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Mateus Batistella

Received: 21 September 2023

Revised: 5 November 2023

Accepted: 14 November 2023

Published: 18 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

land

Article

The Comprehensive Management Zoning of Mountains, Rivers,
Forests, and Farmlands Based on Element Recognition
Huiting Yu and Jiupai Ni *

College of Resources and Environment, Southwest University, Chongqing 400715, China;
yht520@email.swu.edu.cn
* Correspondence: nijiupai@swu.edu.cn

Abstract: Land subsidence, soil erosion, and landscape fragmentation frequently occur in regions of
backward production capacity. Therefore, it is imperative to carry out efforts for ecological restoration
in these mine-closed regions. The proposal of holistic conservation of mountains, rivers, forests,
farmlands, lakes, grasslands, and deserts provides important guidance for ecological restoration.
To support the governance of regional ecology, this paper aims to discuss the layout of element
governance zoning in four southern towns of Qijiang District, Chongqing. SBAS-InSAR technology,
vulnerability assessment, linear trend analysis, and suitability evaluation were used to divide the
mountain, water, forest, and farmland management areas. Regional comprehensive management
work was implemented according to the severity of each element’s existing ecological questions.
Eventually, a comprehensive management pattern of mountains, rivers, forests, and farmlands
can be obtained. The results show that the mountain management area is 8.03 km2 (3.24% of
the total management area), the hydrological management area is 212.07 km2 (85.80% of the total
management area), the forest management area is 7.04 km2 (2.84% of the total management area),
and the farmland management area is 20.07 km2 (8.12% of the total management area). In light of the
current circumstances, this study advocates for the implementation of three integrated governance
approaches, with a focus on managing hydrological factors. These approaches include ridge-based
mountain, water, and forest governance, valley-based mountain, water, and farmland governance,
and undergrowth economy-based water, forest, and farmland governance. This study explores the
spatial layout and priority of the governance areas from the perspective of elements, which provides
a new development direction for the current research on the life community based on policy analysis.

Keywords: life community; element recognition; comprehensive treatment; ecological restoration;
region of the backward production capacity

1. Introduction

Backward production capacity mainly refers to the production capacity whose equip-
ment, technology, and output lag behind the average level of the industry and whose
negative impacts outweigh the positive impacts. Mining areas are the most typical regions
of backward production capacity. In recent years, ecological restorations have gradually
become a hotspot of concern in the world, especially in eliminating districts of backward
production capacity [1]. President Xi Jinping put forward “Mountains, Rivers, Forests,
Farmlands, Lakes, Grasslands, and Deserts Life Community” at the 20th National Congress
of the Communist Party of China (CPC). This is not only a profound summary of the law
with ecological civilization construction but also a guideline for ecological governance in
the new era [2]. The life community means that the elements of mountains, waters, forests,
farmlands, lakes, grasses, and sands are integral organisms [3]. Their presence is a mutually
symbiotic, dependent, and complementary relation. Farmland crops primarily depend on
water irrigation and often originate from mountainous areas. Rocks and soil build up to
form mountains, and vegetation such as forests helps preserve soil and water resources.
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These elements collectively also constitute the natural system that human beings rely on
for survival and that provides natural products and ecological services [4]. The essence
of this theory is not limited to these few elements but can be essentially understood as
encompassing all natural resources essential for human survival. It can be “Mountains,
Rivers, Forests, Farmlands, Lakes, Grasslands and Sands” or “Mountains, Rivers, Forests,
Farmlands, Lakes, Grasslands and Ices”. In summary, it can be characterized as “Mountains,
Rivers, Forests, Farmlands, Lakes, Grasslands and +”. This concept was first proposed in
China in 2013, and other countries have limited research on this concept. However, stud-
ies with similar connotations do exist, such as “nature-based solutions” and “integrated
ecosystem management”.

In the Horizon 2020 program of the European Union in 2013, the concept of “nature-
based solutions” was defined as “living solutions inspired by, continuously supported
by, and using nature, which are designed to address various societal challenges in a
resource-efficient and adaptable manner and to provide simultaneously economic, social,
and environmental benefits”. [5] Subsequently, at the 2016 World Conservation Congress,
nature-based solutions were further defined as “actions to protect, sustainably manage,
and restore natural or modified ecosystems, which address societal challenges effectively
and adaptively, while simultaneously providing human well-being and biodiversity bene-
fits [6]”. In essence, nature-based solutions emphasize the use of natural, ecosystem-based
approaches [7,8] to restore and transform nature to achieve sustainable utilization of eco-
logical resources [9]. Since its inception, this concept has been widely applied in various
aspects, such as the development of the ecological industry [10–12], ecological conserva-
tion and restoration [13–15], and urban environmental planning [7,16,17]. It is similar to
the mountains, rivers, forests, farmlands, lakes, grasslands, and sands in terms of goals,
emphasizing the need to balance nature, society, and economy to achieve sustainable devel-
opment of humanity. However, in terms of connotations, the concept of life community
not only emphasizes the relationship between humans and nature but also illustrates the
connections and interactions among various ecological elements, depicting a systemic view
of “ecosystem-subsystem-ecological elements”. On the other hand, nature-based solutions
focus more on the harmonious coexistence between humans and nature, emphasizing the
imitation of ecosystems while neglecting the study of ecological elements.

An alternative theory similar to the life community of mountains, rivers, forests,
farmlands, lakes, grasslands, and sands is Integrated Ecosystem Management (IEM) [18].
Margerum [19] argues that integrated ecosystem management serves as a tool for the
holistic management of environmental regions, aiming to facilitate the construction of a
coupled, coevolving social-ecological system [20]. Therefore, the theory is often regarded
as a management tool that focuses on ecosystem management mechanisms. Its scope can
be broadly divided into research on management subjects [21–23], research on manage-
ment techniques [24–26], and the design of management strategies [27–29]. The IEM is
more mechanism-oriented, highlighting the overall management process. In contrast, the
“mountains, rivers, forests, farmlands, lakes, grasslands, and sands” approach prioritizes
the means and techniques of management.

The theory of life community is proposed as a great practice of socialism with Chinese
characteristics. On the one hand, it focuses more on the intricate and complex network
of components within the ecosystem than other theories. On the other hand, it empha-
sizes comprehensive management and system restoration, which requires undertaking
comprehensive restoration efforts to enhance the ecosystem’s service functions based on
diagnosing prominent ecological issues in the region. Currently, research on the life com-
munity in China primarily focuses on theoretical analysis, emphasizing its conceptual
features, technical methods, and practical approaches. In terms of conceptual characteris-
tics, there is a consensus on the fundamental understanding of this concept, which serves
as the foundation for this study. In terms of technical methods, many studies with the life
community at the core of theory virtually explore the enhancement of ecosystem service
functions. Although this aligns with the objectives of the life community, aiming to improve
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the quality of the ecological environment, these studies have yet to highlight the role of
elements within the system. In practice, China has implemented 44 Shan-Shui Initiatives
(the integrated restoration projects of mountains, waters, forests, farmlands, and lakes)
since 2016. These pilot areas serve as the main subjects of research about experiences. Sum-
marizing the involved pilot projects, they primarily focus on the protection of important
ecosystems, water environment management, land restoration and regulation, ecological
restoration of mining areas, and biodiversity conservation. Although these efforts have
achieved some success in environmental restoration, there remains a lack of systematic
understanding of the life community and scientific assessment of ecological issues.

In conclusion, research on the life community is still in its early stages and has yet
to establish a universally recognized mechanism or procedure. This lack of consensus on
this theory hampers the widespread dissemination of its ideas and associated methods.
Consequently, this paper aims to conduct an objective and scientific quantitative study
from the perspective of element identification to provide a new reference for the technical
approach to achieving a comprehensive mountain, water, forest, and farmland life com-
munity. Element identification, as referred to in this paper, denotes the systematic process
of scientifically diagnosing specific natural resources. Unlike previous ecological restora-
tion efforts, it places more emphasis on the components of ecosystems. This approach
allows for a more precise delineation of problem areas and improved efficiency of gover-
nance work while also facilitating the harmonious development of ecosystems through its
comprehensive perspective.

One of the key focus areas for ecological management and economic transition is the
eliminating region of backward production capacity. The traditional extraction and mining
processes of outdated production capacity frequently lead to extensive ecosystem damage,
posing a significant threat to the region’s sustainable development. Therefore, there is an
urgent need to carry out ecological restoration work. This paper selects the areas with
backward capacity as the primary research object. To efficiently complete the ecological
restoration project, we conducted an identification study with the main ecological elements
of mountains, waters, forests, and farmlands in the study area. By diagnosing the ecological
issues associated with these elements, areas with ecological risks were identified and
designated as single-element governance zones. Subsequently, the areas of comprehensive
governance are formed based on the severity of damaged areas caused by ecological
elements. In a word, this paper aims to promote ecological restoration efforts in regions
with outdated production capacities by establishing comprehensive management zones for
mountains, waters, forests, and farmlands. This approach to element identification is not
only beneficial for targeted solutions to regional environmental issues and the improvement
of governance efficiency but also provides insights into new paths for transitioning towards
green development during the restoration process. Furthermore, unlike previous concepts
of ecological restoration, the research perspective of life community also represents a unique
approach within the context of socialism with Chinese characteristics. It not only enriches
the understanding of ecological restoration but also provides valuable Chinese experiences
for global ecosystem construction.

2. Materials and Methods
2.1. Study Area

The four towns of Ganshui, Anwen, Datong, and Shihao are located in the southern
part of Qijiang District, Chongqing Municipality (106◦32′ E–106◦52′ E, 28◦26′ N–28◦47′ N),
as shown in Figure 1. With a total area of 528.04 km2, this region comprises 20 communities
and 57 villages. As the intersection area of the “Chengdu–Chongqing economic circle” and
the “Chongqing–Guizhou Economic Belt”, these towns have a rich history of coal mining
spanning over 70 years. With a cumulative coal production of nearly 900 million tons and a
total output value exceeding CNY 112 billion, they have emerged as significant contributors
to the coal industry in China, ranking among the top 100 coal-producing counties in
the country.
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Figure 1. The location of the study area: (a) location of Chongqing Municipality in China; (b) location
of Qijiang District in Chongqing; (c) location of the study area in Qijiang with altitude.

Following the complete closure of mines in 2021, there is an area of nearly 218 km2

affected by coal mining subsidence and its impact. The pollution caused by coal waste,
such as coal gangue, covers an area of approximately 150 km2, while the suffering from
severe soil erosion covers an area of 70 km2. Furthermore, more than 95% of the rivers
in the subsidence area are affected by mining wastewater pollution. A series of issues,
including surface cracking, soil contamination, and depletion of water sources, pose a
severe threat to sustainable development [30]. In this context, it becomes crucial to establish
a comprehensive governance plan for the mountains, waters, forests, and farmlands life
community in the research area.

2.2. Data
2.2.1. Data Sources

The identification of mountain elements utilizes Sentinel-1A radar satellite imagery
provided by the European Space Agency (ESA) from February 2017 to December 2021,
totaling 30 images. The detailed parameters of the satellite images utilized can be found in
Table 1. Additionally, NASA’s Shuttle Radar Topography Mission (SRTM) Digital Elevation
Model (DEM) data with a resolution of 30 m are employed to eliminate interference from
terrain phase information.
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Table 1. Basic parameters of Sentinel-1A data in the study area.

Orbit Direction Band/Wavelength
(cm)

Spatial
Resolution (m) Viewing Angle (◦) Polarization

Mode
Revisit Period

(days)

Ascending C/5.65 20 39.20 VV 12

For the identification of hydrological elements, the data primarily originate from vari-
ous sources, including the “14th Five-Year Plan” for water security in Qijiang District, the
statistical yearbook of Qijiang District in 2022, the High-Resolution Mountain Environment
Mapping Program (China’s 30 m resolution annual precipitation dataset), and the Under-
ground Water Resources Information Service Network (underground water environmental
map of Chongqing).

In the delineating areas of forest governance, the data are derived from the 30 m annual
maximum NDVI dataset in China from 2000 to 2020, provided by the Remote Sensing Team
of Land Use and Global Change Research Institute, Chinese Academy of Sciences [31].

For delineating areas of farmland governance, the data mainly include geographic
information data and socio-economic data. Geographic information data are primarily
obtained from online sources, while socio-economic data are sourced from the statisti-
cal yearbook of Qijiang District. Detailed data sources can be found in the table of the
constructed evaluation indicator system.

2.2.2. Data Processing

In the delineation of mountainous areas, it is necessary to download SAR images from
February 2012 to December 2021. Based on the study area, SAR information within the four
southern towns was extracted using cropping. These data were imported into ENVI 5.6 in
advance to obtain format data suitable for conducting SBAS-InSAR analysis directly.

In the delineation of water and farmland management zones, the primary task in-
volved conducting evaluations of specific elements. It required data to be dimensionless.
The method mainly adopted in this study was range normalization. Subsequently, a
comprehensive evaluation was conducted based on specific weighting methods.

In forest management zoning, NDVI information within the study area was extracted
using cropping. This allowed for the subsequent performance of a linear trend analysis
based on the extracted data.

2.3. Research Methods
2.3.1. Identification of Mountain Element: SBAS-InSAR

Governance zoning of mountain elements can be achieved through the use of Synthetic
Aperture Radar (SAR) technology [32]. As one of the earliest remote sensing techniques
employed for surface-deformation monitoring, the interferometric processing technique of
single temporal has been widely utilized [33–35] due to its wide monitoring range and high
efficiency [36]. However, it still faces the problems of temporal and spatial decorrelation
and atmospheric delay [37].

In this context, time series analysis techniques have been further developed, the most
typical of which are Persistent Scatterer (PS-InSAR) and Small Baseline Subset (SBAS-
InSAR). Among them, the PS-InSAR technique is a typical point target algorithm. It usually
selects ground objects with strong reflection characteristics and stable scattering features
(such as roads, houses, dams, bridges, and exposed rocks) as PS points. Based on these PS
point targets, phase analysis is performed on time series to obtain deformation information
on each point on the ground. Therefore, its application is mostly focused on urban areas,
towns, and other places with low vegetation cover [38–40].

While the SBAS-InSAR technique is a typical distributed target algorithm, it utilizes
existing SAR image datasets and sets thresholds for temporal and spatial baselines. It
generates multiple subsets using free combinations and applies the least squares method to
extract deformation information within each subset. The subsets are jointly solved using
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singular value decomposition (SVD), ultimately obtaining surface deformation informa-
tion. In SBAS-InSAR, the distributed targets are generally objects with weaker scattering
characteristics compared to permanent scatterers, and natural surfaces can be selected as
the study area.

Although the study area in this article belongs to a rural township, it is crucial to
consider the high vegetation coverage in the southwestern mountainous region, which
can affect the reflection and scattering characteristics of ground points. These can result
in insufficient high-coherence points in PS-InSAR and introduce errors in the obtained
information on surface deformation. In summary, the SBAS-InSAR technique was chosen as
the preferred method for surface deformation monitoring in the four towns of the southern
region of Qijiang District. The specific operational workflow in the SBAS-InSAR technology
is illustrated in Figure 2 [41–43].
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Figure 2. The processing flow of SBAS-InSAR technology is mainly divided into connection graph,
interferometric process, inversion of first step, inversion of second step, and geocoding.

In practice, to reduce temporal and spatial decorrelation, thresholds of 2% and
180 days were set as the maximum spatial baseline and time baseline, respectively. Under
these conditions, 69 sets of interferometric pairs were generated, and the image taken on
20 August 2019 was selected as the master image. Subsequently, interferometric stacking
processing was applied to several pairs of images, and high-resolution Digital Elevation
Model (DEM) data was employed to eliminate terrain phase interference. Multi-looking
with a ratio of 1:4 and Goldstein filtering were applied to suppress spatial noise and im-
prove the signal-to-noise ratio. Due to the dense vegetation on the mountainous surface
in the Chinese southwestern region, the 3D unwrapping method was used to reconstruct
lost information and minimize the influence of phase discontinuities. To further enhance
the research results, atmospheric effects were removed. It involved setting atmospheric
high-pass and low-pass filters of 365 days and 1200 meters, respectively. By following the
aforementioned procedures, the final results of surface deformation in the vertical direction
can be obtained.

2.3.2. Identification of Hydrological Element: Water Resources Vulnerability Assessment

Currently, research on hydrological elements can primarily be categorized into three
aspects: carrying capacity [44–46], vulnerability [47–49], and pollution conditions [50–52].



Land 2023, 12, 2077 7 of 25

Carrying capacity primarily focuses on quantifying the total amount of water resources
within a given time and spatial scope. Pollution conditions primarily address the detrimen-
tal effects on water quality caused by specific chemical substances. Vulnerability assessment
not only considers water pollution resulting from human activities but also emphasizes the
influence of the natural environment on water systems. By assessing vulnerability, decision
makers can gain valuable insights into the resilience and adaptability of water systems and
identify priority areas for governance. Considering the objectives set by governance zon-
ing, this study focuses on a problem-oriented vulnerability assessment of water resources.
First, the entropy weight of the indicator was calculated using the formula. Based on the
results of entropy weight, an importance comparison between indicators was carried out
to create a judgment matrix in the Analytic Hierarchy Process (AHP). According to the
obtained judgment matrix, the optimized weights were obtained through consistency tests
in MATLAB 2016b. Finally, by multiplying and summing the standardization indicators
with their corresponding weights using the ArcGIS raster calculator tool, the evaluation
results could be obtained. The specific research steps are as follows:

1. Construction of evaluation indicator system

A vulnerability assessment of water resources is an important means to evaluate
the security of regional water resources and predict potential issues that may arise in the
future [49]. Referring to existing research results, we will start from three aspects: natural
vulnerability, human vulnerability, and burdening vulnerability [53], and construct an
evaluation indicator system as shown in Table 2.

Natural vulnerability generally refers to the inherent sensitivity of a water resource
system, which is difficult to alter with human activities. It manifests as static characteristics
of water resources. In this system layer, annual precipitation is chosen to represent the
supplementary degree of rainfall for water resources; the rate of change in annual precipi-
tation represents the inter-annual variation of water resources; groundwater quality and
vulnerability indicate the sensitivity of groundwater resources; and the consumption rate
of ecological water represents water usage for urban forests and vegetation greening.

Human vulnerability refers to the degree to which human activities affect and alter
the structure of a water resource system, and it manifests as dynamic characteristics. In
this system layer, domestic water consumption and the water consumption for primary,
secondary, and tertiary industries are selected to represent the impact of industrial structure
on water resource utilization; the capacity of the total reservoir and the water availability
from water diversion projects represent the human capacity to overcome uneven spatial
distribution of water resources.

Burdening vulnerability refers to the sensitivity of a water resource system to human
activities or external disturbances while performing its functions. In this system layer, water
consumption per capita and water consumption per GDP 10,000 represent the pressure
exerted by human economic activities, and wastewater discharge represents irrational
behavior during the utilization of water resources.

2. Optimization Method of Entropy Weight

The optimization method of entropy weight refers to the integration of the entropy
weight method and the Analytic Hierarchy Process (AHP) for weighting evaluation criteria.
The principle of this method is to pairwise compare the weight results obtained from the
entropy weight method and use them as judgment matrices derived from expert ratings in
the AHP. This is carried out to eliminate the influence of subjective factors. The specific
steps are shown below [54].

(1) Data standardization: To eliminate the influence of different dimensions among evalu-
ation criteria, this paper adopts the method of range normalization for dimensionless
processing.
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Table 2. Evaluation index system of water resource vulnerability for the four towns in the southern
Qijiang District.

Objective Level System Level Indicator Level Unit Calculation Method Nature Entropy
Weight

Optimized
Weight

Vulnerability of
water resources

Natural
vulnerability

Annual
precipitation mm Extracted from Chongqing’s annual

rainfall in 2021 + 0.0317 0.0364

Rate of change in
annual

precipitation
% Annual precipitation/30-year average

precipitation − 0.0794 0.0697

Groundwater
quality

4 for potable groundwater; 3 for
groundwater suitable for drinking after

proper treatment; 2 for groundwater
suitable for agricultural and industrial

use but not for direct consumption; 1 for
groundwater not suitable for direct

utilization

+ 0.0139 0.0148

Groundwater
vulnerability

Vulnerable area is designated as 0;
relatively vulnerable area is designated

as 1
+ 0.375 0.403

Consumption rate
of ecological water %

(Urban green space ecological water
consumption + urban environmental
sanitation water consumption)/total

water consumption

− 0.0575 0.0504

Human
vulnerability

Water consumption
of domestic 10,000 m3

(Urban population × per capita water
consumption quota for urban residents +

rural population × per capita water
consumption quota for rural

residents)/water utilization coefficient

− 0.0410 0.0399

Water consumption
of primary
industry

10,000 m3

Water consumption for agriculture +
water consumption for orchards + water

consumption for fishpond
replenishment + water consumption for

livestock breeding

− 0.0388 0.0399

Water consumption
of secondary

industry
10,000 m3 Water consumption for industry + water

consumption for construction industry − 0.0385 0.0399

Water consumption
of tertiary industry 10,000 m3

Added value of the tertiary industry ×
water consumption quota per CNY 1
million of value added in the tertiary

industry

− 0.0397 0.0399

Capacity of total
reservoir m3 Data obtained from town planning

reports + 0.0487 0.0454

Water availability
from water

diversion projects
10,000 m3

Data obtained from Chongqing’s 14th
Five-Year Water Security Plan and
Qijiang District’s 2022 Statistical

Yearbook

+ 0.0682 0.0655

Burdening
vulnerability

Water consumption
per capita m3 (Total water consumption/total

population)/365 days + 0.0631 0.0626

Water consumption
per GDP 10,000 m3 Total water consumption/regional GDP − 0.0578 0.0504

Wastewater
discharge 10,000 m3 Data obtained from reports of town

planning − 0.0466 0.0421

For positively oriented indexes, where larger values indicate greater stability of the
water resources system, the normalization method used is:

X′ij =
(
Xij − Xj,min

)
/
(
Xj,max − Xj,min

)
(1)

For negatively oriented indexes, where larger values indicate greater vulnerability of
the water resources system, the normalization method used is:

X′ij =
(
Xj,max − Xij

)
/
(
Xj,max − Xj,min

)
(2)

where X′ij is the standardized value of the i evaluation object (i = 1, 2 · · · n, n is the
number of samples) for the j evaluation criteria (j = 1, 2 · · ·m, m is the number of criteria),
Xij is the original value, Xj,max is the maximum value of the j evaluation criteria, and
X j,min is the minimum value of the j evaluation criteria.

(2) Calculation of entropy weight:
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Calculate the weight of the evaluation criteria:

Pij = X′ij/∑n
i=1 X′ij, ∑ Pij = 1 (3)

Calculate the entropy value of the evaluation criteria:

ej = −k∑n
i=1 Pij × lnPij, k = 1/lnn (4)

Calculate the weight using the entropy weight method:

Wj =
(
1− ej

)
/∑m

j=1

(
1− ej

)
(5)

(3) Construction of judgment matrix: With the weights obtained from the entropy weight
method, perform pairwise comparisons between criteria using a 9-point scale to
construct the order judgment matrix A

(4) Consistency test:

Calculate the consistency index (CI):

CI = λmax/(m− 1) (6)

where λmax is the maximum eigenvalue of matrix A, and m is the order of the matrix
(number of evaluation criteria).

In calculating the consistency ratio (CR = CI/RI), a randomized index of consistency
(RI) can be obtained based on the order [55]. If CR < 0.1, the judgment matrix passes the
consistency test; otherwise, the matrix needs to be adjusted.

Eigenvalue method for weight calculation: When the consistency matrix has one
eigenvalue equal to z, with all other eigenvalues equal to 0, the corresponding eigenvector,
after normalization, provides the weights of the criteria.

2.3.3. Identification of Forest Element: Linear Trend Analysis Method

To estimate ecological disturbances in forests, the normalized difference vegetation
index (NDVI), derived from the vulnerability assessment index, is selected to determine
the vegetation growth status [56]. This indicator is relatively easy to obtain compared to
others, and it is highly representative. It effectively reflects the vegetation growth at a
specific time point based on the indicator itself. Subsequently, conducting a linear trend
analysis of univariate data allows for a more precise assessment of vegetation changes
over the course of 10 years. Linear trend analysis is commonly used to examine the linear
relationship between a variable of interest and time. It is widely employed in various fields
such as economics, environmental sciences, and social sciences to understand and predict
long-term trends in data. It can also be employed in studies of surface vegetation [57]. The
specific calculation formula is as follows:

S =
(

n×∑n
i=1(i× NDVIi)−∑n

i=1 NDVIi ×∑n
i=1 i

)
/
[

n×∑n
i=1 i2 −

(
∑n

i=1 i
)2
]

(7)

In the equation, S represents the change trend of the NDVI. When S > 0, it indicates
that vegetation growth exhibits a favorable trend. When S < 0, it indicates a deterioration
in vegetation growth. i represents the year (i = 1, 2, · · · , n, n is 10; in the year 2012,
i = 1; in the year 2013, i = 2;. . .; in the year 2021, i = 10), NDVIi represents the NDVI
value for that i specific year. In this paper, due to n = 10, it follows that ∑n

i = 1 i = 55,[
n×∑n

i = 1 i2 − (∑n
i = 1 i)2

]
=825. The specific results could be obtained by substituting

the formula into the raster calculator in ArcGIS.
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2.3.4. Identification of Farmland Element: Suitability Assessment of Agricultural Land

The suitability assessment of agricultural land can effectively reflect the suitability
level of land for agricultural use. In unsuitable areas for agricultural development, it can
be understood that certain limiting factors hinder agricultural development. These limiting
factors then become the main targets of governance. By implementing relevant measures,
it is possible to curb the adverse impacts of limiting factors and enhance the health of
the farmland ecosystems. In this article, the delineation zones of farmland governance
will be completed based on the spatial layout of basic farmland and the evaluation results
of suitability. The specific method of suitability evaluation is the same as the previous
assessment of water resource vulnerability. The constructed evaluation index system is
shown in Table 3.

Table 3. Evaluation index system of agricultural land suitability for the four towns in the southern
Qijiang District.

Objective Level System Level Indicator Level Unit Calculation Method and Source Nature Entropy
Weight

Optimized
Weight

Suitability of
agricultural land

Pressure

Population density Persons/km2 Population/area − 0.0434 0.0474
Growth rate of

natural population ‰ (Annual births − annual
deaths)/average population × 1000‰ − 0.0547 0.0564

Per capita GDP CNY/Persons Actual GDP/total population − 0.122 0.107
Sensitivity index of

rocky
desertification

(Percentage of exposed bedrock ×
Slope × NDVI)ˆ(1/3) [58] − 0.00270 0.00820

Impact of mining
area m

Distance to each mining area: <1000
m = 1; 1000~3000 m = 3; 3000~6000

m = 5; 6000~7000 m = 7; >7000 m = 9.
− 0.0337 0.0377

State

Annual
precipitation mm China’s annual rainfall in 2021 [59]. + 0.0132 0.0200

Slope % Using Digital Elevation Model (DEM)
[60] via ArcGIS. − 0.00243 0.00810

Aspect

South direction = 9; southeast and
southwest directions = 7; east and
west directions = 5; northeast and

northwest directions = 3; north
direction = 1.

+ 0.0438 0.0474

Soil texture

National soil database [61] , soil
classification based on the USDA:
Clay loam = 9; sandy loam = 7; silt

loam = 5; sandy loam with silt
content = 3; sandy soil = 1.

+ 0.0105 0.0166

Soil pH National soil database [61] . ± 0.189 0.148
Vegetation
coverage

Normalized difference vegetation
index (NDVI) [31]. + 0.00141 0.00730

Water source m
Distance to water sources: <200 m = 9;

200~500 m = 7; 500~1500 m = 5;
1500~3000 m = 3; >3000 m = 1.

+ 0.00748 0.0131

Distance to
disaster-prone

areas
m

Distance to disaster-prone areas:
>2000 m = 9; 1500~2000 m = 7;

1000~1500 m = 5; 500~1000 m = 3,
<500 m = 1.

− 0.0227 0.0313

Density of road
network

≥5 = 9; 5~3 = 7; 3~2 = 5; 2~1.5 = 3;
≤1.5 = 1 + 0.0418 0.0474

Parcel regularity 4 × (Spot area)ˆ(1/2)/Spot perimeter + 0.0221 0.0308
Terrain

fragmentation 1/cos(slope) − 0.0000893 0.00500

Response

Share of primary
industry in GDP % Statistical Yearbook of the four towns

in 2022 [62]. + 0.0566 0.0583

Proportion of
agricultural,

forestry, and water
affairs in fiscal

expenditure

% Explanation of the final accounts of
the four towns in 2021 [63–66]. + 0.0955 0.0901

Density of planned
road network

14th Five-Year Transportation Plan
[67]: ≥5 = 9; 5~3 = 7; 3~2 = 5;

2~1.5 = 3; ≤1.5 = 1.
+ 0.0312 0.0377

Construction of
high-standard

farmland
Yes = 1; no = 0. + 0.0669 0.0697

Layout of reservoir
construction m

14th Five-Year Water Security Plan
[68]: <200 m = 9; 200~500 m = 7;

500~1500 m = 5; 1500~3000 m = 3,
>3000 m = 1.

+ 0.139 0.113
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In this study, an evaluation index system will be constructed from three perspectives:
pressure, state, and response (PSR). The pressures faced by agricultural land can be di-
vided into three categories: human, land, and industry. Population growth and economic
development exert pressure on the spatial layout of agricultural land, while phenomena
such as land degradation inhibit agricultural development. Additionally, the local mining
activities of coal and electricity also pose a significant threat to land, thus greatly affecting
agricultural development. Under the influence of various pressures, the farmland system
exhibits various states, such as soil texture, pH, and other factors. To improve the negative
impacts or expand positive responses, response indicators are selected from government
investment, future planning, and other aspects.

3. Results
3.1. Identification and Zoning of Single Elements
3.1.1. Identification and Zoning of Mountain Elements

The surface deformation rates in the vertical direction of the four southern towns in
Qijiang District from 2017 to 2021 were obtained using SBAS-InSAR technology, as shown
in Figure 3. The results revealed that the distribution of surface deformation in the study
area was uneven, with an annual average rate of deformation ranging from −93.83 to
42.65 mm/year. The surface movement was active. The area with the most significant
surface subsidence was observed in the eastern part of Meizi Village, Ganshui Town, within
a 1000 m distance from the Haoqing Coal Mine, Dashan Coal Mine, and Dongfeng Coal
Mine [69]. The region experiencing the greatest uplift was located in the southernmost part
of Wanlong Village, Shihao Town, surrounded by Zhanghegou Coal Mine, Changhong
Coal Mine, and Xinglong Coal Mine. Additionally, significant surface subsidence was
also observed around Datong Town, posing a potential threat to human life, health, and
property. Therefore, this area was identified as a priority for restoration.
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Points A and C were selected within the region of maximum surface deformation,
along with point B in the subsidence area around the town. A time series analysis was
conducted for these points. Point A is in the intersection district of three coal mines and
has obvious surface subsidence. Accumulated subsidence of 205.36 mm was observed
from February 2017 to December 2021, with a relatively fast rate of descent. However,
starting in April 2020, the subsidence rate slightly slowed down, possibly due to mea-
sures implemented before the mine closure. Point C exhibited a similar relative position
to point A, with three mining areas in its vicinity. However, the long-term uplift state
was evident in its time series analysis. Initially, the surface uplift was attributed to the
beam effect on elastic foundations caused by underground mining operations [70]. The
subsequent significant uplift observed after June 2019 may be linked to the closure of mine
drainage facilities, leading to groundwater rebound and consequent surface uplift. The
refilling of water may result in the softening and destruction of rock pillars, triggering
geological hazards [71]. Lastly, point B exhibited an accumulated surface deformation of
−79.48 mm, showing a continuous downward trend since 2017. After 2021, the deforma-
tion rate slowed, with annual accumulated deformation not exceeding 1 mm, indicating a
gradual stabilization of crustal movement in this area.

3.1.2. Identification and Zoning of Water Elements

The vulnerability assessment results of water resources in the four southern towns
of Qijiang District are shown in Figure 4. The vulnerability index ranged from 0.22 to
0.80, with a mean value of 0.45. Overall, the water resources in the region exhibited
relatively moderate stability. The areas with higher vulnerability were mainly distributed
in the central and northeastern parts. These karst regions are characterized by complex
topography and geology, with extensive development of karst depressions, conduits,
and fractures, resulting in predominantly karst groundwater within the study area. The
complex structure and strong permeability of the karst aquifers make them susceptible
to being affected by mining pollutants. On the one hand, the infiltration of water leads
to groundwater pollution in shallow areas. On the other hand, the closure of mines
causes chemical elements in the formations to oxidize and form sulfates, resulting in water
acidification and contamination. Through various fractures and conduits within the mining
area, the contamination area expands. This is also one of the reasons for the vulnerability
of the entire water ecosystem in the study area. Considering the significant impact of
abandoned mines on water resources, a comparison of the spatial distribution of coal
mining and water resource vulnerability reveals a significant correlation between the two.
Mining activities not only affect the quality of groundwater but also impact the physical
properties of water resources. The drainage operations in the mines result in a significant
decline in the groundwater level, leading to water shortages in the surrounding areas. At
the same time, changes in groundwater levels and flow patterns, interruption of surface
water flow, and other issues [72] pose serious threats to the water circulation system in the
mining areas. Therefore, the closer it is to the coal mining void area, the more vulnerable a
water resource system tends to be. Based on the results of the vulnerability assessment, a
water governance area of 212.07 km2 was delineated within the region.
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3.1.3. Identification and Zoning of Forest Elements

The NDVI trend in the study area from 2012 to 2021 is shown in Figure 5, indicating an
overall slight increase. The maximum average value of NDVI increased from 0.73 in 2012
to 0.79 in 2021, with a growth rate of 0.006/year. This demonstrates that the vegetation
coverage in the four southern towns has been improving year by year. The most significant
increases are concentrated in the central part of the study area, the northern part of Ganshui
Town, and the eastern part of Shihao Town. The central part of the study area refers to
the adjacent areas between towns, which are part of the Qiyao Mountain–Jinfo Mountain
basement fault zone. Therefore, these areas have potential geological hazards, which can be
reinforced by planting vegetation to strengthen the soil. The valleys formed by faults can
also be transformed into summer resorts by increasing vegetation cover. The northern part
of Ganshui has a significant number of slopes greater than 25◦. Therefore, the decision to
reforest will increase forest density. The eastern part of Shihao Town serves as an ecological
barrier in the southern part of Qijiang District, which has great significance for creating an
ecological security pattern. In addition, some areas show a decrease in NDVI, which can
be attributed to urban expansion phenomena observed in remote sensing images. Such
expansion inevitably causes some disruption to vegetation growth.
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Figure 5. Annual average NDVI trends and the preliminary planning of the treatment area in the four
southern towns of Qijiang District:(a) annual NDVI change rate from 2012 to 2021; (b) the maximum
NDVI in 2012; (c) the maximum NDVI in 2021.

Based on the variation trend of NDVI over the ten years in the study area, regions
with significant fluctuations were selected as forest governance areas, resulting in a total
governance area of 10.75 km2. The types of governance can mainly be classified into two
categories. The first category includes areas with a decrease in NDVI, indicating a reduction
in forest density and coverage compared to the past. Such reduction can be attributed to
factors such as urban expansion, climate change, and construction projects. The second
category comprises areas with a significant increase in NDVI due to new forest growth.
Without proper measures of maintenance, the survival rate and reforestation rate of these
newly established forests may be uncertain. Therefore, it is essential to implement relevant
measures to maintain ecological stability in these newly planted forests.

3.1.4. Identification and Zoning of Farmland Elements

The suitability assessment results of agricultural land in the four southern towns of
Qijiang District are shown in Figure 6, with evaluation indexes ranging from 0.23 to 0.71.
The overall mean value is 0.45, indicating a generally medium suitability condition. The
areas with high suitability are mainly concentrated in the northern and central parts of the
study area, while the unsuitable areas are primarily located in the southwest and southeast.
The towns are ranked in terms of their suitability indexes in agricultural land from highest
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to lowest as follows: Ganshui Town (0.49), Anwen Town (0.47), Datong Town (0.44), and
Shihao Town (0.39).
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The reasons for these variations can be attributed to different pressures, states, and
responses faced by each town. Ganshui Town experiences the least pressure, with a
relatively small population and minimal land occupation for farming. It also has a stronger
economic foundation, allowing for more resources to be invested in agricultural production.
Moreover, the town has favorable natural conditions, with sufficient sunlight, temperature,
water, and soil quality to support agricultural development. The planned layout of high-
standard farmland and the construction of new reservoirs in Ganshui Town also contribute
to its higher level of suitability in agricultural land compared to the other three towns. The
low suitability of the southern region is not only related to its ecological barrier positioning
but is also largely influenced by water resources. Compared to the northern regions, the
southern regions, including Datong Town and Shihao Town, experience lower rainfall
and less dense river networks. The difficulty in accessing water leads to a decrease in the
suitability for agricultural development. These areas can be considered for accomplishing
management of farmland elements through the new construction of water conservancy
facilities. Considering the significant role of basic farmland in agricultural production, this
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study selects the concentrated distribution of basic farmland with lower suitability as the
key area for governance. Ultimately, the initial treatment area identified was 28.41 km2.

3.2. Integrated Zoning and Governance Measures Based on Life Communities

By combining the zoning of mountain, water, forest, and farmland elements, the com-
prehensive governance zones for the entire study area can be determined. For overlapping
areas, the type with more severe issues is selected for initial governance efforts. The zoning
of comprehensive governance is shown in Figure 7.
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Figure 7. Integrated management zoning of mountains, waters, forests, and farmlands in four
southern towns of Qijiang District based from an element identification perspective.

The governance zone of the mountain element covers an area of 8.03 km2, with Ganshui
Town accounting for 20.13% and Shihao Town accounting for 79.87%. For these areas with
potential landslide risks caused by coal mining subsidence, measures such as reinforcement
and support, sealing and isolation, and backfilling techniques can be employed to achieve
regional restoration [73]. Regarding the treatment area with surface uplift in the southern
part of Shihao Town, it is recommended to implement land consolidation projects and
construct drainage ditches to address water accumulation in mining areas. Measures such
as afforestation and slope reduction can also be implemented to reduce the losses caused
by geological hazards.
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The governance zone of the water element covers an area of 212.07 km2, with Anwen
Town accounting for 38.80%, Datong Town accounting for 31.78%, and Ganshui Town
accounting for 29.42%. Due to the close relationship between the spatial distribution of
water resource vulnerability and mining subsidence areas, efforts should focus on mining
wastewater treatment. Considering that mining wastewater in southern China is often
acidic, various technologies can be employed for the improvement of water quality, such as
biological methods, neutralization and sedimentation, oxidation reduction, and membrane
separation. In addition, constructing sewage treatment stations and using mine backfilling
to adjust the terrain can create natural drainage ditches or reservoirs to mitigate surface
erosion caused by runoff.

The governance zone of the forest element covers an area of 7.04 km2 and is mainly
concentrated in Ganshui Town (85.29%), Datong Town (14.27%), and Anwen Town (0.44%)
in a strip-like distribution. The decrease in vegetation coverage can be attributed not only
to natural urban expansion but also to the disturbance caused by road construction. The
construction of the Yuzhu Expressway has led to vegetation destruction along its route,
resulting in increased landscape fragmentation and exacerbated habitat risks [74]. This
type of governance zone requires a suitability assessment of land consolidation along linear
engineering projects to determine their reclamation direction [75]. Specific restoration work
on the forest can be carried out after project completion based on the actual situation. For
areas with increased vegetation coverage, proper nurturing and management activities
should be conducted regularly to ensure the normal growth of newly planted seedlings,
such as loosening the soil, fertilization, and watering.

Finally, the governance zone of the farmland covers an area of 20.07 km2, mainly
concentrated in Datong Town and Shihao Town, accounting for 62.85% and 37.15%, re-
spectively. As the soils in these areas are predominantly acidic, the first step is to conduct
amendment treatments of acidic soil. Approaches such as adjusting the fertilizer structure,
applying soil amendments, and increasing the application of organic fertilizers or biofer-
tilizers can be implemented to enhance the quality of arable land. Moreover, considering
the poor conditions of water resources, land consolidation projects can be implemented
to deploy irrigation and conservation water facilities such as ditches and ponds, thereby
improving the agricultural infrastructure.

4. Discussion

This article concretizes the goals of the “Mountains, Rivers, Forests, and Farmlands
Life Community” and implements them in real areas. By diagnosing ecological issues,
it is possible to rationally delineate regions with potential ecological risks. Based on the
level of risk, the spatial distribution of governance elements can be optimized. Specifically,
within a given spatial domain, priority is given to addressing ecological issues (elements)
with the highest risk level. This approach enables optimal utilization of limited resources,
resulting in enhanced governance effectiveness and a minimized probability of ecological
disasters. Moreover, concentrating resources on areas where ecological functionality has
been significantly disrupted accelerates the process of ecosystem recovery, promoting
the restoration of vegetation, soil improvement, water quality enhancement, and other
ecological restoration effects, thereby achieving sustainable development of the ecological
system. Consequently, based on the results of the single-element identification within
this study, areas prone to high-risk ecological disasters were scientifically identified, and
targeted governance measures were implemented. This approach not only enhances
resource utilization efficiency and maximizes the comprehensive benefits of ecological
restoration in the mining area, but also contributes to the enrichment of the concept of
“Mountains, Rivers, Forests, and Farmlands Life Community” in China.

The proposed restoration objective, which is based on element recognition, coincides
with the primary task of ecological restoration in mining areas. They both emphasize
the identification and elimination of factors that restrict the restoration of the ecological
environment [76]. By delineating the problematic areas of the systematical elements, the



Land 2023, 12, 2077 18 of 25

correction of limiting factors can be achieved. The governance measures proposed in this
study are essentially similar to the stages of reclamation in mining areas. For example,
Feng et al. [77] proposed five stages of mine reclamation, including geomorphic reshaping,
soil reconstruction, hydrological stability, vegetation restoration, and landscape rebuild-
ing. Gao et al. [78] proposed that reclamation of open-pit mines can be achieved through
engineering restoration such as stripping technology, water engineering, and new land
construction, as well as biological restoration measures such as screening of crop varieties,
vegetation techniques, and fertilization new land. Li et al. [79] regarded vegetation and
soil restoration as the key to ecological reconstruction in mining areas. In conclusion,
the current techniques of ecological restoration are closely related to element governance.
Forest element governance is crucial for vegetation restoration, while soil restoration is
related to mountain and farmland governance, and hydrological restoration undoubtedly
contributes to water element governance. Although their connotations and objectives
are similar, restoration from an elemental perspective can overcome the limitations of
traditional techniques, i.e., shift attention to the ecosystem itself. It can aid in more precise
restoration targeting different elements, which is beneficial for solving specific problems
and improving restoration effectiveness. In addition, considering governance activities
from an elemental perspective allows for greater flexibility. It can be flexibly adjusted
according to different environmental conditions and restoration objectives, applicable to
various ecosystems, demonstrating high adaptability and operational feasibility. This
facilitates the achievement of more comprehensive and integrated benefits of ecological
restoration, promoting overall enhancement of the ecosystem [80]. The concept of flex-
ibility here emphasizes the ability to integrate many elements to create comprehensive
models of governance. Overall, there are intrinsic and close connections between different
governance elements. For example, landform restoration is not only related to mountains
but also to surface runoff [81]. Therefore, in the discussion, the governance models of
composite elements for the four towns in the southern part of Qijiang District will also be
proposed [82–86].

(1) The governance model of mountains, waters, and forests

The mountain ridge, composed of the elements of mountains, water, and forests,
serves as the source of the entire mountain, water, forest, and field governance and restora-
tion work [87]. It can effectively enhance the quality of the entire regional ecosystem.
Due to the direct impact of coal mining on mountains, water, and forests, the ecological
restoration work of the three elements can be achieved from mine reclamation. Currently,
the key technologies for ecological restoration of abandoned mine sites can be mainly
divided into [88]: 1© Site leveling. Combined with actual roads and drainage ditches,
land leveling work is carried out. For slopes, slope cutting and leveling should be con-
ducted, and the slope surface should meet the conditions for artificial planting. At the
same time, according to the terrain, natural gullies should be modified using techniques
such as excavation and filling and ecological bags to eliminate potential landslide hazards.
2© Pollution control and diversion. Pollution control and diversion techniques are used

to build drainage ditches, reducing the kinetic energy of surface runoff and soil erosion.
3© Three-dimensional vegetation configuration. In vegetation restoration of the mine site,

it is necessary to first select plants that are resilient, capable of soil and nitrogen fixation,
have well-developed root systems, and are easy to establish, such as hairyleaf litse fruit,
bougainvillea goldraintree, ficus lacor, and other tree species, as well as mysorethom seed,
common aucklandia root, and prickly ash for shrub vegetation. New afforestation is carried
out to conserve water sources and stabilize the soil.

(2) The governance model of mountains, waters, and farmlands

The concept of mountain, water, and farmland governance can be seen as the ecologi-
cal restoration of “valleys”. Through techniques such as comprehensive land consolidation
and soil pollution remediation, ecological security is maintained. On the one hand, eco-
logical restoration is achieved with land leveling projects, field road projects, irrigation
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and drainage projects, and farmland protection projects. These projects can also repair
the damaged land in the mining area and consolidate fragmented agricultural land and
inefficient construction land, thereby improving the conservation capacity of regional water
and soil [89]. On the other hand, the investigations and assessments of soil pollution are
actively conducted, and improvement projects in areas with acidified soil are properly
defined. With a focus on food security, soil testing and formula techniques of fertilization
are implemented, applying different types of soil amendments targeted at different soil
conditions to enhance the quality of arable land [90].

(3) The governance model of waters, forests, and farmlands

Chongqing, an important region in the southwest forest area of China, aims to create
the “Green Mountains on Both Sides · Thousand-mile Forest Belt” in the protection project
of the Yangtze River forest. At the same time, it is necessary to increase the value of
forestry and related industries and promote sustainable development in the region. The
undergrowth economy relies on forest resources and ecological resources, focusing on the
development of undergrowth planting and breeding industries, forest product processing
industries, and forest tourism [91]. It can maximize the value of the forest and field elements
in the same region.

To achieve this, the restoration and management of vegetation in rocky desertification
areas are prioritized. Measures of soil and water conservation are implemented to pro-
mote clean construction in the Qijiang Basin, including exploring mixed afforestation and
complementary water systems. Building upon increased coverage of regional vegetation,
high-quality soil is excavated to escalate the potential values of forest resources. Under the
forest canopy, economic crops such as soybeans, mung beans, sweet potatoes, medicinal
plants like Rhizoma Gastrodiae, Radix Scutellariae, and Glycyrrhiza, as well as mushroom
varieties like shiitake, grass fungus, and chicken mushroom [92], are cultivated to enhance
the additional benefits of forest resources.

In conclusion, there are numerous elements in the natural system. In addition to the
mountains, waters, forests, and farmlands factors, there are also lakes [93], grasslands [94],
sands [95], glaciers [96], and more. These elements together influence the sustainable
development of a region. While this study focuses on the mountains, waters, forests, and
farmlands elements, it is important not to overlook the significance of other elements in
achieving ecological restoration. Gradually improving and enriching the types of elements
in natural systems will also be a key problem of research in the future.

In addition to enriching the types of factors within the life community, improving the
identification methods for these elements will also be another focus. This study proposes
universally applicable and scientific identification methods for the four types of elements:
mountains, water, forests, and farmlands. The results have been validated with data
verification and remote sensing imagery. Specifically, the zoning results of mountain
management are validated with data on mining site distribution. The results of water
resource vulnerability are validated with the distribution of subsidence areas. The forest
management zones can be examined using remote sensing images from different years.
The suitability results for agricultural land also largely match the distribution of basic
farmland. This proves that the methodology used in this paper is capable of scientifically
diagnosing ecological problems in the study area. However, these methods also have
certain limitations. For example, the SBAS-InSAR technique is more suitable for monitoring
areas with dense vegetation and fewer buildings. In contrast, PS-InSAR may be more
suitable for identifying mountain elements in urban areas or towns on the northern plain in
China. Furthermore, there is no standardized evaluation indicator system for assessing the
vulnerability of water resources. It is possible to construct a new framework of evaluation
tailored to local characteristics in subsequent studies. Though NDVI is a very common
method for recognizing forests, a series of machine methods of recognition have also
been developed now, such as random forest [97] and support vector machine [98], which
can effectively, scientifically, and automatically identify forest elements. Lastly, besides
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suitability evaluation, research can also be conducted from multiple perspectives, such as
fragmentation, soil erosion, and land conflicts in recognition of farmland.

In summary, the methods used in this article are more suitable for research in moun-
tainous regions in the southwest of China. Taking the research area as an example, it can be
demonstrated that element identification is of significant importance in achieving regional
ecological restoration. This method and model can be extended to more mountainous
restoration cases. Furthermore, the discussion on topics such as improving accuracy and
expanding the scope of application through advancements in the methodology will also be
a key focus of future research.

5. Conclusions

This paper establishes a comprehensive governance zoning of mountains, waters,
forests, and farmlands from the perspective of single-element identification in order to pro-
mote ecological restoration in regions with outdated production capacity. The SBAS-InSAR
technique is used for monitoring surface deformation to delineate mountain management
areas. Hydrological management areas are determined through vulnerability assessments
of water resources. Areas with significant fluctuations in vegetation cover are selected as
forest management areas based on the NDVI trend over a period of 10 years. Finally, basic
agricultural lands with a low suitability index are chosen as farmland management areas.
Through the perspective of element identification, the comprehensive governance zoning
of the “Mountains, Rivers, Forests, and Farmlands Life Community” in the four southern
towns of Qijiang District is established. The specific conclusions are as follows:

1. The deformation rate of the average annual surface in the four southern towns of
Qijiang District ranges from −93.83 to 42.65 mm/year, indicating active surface
movement, with risks of landslides and collapses in some areas. The vulnerability
index of water resources ranges from 0.22 to 0.80, showing a close spatial relationship
between zones of water fragility and coal mining areas. There is an increasing trend in
the annual NDVI variation, but there are still some areas where vegetation cover has
decreased due to road construction. The suitability index for agricultural land ranges
from 0.23 to 0.71, with highly suitable areas mainly concentrated in the northern
and central parts of the study area, while unsuitable areas are mainly located in
the southwest.

2. The management area of the mountain element in the study area covers an area of
8.03 km2 and can be addressed by measures such as reinforcing underground min-
ing space and stabilizing the surface to reduce losses caused by geological hazards.
The management area of the hydrological element covers an area of 212.07 km2 and
can be improved through mining wastewater treatment to enhance the stability of
the regional system of water resources. The management area of the forest element
covers an area of 7.04 km2, and for areas where vegetation cover has decreased due to
the construction of the YuZhu Expressway, a suitability evaluation of land consoli-
dation along linear engineering areas should be conducted, while ensuring proper
care and maintenance of areas with increased vegetation cover. The management
area of the farmland element covers an area of 20.07 km2 and can be addressed
through soil acidification improvement and land consolidation projects to achieve
farmland restoration.

3. Three composite governance models are proposed for the study area. The first is
the governance model of mountains, waters and forests, which focuses on mountain
ridges. The second is the mountain, water, and farmland governance model, which
emphasizes valleys as the center. The third is the governance model of waters, forests,
and farmlands, which prioritizes the development of an undergrowth economy. Eco-
logical governance and restoration in the four southern towns of Qijiang District
should begin with the management of hydrological elements as the starting point.
This focus on water elements will drive works of comprehensive restoration within
the entire region.
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According to the above results, the research objective of this paper can be effectively
achieved, which is to construct a comprehensive governance pattern for eliminating re-
gions of backward production capacity. From the perspective of elements, it is possible
to fundamentally address regional ecological issues and actively promote the process of
regional transformation. This comprehensive governance pattern of elements contributes to
enhancing governance efficiency through the rational allocation of resources and the imple-
mentation of precise measures. It is possible to facilitate ecological restoration and improve
environmental quality in a region, while also providing sound ecological environment
support for economic development.
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