating each variable’s
suitability for reforestation independently but also paved the way for more robust and
integrated decision-making processes in the context of environmental restoration and land
management initiatives.

This ordinal reclassification approach has proven instrumental in distilling the com-
plex array of attributes associated with each variable into a simplified yet informative
format. It acknowledges that variables encompass multifaceted dimensions, and by as-
signing them values on a 1 to 5 scale, we can capture their inherent nuances and relative
importance. This structured methodology not only streamlines the assessment process but
also lends itself to more effective comparisons and prioritization of variables within the
broader context of reforestation and ecological restoration efforts. Furthermore, it fosters
a deeper understanding of the intricacies of each variable’s role in influencing suitability
for reforestation, facilitating more informed and data-driven decision making. In essence,
the ordinal reclassification of variables into this 1-to-5 scale serves as a pivotal step toward
achieving a holistic and well-informed approach to land management and environmental
restoration, ensuring that the unique characteristics of each variable are appropriately
considered and integrated into the overarching analysis.

3.3. Weighted Overlay of the Classified Variables

The final step in this study involved combining homogenized variables, using specific
weighting factors. Two scenarios were implemented: Scenario 1 prioritizes ecological con-
straints, focusing on optimal vegetation growth conditions, while Scenario 2 emphasizes
economic and social benefits, favoring criteria like the distance from settlements and roads.
Weighting coefficients were determined through the Analytical Hierarchy Process [59],
where pairwise comparisons on a scale of 1 to 9 informed the significance of each cri-
terion. This approach ensures a balanced assessment, considering both ecological and
socioeconomic factors for identifying optimal ecological restoration sites.

The scoring of the criteria was repeated three times for each scenario, each time
applying small differences between the variables. The weighting coefficients were then
calculated, and the final model results were obtained for each scenario. The test showed
that the small changes applied to the values of the variables did not bring about significant
changes in the results of the scenarios. The two tables that follow (Tables 4 and 5) are
presenting the comparison matrices for the above two scenarios.

Table 4. Pairwise comparison matrix for Scenario 1.

Vegetation Soil dNBR CTI Aspect Roads Settlements
Vegetation 1.00 2.00 3.00 3.00 5.00 6.00 7.00

Soil 0.50 1.00 3.00 3.00 7.00 6.00 8.00
dNBR 0.33 0.33 1.00 3.00 4.00 6.00 6.00

CTI 0.33 0.33 0.33 1.00 4.00 2.00 2.00
Aspect 0.20 0.14 0.25 0.25 1.00 2.00 2.00
Roads 0.17 0.17 0.17 0.50 0.50 1.00 3.00

Settlements 0.14 0.13 0.17 0.50 0.50 0.33 1.00
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Table 5. Pairwise comparison matrix for Scenario 2.

Roads Settlements Vegetation Soil dNBR CTI Aspect
Roads 1.00 2.00 1.00 2.00 3.00 3.00 6.00

Settlements 0.50 1.00 1.00 2.00 3.00 3.00 6.00
Vegetation 1.00 1.00 1.00 2.00 3.00 4.00 6.00

Soil 0.50 0.50 0.50 1.00 3.00 5.00 5.00
dNBR 0.33 0.33 0.33 0.33 1.00 2.00 3.00

CTI 0.33 0.33 0.25 0.20 0.50 1.00 2.00
Aspect 0.17 0.17 0.17 0.20 0.33 0.50 1.00

The final scoring values and the hierarchy between the variables in the two tables
above were considered reasonable, since the CR consistency ratio was less than 0.10 for
both scenarios [63]. Specifically, in Scenario 1, the consistency ratio was CR = 0.06, and in
Scenario 2, it was CR = 0.03. Based on the averages of the comparison tables, the weighting
coefficients of each variable were obtained, as presented in the following table (Table 6).
The sum of the weighting coefficients for each scenario is summed to unity, so that the
results are on the same classification scale and allow for a comparison between them.

Table 6. The weights for the variables for the two scenarios.

Variable
Weights

Scenario 1 Scenario 2

Vegetation 0.319 0.226
Soil 0.275 0.162
Aspect 0.052 0.032
dNBR 0.178 0.079
CTI 0.096 0.056
Distance from the Road Network 0.048 0.245
Distance from settlements 0.032 0.200

The weights derived from the Analytic Hierarchy Process (AHP), pioneered by Saaty,
constitute a pivotal component of informed decision-making processes across diverse do-
mains. AHP offers a systematic and structured methodology for evaluating and prioritizing
alternatives or criteria within a hierarchical framework. These weights are of paramount
importance as they provide a quantitative representation of the relative significance or
influence of different elements within the decision-making hierarchy. The AHP process
commences with the construction of a hierarchical model, comprising a goal, criteria, sub-
criteria and potential alternatives. Stakeholders or experts are then tasked with the crucial
step of making pairwise comparisons between elements at each level of the hierarchy.
These comparisons serve as the foundation for computing priority vectors, which assign
numerical values to the relative importance of each element. The significance of these
weights is multifaceted. The final weights are presented in the next table (Table 6).

In Scenario 2, the variable weights reflect a deliberate emphasis on economic and
social factors, particularly favoring criteria related to distance from the road network. The
seemingly less smooth distribution of values in this scenario is a result of the intentional
higher influence assigned to the distance from the Road Network criterion. This emphasis
is in line with the scenario’s prioritization of economic and social benefits, where road acces-
sibility is a key consideration. While this may result in variations in the weights compared
to the smoother distribution in Scenario 1, it aligns with the model’s intended emphasis on
specific criteria in different scenarios to capture diverse restoration considerations.

3.4. The Results for the Two Scenarios

As mentioned, Scenario 1 favors the ecological characteristics of the reforestation point,
while Scenario 2 gives more weight to economic criteria. The final suitability zones of
the results were classified and presented on the same regular classification scale used to
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categorize each of the model variables. As shown in the two maps (Figures 12 and 13), areas
with very high suitability for reforestation are depicted in dark green, and the sum of the
weighted variables tends toward a value of 5. In these locations, according to the previous
analysis of the criteria, the conditions for the establishment of new plants are considered to
be particularly favorable. Furthermore, the severity of the fire and the type of vegetation at
these sites indicate that these are areas where natural regeneration is unlikely to recover. In
contrast, areas in red (Figures 12 and 13) record areas where there is very little suitability
for reforestation, where the corresponding sum of the individual weighted variables is
close to unity. In these areas, the success of new plantings is considered ineffective, and it
is considered that such sites should be avoided for reforestation activities.

Land 2023, 12, x FOR PEER REVIEW 19 of 24 
 

 

 
Figure 12. Map of suitability for ecological restoration of Scenario 1. 

 
Figure 13. Map of suitability for ecological restoration of Scenario 2. 

Figure 12. Map of suitability for ecological restoration of Scenario 1.

A first approximation of the results shows a concentration of areas with very high
suitability in the center of the burnt area near the settlement of Mikro Prinos for both
scenarios. These areas range from approximately 400 to 800 m in elevation and have
moderate slopes. Most of them are located in northern exposures and near a dense road
network. It can be concluded that the proposed areas cover a large part of the requirements
for successful reforestation interventions.

However, to make further comparisons between the cartographic results of the two
scenarios and to draw conclusions, the area of each suitability zone was calculated. Table 7
compares the values of the two scenarios.
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Table 7. Area and afforestation suitability rates for each scenario.

Suitability
Scenario 1 Scenario 2

Area (km2) Percentage Area (km2) Percentage

Very low 439 0.17 59 0.02
Low 11,437 4.32 8263 3.12
Medium 85,473 32.27 125,388 47.34
High 151,245 57.10 115,398 43.57
Very high 16,286 6.15 15,772 5.95
Total 264,880 100.00 264,880 100.00

The ability to assess and identify the most suitable sites for restoration immediately
after a forest fire is very important for both the affected natural ecosystem and the local
community. In this study, a model was developed to evaluate affected areas for suitability
for reforestation based on a number of ecological and economic parameters. The final
results obtained for the study area and the generated suitability maps show the usefulness
of the model and its application in the decision-making process.

It should be emphasized that the evaluation model was based on a set of variables
that were evaluated and selected according to a review of the international literature. The
assessment of phenomena based on ecological parameters is a complex and sophisticated
process. The selection of the variables used is related to the importance of the specific
criteria in the restoration processes, and this was based on the hierarchy between them.
According to the results of the two scenarios and the small deviations between them,
it can be concluded that the hierarchy and classification of the variables were correct.
Moreover, rerunning the model with slight variations in the scoring values of the criteria
gave similar results.
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It should be noted that the contribution of geographical information systems and
remote sensing played a key role in the analysis and implementation of the evaluation
model, providing a wealth of tools for data processing and preparation. The application of
the methodology, the processing of the variables and the extraction of the final results in
cartographic format relied on both the capabilities of GIS and remote sensing. The synergy
of these two disciplines in this work allowed for the evaluation of the study area and the
extraction of detailed and usable results. Otherwise, the absence of these tools would have
required time-consuming and costly field work, as well as analogous processing methods
that would have complicated and significantly delayed its completion.

It is worth noting that the methodology applied in this work was mainly based on the
conversion and processing of mosaic files. The analysis applied to the set of variables was
based on a 10 × 10 m tessellation size. The detail discernible in the cartographic results
of the model proves that the choice of this scale was successful. The area manager can
identify individual surfaces with great accuracy and plan his operations in detail. After all,
reforestation operations are, in practice, carried out on individual areas that are much larger
than 10% of the hectare. A resolution of 100 square meters per pixel is more than sufficient
to identify suitable areas. One problem identified during processing with mosaic files has
to do with the selection of tiles at the edges of the study area. The complex boundary of
the fire resulted in several mosaics intersecting with the study area boundary line. These
tesserae were taken into account in the subsequent analysis, even though a portion of them
were outside the boundary line. The change in the total area of the study area was very
small, as the 10 × 10 m scale applied was very detailed.

According to the results of the table, the largest changes between the two scenarios
are seen in the medium and large scales, where the differences are 15.07 and 13.53 (%),
respectively. On the other hand, in the very small and very large suitability categories, there
are no major changes between the two scenarios. In other words, it is detected that, both at
the level of percentages and the level of delimitation, the two categories are significantly
similar. The detailed spatial analysis reveals nuanced patterns in the very small and very
large suitability categories between Scenario 1 and Scenario 2. In the very small suitability
category, where economic and social factors are more heavily weighted in Scenario 2,
the spatial distribution appears to reflect an increased emphasis on areas with enhanced
accessibility, potentially influenced by proximity to the road network. This shift aligns with
the socioeconomic focus of Scenario 2. Conversely, in the very large suitability category,
dominated by the ecological considerations of Scenario 1, the spatial distribution tends to
exhibit a more extensive pattern, prioritizing areas with optimal ecological conditions for
restoration. The observed variations in these categories emphasize the model’s sensitivity
to the distinct emphases of each scenario and underscore the need for a comprehensive
understanding of the trade-offs between ecological and socioeconomic priorities in the
decision-making process for identifying optimal ecological restoration sites.

It can therefore be concluded that—at least on the basis of this study—both scenarios
are equally effective for identifying areas that are not suitable for afforestation and those that
are highly suitable for afforestation. However, more research is required before generalizing
this finding, such as conducting the same experiment in other settings. More thorough
testing of the results could be achieved by validating the model from actual restoration
data. After checking all available data and contacting the competent authorities, it was
found that no extensive reforestation program has been implemented for this area or the
wider area of Thasos. Verification of the model with field data would therefore require its
application to a burnt area for which a restoration program has been carried out, followed
by longitudinal monitoring of the evolution and progress of reforestation. Such a task is
very time-consuming and difficult to implement in the context of a thesis but could be the
subject of a future research project.
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4. Conclusions

Identifying and evaluating ecological restoration sites through geospatial technologies
involves the systematic analysis of spatial data, such as GIS mapping and remote sens-
ing imagery, to pinpoint areas in need of ecological rehabilitation. By leveraging these
advanced technologies, environmental scientists can assess the extent of damage, identify
key ecological indicators and prioritize strategic restoration efforts for landscapes affected
by various disturbances, including wildfires or habitat degradation.

Regarding the results of the two different scenarios, it is concluded that both delineate
the “very large” and “very small” suitability sites in an almost similar way. Despite the
assignment of different weighting factors between the two scenarios, both identify and
qualify successful sites suitable for reforestation. In this paper, the proposed model for the
evaluation of a burnt area for restoration was developed based on a set of variables and
applied to the fire in Prinos, Thasos. It would be of interest to further study and investigate
additional criteria that may influence the assessment and progression of the restoration
process, including research on possible parameters, e.g., soil water potential or climatic
conditions, that could be included as variables in the assessment of the area. At the same
time, it is proposed to extend the model developed to other areas that may not have the
same physiographic characteristics as those of Prinos, Thasos.
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