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Abstract: Climate change will cause substantial vegetation shifts across the world. Africa may
face varying dynamics such as tree decline, savannization, and woody encroachment due to rising
temperatures and rainfall changes. This study examines the potential effects of climate change on
Kenyan vegetation and vegetation shifts for 2050 and 2100, employing a statistical model to predict
vegetation state as driven by environmental variables, including temperature, soil moisture, livestock
density, and topography. We evaluate the model by hindcasting it from 2020 to 2000 and then project
future vegetation states for 2050 and 2100 under SSP 2–4.5 and SSP 5–8.5. In response to moderate
emissions, a notable increase in arid-associated shrubland vegetation (53–58%) is forecasted, leading
to the expansion of drylands at the expense of savannas, grasslands, and forests. Under high-emission
scenarios, savannas are forecasted to expand (52–65%) at the expense of forested areas. Overall, dense
forest cover declines across scenarios, affecting protected areas by promoting increased savanna cover
and reducing forest area (40% to 50%). These projected shifts in major vegetation types would likely
alter ecosystem functioning and associated services, impacting pastoralists and wildlife and raising
biodiversity concerns. Protected areas in Kenya could lose 50% of their forests, highlighting the
urgency of climate change mitigation. These findings offer a crucial foundation for future research
and action on Kenya’s vegetation.

Keywords: Africa; climate change; vegetation shift; ecosystem degradation; protected area; SSP; ERA5

1. Introduction

Climate change is already promoting important changes in the spatial extent and
distribution of vegetation types worldwide [1,2]. Africa is one of the most vulnerable
continents to climate change. According to various climate models, it is predicted that the
temperature in Africa will increase within a range of 3 ◦C to 4 ◦C by the end of the 21st
Century, which is approximately 1.5 times greater than the global mean response [3–5].
The Intergovernmental Panel on Climate Change (IPCC) has reported that the continent is
already experiencing more frequent and intense heat waves, droughts, and floods, with
substantial impacts on natural ecosystems, including vegetation [5–7].

These large changes in climate may result in vegetation shifts across Africa [4,8].
Indeed, climate is a main driving force that shapes the distribution of biomes across the
globe, with temperature and precipitation patterns playing a crucial role in determining
their distribution [9]. However, vegetation shifts in Africa do not show a consistent pattern.
For instance, tree density declines and species composition changes have led to a southward
shift of the savanna vegetation zone in the African Sahel and West Africa into previously
more humid areas [10]. At the same time, increased woody cover in savannas has been
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reported in many sites across Africa [11,12], including West Africa [13], East Africa [14],
and southern Africa [15]. Savannas are characterized by a continuous grassy cover and
varying degrees of woody plant cover. However, savannas may often climatically support
forests or dense woodlands without a grassy understory [16]. Fire regimes and megafauna
browsing and grazing naturally generate and maintain an open or semi-open savanna state,
which additionally may be promoted by human activities such as livestock grazing and
tree cutting [17–21]. However, many savanna systems across Africa experience woody
encroachment [12], suggesting that vegetation shifts from an open savanna state toward
a tree-dominated woodland are ongoing due climatic and atmospheric changes, mainly
the increase in atmospheric CO2 concentrations [15,18,22,23], and the reduction in fires in
human-used landscapes [24]. Climate-driven vegetation changes in Africa have already
been observed also within protected areas [25]. In addition, increasing human population,
urbanization, socio-economic development, deforestation, and agricultural expansion near
protected area boundaries often cause changes within reserves [26,27]. Anthropogenic
pressures are expected to increase and exacerbate these dynamics for most protected areas
and regions in Africa in the future [25].

In East Africa, where the expansion of croplands and the rising demand for wood fuel
are placing greater strain on woody vegetation in the lowlands, it is suggested that climate
change is implicated in the expansion of woody cover in the highlands [28]. Yet, it remains
uncertain whether these contrasting patterns have resulted in a net loss or gain in fractional
woody cover [29]. In this context, nationally focused studies may not only provide a more
detailed understanding of vegetation trends, but are also key to gaining deeper insights
into greenhouse gas emissions and carbon stock [30]. Investigating vegetation state and
biome dynamics is instrumental in understanding both carbon and biodiversity dynamics.
The predominant features of East Africa encompass arid and semi-arid lands, yet the region
also embraces the presence of Afromontane forests. One of the main economic activity is
subsistence rain-fed agriculture and pastoralism [31]. Consequently, climate change is likely
to have profound impacts on both wildlife and people that depend on these ecosystems
for their livelihoods [31,32]. As highlighted by the IPCC [4], vegetation shift emerge from
complex processes and are likely to have major ecological and socio-economic impacts.
Therefore, it is essential for scientists and policymakers to monitor this phenomenon and
develop strategies to mitigate its negative effects, such as the loss of biodiversity and the
displacement of human communities. To ensure the sustainable livelihoods of those whose
primary source of income relies on land, it is crucial to address the interconnected challenges
posed by climate change and environmental degradation [33]. In Kenya specifically, it is
estimated that by 2100 the impact of climate change will result in a rise of 3–4 ◦C in mean
annual temperature, accompanied by an increase in rainfall variability [3,4,34,35]. Sizeable
alterations in the timing and length of rainfall in Kenya are already evident, particularly in
the form of more frequent and severe droughts [7]. This can drastically impact vegetation
cover and distribution considering its sensitivity to precipitation, especially for the 83%
of the country which comprises arid and semi-arid lands [32]. Notably, a recent and
comprehensive analysis of a 34-year time series has revealed a robust correlation between
interannual rainfall patterns and African vegetation dynamics [36]. Remarkably, this
study reveals that this positive correlation persists in about 80% of the entire study area,
which includes diverse semi-arid regions, such as East Africa [36]. The research highlights
that in semi-arid regions across Africa, characterized by limited annual precipitation, the
primary limiting factor for plant growth and development is water availability [36]. This
observation emphasizes the critical role of precipitation in shaping vegetation productivity
within these areas, aligning with prior research [37]. Sensitivity to precipitation pertains to
both crop-based agriculture, natural vegetation, and livestock production, itself dependent
on vegetation productivity [38]. Climatic variability are of great concern, particularly
for inland vegetation [39]. The impact of these oscillations was already evident in 2011
when a severe drought caused unpredictable and insufficient rainfall for two consecutive
growing seasons, resulting in adverse effects on natural vegetation as well as agricultural
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production [39]. The severe consequences included poor pastoral performance, resulting
in a major loss of livestock and widespread food shortages, leading to a critical state of
food insecurity [39]. Kenya stands out as a prominent economy in East Africa, where
agriculture remains a cornerstone of the country’s economic foundation, contributing 26%
to the GDP (Gross Domestic Product) and serving as a source of livelihood for nearly 80%
of the population [40]. Concurrently, pastoralism also plays a major role, contributing
13% to the GDP, with a valuation of approximately US $1.13 billion [41]. In this context,
the profound impact of climate change on these socio-economic aspects, in addition to
its known effects on biodiversity and habitat conservation [25], provides a compelling
foundation for an in-depth case study.

Within this framework, the use of remote sensing is important for both local and global
vegetation monitoring [29,42]. Satellites offer numerous advantages over traditional survey
approaches, including high spatial resolution, frequent temporal coverage, and the ability
to capture multiple spectral information [29,43,44]. Although it is acknowledged that satel-
lite remote sensing has limitations compared to on-field surveys, it is essential to highlight
its strengths. Satellite remote sensing offers an efficient, cost-effective, and timely approach
for conducting accurate vegetation analysis [28,29]. These capabilities make it a valuable
tool for gaining insights into changing landscapes, especially when large-scale, repetitive,
or remote monitoring is required [28,29]. Vegetation indices derived from specific spectral
reflectance bands constitute a powerful tool for vegetation monitoring [45]. In this context,
the primary purpose of the Moderate Resolution Imaging Spectroradiometer (MODIS) is
to offer uniform, spatiotemporal evaluations of worldwide vegetation conditions, and it
provides the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation
Index (EVI) at global scale (250-m, 500-m, and 1-km resolutions) with 16-day composit-
ing periods [46]. Moreover, EVI demonstrated a robust and consistent correlation with
vegetation productivity across a diverse array of vegetation types [47,48].

In this context, in this study we aimed to provide an overview of the potential effects
of climate change on vegetation in Kenya in the near (2050) and far future (2100) under
two Shared Socioeconomic Pathway (SSP) and Representative Concentration Pathway
(RCP) scenarios (SSP2-RCP4.5 and SSP5-RCP8.5). Our study was based on the analysis and
projection of a standard remote sensing vegetation index at the national scale to assess the
impact of climate change on an environment already under strong anthropogenic pressure,
with widespread land degradation [49]. The main goals were (a) to project future vegetation
states and vegetation shifts under different climate-change scenarios (SSP2-RCP4.5 and
SSP5-RCP8.5), and (b) to quantify the magnitude of projected vegetation shifts in protected
and semi-protected areas to evaluate potential impacts on biodiversity conservation.

2. Materials and Methods
2.1. Study Area

The study region is Kenya, East Africa (Figure 1). Kenya covers approximately
582,650 km2. The geography of Kenya is highly diverse, and the complex geomorphological
features shaping the local climate dominate different parts of the country [7,50]. Rainfall
occurs in two seasons: ‘long rains’ from March to May, and ‘short rains’ from October to
December [7,29,50]. Climate ranges from arid and semi-arid in the lowlands to humid in the
highlands [29,50]. Therefore, in Kenya, the landscapes vary greatly, encompassing a diverse
range of ecosystems. These include the dry and sparsely vegetated regions in the north,
the lowlands and humid rainforests along the eastern coast, the fertile lands in the central
part and around Lake Victoria [39]. Inlands are broad plains and numerous hills, and in
the central is home of the biodiverse mountain forests of Mount Kenya (5199 m above sea
level) [39,50]. Shrublands are located in the arid and semi-arid region in the northern and
eastern part of Kenya [50]. Specifically, this region is dominated by the Acacia-Commiphora
bushlands and thickets ecosystem (ACBT) and is characterized by 3–5 m tall deciduous and
drought-resistant bushlands and thickets [29,51–53]. Only the coastal lowlands experience
the constant high temperatures and humidity associated with equatorial latitudes [50]. The
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moist coastal forest ecosystem occurs in this region and is dominated by semi-deciduous,
broad-leaved trees [53]. The western and south-central region is characterized by highlands
and woody vegetation, woody savanna ecosystem in the Victoria Basin forest–savanna
ecoregions [29], and moist montane forest characterized by evergreen broad-leaved trees
and multi-layered canopies [29,50].
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2.2. Data Sets and Pre-Processing

We used the Enhanced Vegetation Index (EVI) [54] to analyze the vegetation response
to climate change in Kenya in 2050 and 2100. We used EVI, instead of other vegetation
indices, because of the dryness of our study region. EVI has been proposed as a more
robust proxy for biomass than the NDVI in areas with high soil exposure and in dense
vegetation, because of its improved resilience to saturation and resistance to soil and
atmospheric contamination [46,55]. EVI was obtained from MODIS Vegetation Indices
products (MOD13A2v061, 1 × 1 km resolution [56]) by NASA’s Land Processes Distributed
Active Archive Center (LP DAAC). We decided to use MODIS data since it offers a 1-km
resolution, which is more manageable compared to higher-resolution products for many
purposes. Working with Landsat or Sentinel data, with spatial resolutions of 30 and 10 m,
respectively, comes with greater computational challenges. Furthermore, historical and
future climate data are not usually accessible at such a finely detailed spatial resolution.
Reflecting such considerations, MODIS data are extensively used in vegetation studies
across Africa and other regions [57,58]. The MODIS EVI has a temporal resolution of
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16 days, so we first calculated the yearly mean and then the multi-year mean of the
reference period (2000–2005 and 2015–2020). There is a slight difference between the two
datasets because the first available data for 2000 is from February 18th. Nevertheless, the
collection of 5 years’ worth of data for each timeframe minimizes the significance of this
disparity. Using GEE, EVI data were pre-processed and downloaded for further analysis
in R.

We selected four primary drivers (Table 1), which are known to have impacts on
vegetation condition and distribution as predictor variables. They are listed as follows:
topographic variation [59], livestock distribution [60], air temperature [61–64], and soil
moisture [65,66].

Table 1. Variables used in the multiple linear regression of the mean EVI with their data source,
original spatial resolution, and reference period. The Livestock Density and TRI variables were
derived through processing of the original variables.

Variable Type Code Dataset/Source Original
Resolution Time

Enhanced
Vegetation Index Historical EVI MOD13A2v061 1 × 1 km 2000–2005 and

2015–2020
Terrain

Ruggedness Index Historical TRI DEM - GMTED10 1 × 1 km 2010

2 m air
temperature Historical T ERA5-Land dataset from Copernicus

Climate Data Store (CDS -ECMWF) 9 × 9 km 2000–2005 and
2015–2020

Volumetric soil
water layer 1 Historical SM ERA5-Land dataset from Copernicus

Climate Data Store (CDS -ECMWF) 9 × 9 km 2000–2005 and
2015–2020

Livestock Density Historical Livestock
Density

Gridded Livestock of the World
(GLW)–FAO 10 × 10 km 2010

2 m air
temperature Projection T

CMIP6 dataset from
Copernicus

Climate Data Store (CDS -ECMWF)
9 × 9 km 2045–2050 and

2095–2100

Volumetric soil
water layer 1 Projection SM

CMIP6 dataset from
Copernicus

Climate Data Store (CDS -ECMWF)
9 × 9 km 2045–2050 and

2095–2100

Terrain Ruggedness Index (TRI) was used as a morphometric index. It gives a measure
of topographic heterogeneity and variation [67], and was calculated with QGIS function
by using the 1 × 1 km Digital Elevation Model from GMTED10 [68]. TRI is the mean of
the absolute differences in elevation between a focal cell and its 8 surrounding cells and
quantifies the total elevation change across the 3 × 3 cells [69].

The livestock density across Kenya was obtained from the Gridded Livestock of the
World (GLW) of the Food and Agriculture Organization of the United Nations [70]. We
used the third version of the 2010 GLW, and it includes global density distributions of cattle,
buffaloes, sheep, goats, horses, pigs, chickens and ducks at a spatial resolution of 5 min
of arc, approximately 10 km at the equator [70]. We used the spatial distribution of the
major grazing and browsing livestock species in the region, such as cattle (Bos indicus and
B. taurus), horse (Equus ferus caballus), domestic goat (Capra aegagrus hircus), and domestic
sheep (Ovis aries). Other species were excluded because they either are not primarily
grazers and browsers (e.g., chicken (Gallus gallus domesticus)) or are not present in the study
area (e.g., water buffalo (Bubalus bubalis)). The layer for the density per pixel of each of the
included species were summed to obtain a single ‘livestock’ variable, and then resampled
to a 1 × 1 km cell size using the nearest neighbors resampling function.

We then used historic climate variables provided by ERA5-Land. The ERA5 product
family (ERA5 and ERA5-Land) are the latest and most advanced global reanalysis products
created by the European Center for Medium-range Weather Forecasting (ECMWF) [71–73].
ERA5 has been demonstrated to improve data accuracy compared to previously published
climate data products [74]. In this study, we used air Temperature (‘2 m air temperature’,
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henceforth called “T”) because of its well-known effect on vegetation [61–65], and mois-
ture in upper portion of soil column (‘Volumetric soil water layer 1’, henceforth called
“SM”) representing water availability for vegetation, as a more direct proxy of local water
regimes compared to other drought indices especially in drylands [65,66]. The T and
SM yearly mean and then the multi-year mean over the two reference period (2000–2005
and 2015–2020) were obtained and preprocessed using the KrigR R-package [71]. The
ERA5-Land climate reanalysis data are available at a 9 × 9 km spatial resolution of global
coverage and was statistically downscaled to 1 × 1 km cell size using the kriging functions
available in KrigR package [71]. Kriging is a statistical downscaling process that requires
covariates both at the resolution of training data and at the spatial resolution of target [71].
We used elevation as a covariate for temperature, and saturated water content, saturated
capillary potential, pore size distribution, saturated hydraulic conductivity, heat capacity of
solid soils, thermal conductivity of saturated soil, and thermal conductivity for dry soil for
SM [75]. All covariates used in the statistical downscaling process were obtained through
the specific function of the KrigR package. The KrigR package acquires the elevation data
from the USGS GMTED 2010 open-access database [68], and all the soil property data from
the Land-Atmosphere Interaction Research Group [76].

We used temperature and soil moisture future projections from CMIP6 models to
analyze the vegetation changes and their possible relations with meteorological variables
under multiple climate change scenarios. Projections from two SSP-based climate change
scenarios of CMIP6 were used, SSP 2–4.5, and SSP 5–8.5, as these represent the medium
part and the high end of the range of future forcing pathways, respectively [77]. The SSP
2–4.5 and 5–8.5 scenarios represent the intermediate and high level of greenhouse gas
(GHG) emissions, respectively. Future monthly projections of T and SM for 2045–2050 and
2095–2100 were obtained from Copernicus Climate Data Store, and the yearly mean and
then the multi-year (6-year) mean were calculated (henceforth referred to as ‘2050’ and
‘2100’ respectively). Moreover, using KrigR it is possible to create high-resolution climate
projection products [71]. So, as with historical climate variables, the future projections of T
and SM were statistically downscaled to 1 × 1 km cell size using KrigR package [71]. The
same covariates that were used in the statistical downscaling of historical climate variables
were utilized for the statistical downscaling of future climate variables. Finally, to remove
model biases in regional T and SM and to retain the realistic spatial variability obtained
from the ERA5-Land reanalysis, we subtracted the future projections from the historical
products to obtain T and SM anomalies, and then added these to the downscaled ERA5-
Land historical layers [71]. This approach enabled us to make use of CMIP6 projections
for temperature and soil moisture changes across various scenarios, all while preserving
the realistic spatial and seasonal fluctuations in temperature and soil moisture as obtained
from the ERA5-Land historical reanalysis [71].

Moreover, the study was conducted on a national scale, but results were also derived
specifically for protected and semi-protected areas. The boundaries of all protected areas
were obtained through the World Database on Protected Areas [78]. Out of the 269 polygons
provided by the database, 19 were excluded as marine/freshwater protected areas. The
remaining 250 polygons were divided into protected and semi-protected areas, with a
distinction based on the type of management (‘GOV_TYPE’) assigned to each area. All
areas with ‘federal or national ministry or agency’ government, as well as 2 Ramsar sites
and 1 world heritage site, were considered protected areas (186 in total). Of these 186 pro-
tected areas, 129 are ‘Forest Reserves’, 22 are ‘National Parks’, 28 are ‘National Reserves’,
4 are ‘National Sanctuaries’, and finally, 2 are ‘Ramsar Sites, Wetlands of International
Importance’, and 2 is a ‘World Heritage Site’. Furthermore, of these protected areas, 27 are
in the IUCN Protected Area Management Category II, and 12 are in Category IV; the IUCN
management category was not reported for all the other areas. The remaining areas were
considered semi-protected areas (59 in total).

All data preparation was conducted using Google Earth Engine (GEE) and QGIS (3.22.11).



Land 2023, 12, 2052 7 of 20

2.3. Statistical Analysis

To predict vegetation response to climate change, the average EVI of 2015–2020 was
set as the baseline to build a model with climatic and morphometric predictors. Before
generating future predictions, we assessed the predictive capabilities of our model by
testing it with historical EVI values (2000–2005). Finally, we used the model to predict
future EVI in 2050 and 2100 under SSP 2–4.5 and SSP 5–8.5 climate change scenarios.

To assess the relative importance of the selected drivers, we used a linear modelling
approach [65,66]. First, the correlation between the variables was assessed using Pearson
correlation coefficient and Variance Inflation Factor (VIF). Correlation analysis between the
variables reported acceptable Pearson’s coefficient values (r <= 0.5) for all except for T and
SM (r = −0.78). However, VIF reported acceptable values for all variables (VIF < 4). Since
excluding T or SM led to the loss of explanatory power of the model and considering the
low VIF, we decided to keep all variables in our model after checking that the inclusion of
both variables did not alter their estimated effects in the model.

We developed a multiple linear regression of the mean EVI over the period 2015–2020
with TRI, livestock density, T and SM as predictor variables, with the following equation:

EVIi = β0 + βi,T × Tm + βi,SMm1 × SMm1 + βi,TRI × TRI + βi,Ld × Ld + εi

where β0 serves as the intercept, Tm represents the average air temperature, SMm1 denotes
the average soil moisture data at depth level 1, TRI stands for the values of the Terrain
Ruggedness Index, and Ld represents the livestock density data. All the final coefficients
are listed in Table 2.

Table 2. Coefficients (β) of the multiple linear regression of the mean EVI in Kenya over 2015–2020
with mean temperature (T), soil moisture (SM), Terrain Ruggedness Index (TRI), and livestock density.
The Standard Error (SE), 95% confidence intervals (95% CI), and p value (p) are also shown.

Variable β SE
95% CI

p
Lower Upper

(Intercept) 1.64401 0.0105804 1.62328 1.664751 <0.001
T −0.0052 3.468 × 10−5 −0.0052 −0.005093 <0.001

SM 0.59195 0.0013796 0.58924 0.594652 <0.001
TRI 0.00016 9.176 × 10−7 0.00016 0.00016 <0.001

Livestock 3.2 × 10−8 9.058 × 10−9 1.4 × 10−8 4.93 × 10−8 <0.001

To validate this model, the same model was used to predict historical average EVI
values (2000–2005). We checked the correlation between the historical EVI values predicted
by the model and the observed values in the same time frame by means of Pearson
correlation coefficient to assess the predictive power of the model. In addition, we calculated
the Root Mean Squared Error (RMSE) of the model residuals. Furthermore, we mapped the
RMSE to identify potential areas with low prediction accuracy [66].

Subsequently, the model was used to predict average EVI values with future projec-
tions of T and SM, in the two different scenarios for 2050 and 2100. To comprehensively
analyze the historical, present, and future distribution of Kenya’s key ecosystem types, we
related the average EVI and the current land cover. Using the ESA World Cover 2020 [79],
we extrapolated the nationwide distribution of predominant vegetation types in Kenya
for 2020. We then overlaid the distribution of vegetation types and the vegetation index,
aiming to identify specific EVI ranges that effectively differentiate between these vegetation
types. This was achieved despite the inherent spatial resolution differences between the
EVI layer and ESA World Cover. Our underlying assumption was that the EVI ranges cur-
rently associated with Kenya’s primary vegetation types would remain valid for accurately
representing these types in future projections.

All analyses were conducted using R (4.2.1).
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3. Results

Based on the ERA5-Land reanalysis data, it is evident that the future holds substantial
changes in store for Kenya’s climate. Specifically, when comparing the current situation
(2015–2020) to future scenarios (SSP 2–4.5 and SSP 5–8.5), it is evident that temperatures in
Kenya are projected to rise in both the near (2045–2050) and far future (2095–2100). The
impact of this temperature rise will be less pronounced in central Kenya and smaller regions
in the northwest. In terms of soil moisture, the data suggests that under the moderate SSP
2–4.5 scenario, there will be a slight decrease in soil moisture across the country in the near
future. However, specific small areas within central Kenya and the northeast region will
experience an increase. Looking further ahead, in the SSP 2–4.5 far future, an increase in
soil moisture is projected for most regions of the country due to increased rainfall, except
for larger areas in the southern part of Kenya. In contrast, under the SSP 5–8.5 scenario, in
the near future, we can expect to see a rise in soil moisture levels across the eastern region
of Kenya, while the western part, including a section of the coastal zone, will experience a
decrease. In the SSP 5–8.5 far future, an overall rise in soil moisture is predicted for nearly
the entire country due to increased precipitation, with the exception of minor coastal areas
and small portions in the southwest.

Our EVI model had a moderately high explanatory power (adjusted-R2 = 0.63) and
showed a significant negative effect of the temperature (T) on the average EVI and, in
contrast, significant positive effects of soil moisture (SM), TRI, and livestock (Table 2).

Importantly, the model’s ability to predict historical EVI values in 2000–2005 was
similarly strong, as shown by the relationship between predicted and observed mean EVI
in 2000–2005 (r = 0.78, R2 = 0.61, Figure 2) and the overall RMSE is 0.06. In addition, only
0.1% of pixels showed RMSE values between 0.3 and 0.5.
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Figure 2. Relationship between mean EVI values observed and predicted for 2000–2005 by lin-
ear regression using TRI, livestock density, temperature (T), and soil moisture (SM) as predictor
(R2 = 0.61; r = 0.78; p < 0.0001).

We identified three categories of EVI that accurately depict the distribution of vege-
tation types in 2020. These were low EVI, ranging from 0.0 to 0.20; medium EVI, ranging
from 0.20 to 0.40; and high EVI, greater than 0.40. Specifically, within the low EVI category,
shrubland encompasses 51% of the landscape, followed by grassland at 40%, and bare
soil at 8% (Figure 3). The medium EVI category exhibits 65% shrubland, 20% grassland,
and forest at 9% (Figure 3). In contrast, the high EVI category showcases a dominance of
61% forest, 28% shrubland, and a mere 9% grassland (Figure 3). Consequently, low EVI
values (0.0–0.20) primarily correspond to regions characterized by sparse bushland, often
accompanied by grassland and shrubland displaying mixed arid-tolerant vegetation, as



Land 2023, 12, 2052 9 of 20

well as areas of bare soil. Moving into the medium EVI range (0.20–0.40), the landscape is
largely indicative of savannah and grassland areas, where dense shrublands become more
prevalent and woody plants start to emerge. On the other hand, high EVI values (>0.40)
are primarily associated with forested areas, where the dominant land cover is trees and
other dense vegetation.
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When we used the model to generate future EVI projections, it showed that with
intermediate levels of GHG emissions (SSP 2–4.5, in 2050) a major proportion of Kenya
(58%) will experience a decrease in average EVI. For the same scenario, a balance between
an increase and decrease in EVI was detected in 2100. However, when only considering
areas with strong EVI changes (>0.1), decreases were more than 4 times as common as
increases (Table 3). Under the high-emission SSP 5–8.5 scenario, we again found a relative
balance between EVI increases and decrease by 2050, similar to SSP 2–4.5. However, by
2100 more than two-thirds (67%) of Kenya will be subject to EVI increase (Table 3).

Table 3. Percentages of Kenya’s land area that will experience increase (‘Inc’) and decrease (‘Dec’) in
mean EVI in the future. Results are shown for the near future (2050) and far future (2100) for both
scenarios. Percentages are expressed in relation to the whole territory.

SSP Year
% EVI Increases % EVI Decreases

Inc Inc > 0.1 Dec Dec > 0.1

SSP 2–4.5
2050 42% 1.2% 58% 10.2%
2100 50% 2.0% 50% 8.8%

SSP 5–8.5
2050 53% 1.4% 47% 8.7%
2100 67% 5.5% 33% 6.6%

Under both scenarios and time frames greening and browning is unequally distributed
across the country. Southeast and southwest Kenya, especially the coastal region, will be
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subject to the strongest browning regardless of the scenario used for prediction (Figure 4). In
contrast, most of the northern and central parts of the country are forecasted to experience
future greening.

In the moderate emissions SSP 2–4.5, more than half of Kenya’s surface area will
be characterized by low EVI values characteristic of the driest areas (Table 4). Therefore,
compared to 2020, sparse bushland will expand in this scenario, with varying strength
depending on the future time (Table 4).

In the high-emission SSP 5–8.5 scenario, more than half of Kenya’s territory will be
characterized by medium EVI values, reaching 65% by 2100 (Table 4). Therefore, compared
to 2020, with the SSP 5–8.5 there will be a reduction in areas with sparse bushlands, and an
expansion of savanna areas with woody plants and dense shrubland.
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Figure 4. Maps of past (2000), current (2020) and future (2050–2100) EVI levels divided into three
categories: ‘low’ (0.0–0.20, orange), ‘medium’ (0.20–0.40, light green), ‘high’ (>0.40, dark green). The
legend for the EVI categories is provided, along with a north indicator and spatial scale, consistent
across all images.

Our modelling forecasted substantial decreases in the proportion of dense forest areas
under all future scenarios, with reductions to 16–50% of current values (Table 4). While
a noticeable decline in forested regions is projected by 2050, our results suggest a greater
potential for forest by 2100, especially in the western half of Kenya.

Table 4. The proportion of Kenya’s territory characterized by ‘low’ (0.0–0.20), ‘medium’ (0.20–0.40),
and ‘high’ (>0.40) average EVI values in the past and future.

SSP Year %
Low EVI

%
Medium EVI

%
High EVI

Past 2000 56% 39% 5%
Current 2020 49% 45% 6%

SSP 2–4.5
2050 58% 41% 1%
2100 53% 44% 3%

SSP 5–8.5
2050 47% 52% 1%
2100 32% 65% 3%

Over the past 20 years, Kenya has experienced an increase in the percentage of areas
characterized by high and medium EVI values (Table 4). This trend would be reversed
in the moderate-emission SSP 2–4.5, with a sharp increase in low-EVI areas. In the high-
emission SSP 5–8.5 scenario, a loss of extreme values, both high and low EVIs, would
increase areas with medium EVIs. Specifically, under the SSP 2–4.5 scenario, over 53% of
the country’s landscape is projected to exhibit sparse vegetation and bushland. However,
under the SSP 5–8.5, the regions classified as having low vegetation cover will be limited to
a range of 32% to 47%. Instead, savannah and grassland with presence of woody plants
and dense shrublands is expected to encompass approximately 52% to 65% of the country.

In the SSP 2–4.5 scenario, the expansion of areas with low EVI will be uniform in its
spatial distribution, although less pronounced in the far future, especially in the north-
eastern parts of the country (Figure 4). Compared to 2020, areas with low EVI values will
expand southward and westward in this scenario. Under the SSP 5–8.5 scenario, areas with
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medium EVIs will expand uniformly but to a greater extent in the far future (Figure 4). In
particular, under SSP 5–8.5, in both the near and far future, the areas in the northeast and
northwest will be most prone to this phenomenon. These areas will show higher EVI values
than in 2020. The loss of high-EVI forest was detected in both the coastal and southwestern
areas under all scenarios (Figure 4).

With respect to protected areas, our modelling forecasts that most of the protected
areas will experience browning in the future (Table 5). Indeed, in all scenarios, more than
half of the land within protected areas (42–69%) will suffer a decrease in EVI. On the other
hand, semi-protected areas are located mainly in the central region, which will mainly be
subjected to greening in all scenarios (Table 5). In particular, semi-protected areas will
experience an increase in EVI in 73–82% of their area. These dynamics contrast with the
dynamics in the past 20 years, where protected areas have experienced an increase in
average EVI, and semi-protected areas have remained fairly stable and characterized by
low average EVIs.

Table 5. Proportion of Kenya’s Protected (PA) and semi-protected areas (SEMI) characterized by
observed (past and current) and predicted (future) ‘low’ (0.0–0.20), ‘medium’ (0.20–0.40), and ‘high’
(>0.40) EVI values.

SSP Year
PA SEMI

%
Low

%
Medium

%
High

%
Low

%
Medium

%
High

Past 2000 37.66 46.72 15.62 70.86 28.17 0.97
Current 2020 29.28 53.13 17.59 67.94 31.14 0.92

SSP
2–4.5

2050 39.89 54.71 5.40 60.48 39.52 0.00
2100 32.96 56.06 10.98 49.30 50.62 0.08

SSP
5–8.5

2050 24.13 70.90 4.97 38.32 61.68 0.01
2100 12.10 78.51 9.38 24.95 75.00 0.06

4. Discussion

Our results provide an overview of potential landscape transformations in Kenya
due to vegetation shifts under future climate change in the near and far future. In the
face of ongoing global climate changes, Africa is poised to undergo profound climatic
transformations [4], with Kenya serving as a noteworthy example [3,7,34]. In particular,
our findings highlight the substantial and positive influence of soil moisture on vegetation
biomass with soil moisture encompassing not only the effects of precipitation but also
various soil-related factors, making it a more accurate indicator of plant water availabil-
ity [65] and, subsequently, vegetation activity (EVI). Furthermore, despite the complex
bimodal rainfall pattern prevalent in East Africa, which could suggest the importance of
further teasing apart impacts of seasonal rather than annual rainfall [80], the relationship
between annual rainfall and vegetation in East Africa remains consistently positive [36].
Furthermore, a focus on seasonal rainfall complicates large-scale studies since seasonal
patterns will vary across the study area and are likely not captured adequately by standard
bioclimatic variables on rainfall and temperature seasonality. These considerations support
that our model possesses the necessary sensitivity to forecast large-scale vegetation dynam-
ics. From a methodological perspective, our study introduces some advances, including
(a) the integration of Sentinel 2-derived land cover maps (ESA Worldcover) to enhance
our interpretation of MODIS EVI data; (b) the adoption of ERA5 soil moisture data (also
statistically downscaled), a superior alternative to the commonly employed rainfall data
in terms of precision and ecological effect [65]; (c) the incorporation of livestock density, a
variable frequently overlooked in vegetation modeling studies despite being consistently
acknowledged as a potentially relevant factor, e.g., [13,29]; and (d) a comprehensive eval-
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uation of our model using historical data before making future projections, a step often
omitted in conventional forecasting approaches, e.g., [13,25].

Our predictions indicate a potential expansion of low EVI ecosystems under the
moderate SSP 2–4.5 scenario, characterized by sparse bushland, grasslands, and exposed
soil. This expansion will come at the cost of savanna and grassland areas, as well as
forests. This outcome is likely due to the competitive advantage exhibited by C4- over
C3-plants in drier conditions, a factor also underscored by Martens et al. (2021) [13]. On
the other hand, in the most extreme scenario (SSP 5–8.5), climate change will result in a
major shift toward widespread savannization, with an increase in savannas at the expense
of currently arid zones and forested areas. The phenomenon of habitat conversion to
savanna, characterized by medium EVI values, has already been predicted under the
most extreme scenarios in other regions around the world [10,81]. Thus, our findings
align with some previous estimates for both Africa and other continents, albeit based on a
different methodology and offering a comprehensive national overview for Kenya. Overall,
a consistent pattern is observed in both scenarios: a reduction in areas characterized by
high EVI values, and consequently, a decrease in forested areas. This suggests a shift in
the landscape composition towards land cover types with lower EVI values. The slight
re-expansion of forests observed in the southwest between 2050 and 2100 could potentially
be attributed to the expected increase in soil moisture during that period, coupled with a
less pronounced temperature increase in the same region [23,38]. It is important to note
that our projections focus solely on potential vegetation changes driven by climate factors.
However, for a successful forest recovery, the presence of ecological factors such as viable
seed sources and dispersal corridors is crucial. In addition, based on our results, it is clear
that the expansion of arid zones will extend over a substantial portion of coastal regions
in all considered scenarios at the expenses of forested areas. The coastal areas of Kenya
will be highly prone to desertification, carrying profound implications for local ecosystems.
Notably, this region is forecasted to witness the substantial loss of extensive savanna and
grassland landscapes, as well as the near-complete loss of forests. The coasts, especially in
Kenya, have already been identified as highly susceptible regions, serving as prominent
hotspots for drought and desertification [82,83].

When considering the distant future under the SSP 5–8.5 scenario, we forecast an
overall increase in EVI rather than a decrease, aligning with the findings of Martens et al.
(2021) [13]. However, a disparity arises concerning the expansion of forested regions.
Although their projections suggest an increase in forested areas, our approach utilizes EVI
categories and foresees a rise in ecosystems classified as having a medium EVI, indicating
savanna landscapes inclusive of varying amounts of dense shrubland and other woody
vegetation rather than closed forest. In fact, our predictions indicate a reduction in areas
characterized by high EVI, suggesting a decrease in overall forested regions. Similar
trends are observed within protected areas. While their predictions pointed toward an
encroachment of woody plants by the end of the century [25], our projections under SSP
5–8.5 suggest a potential reduction in areas characterized by both low and high EVI values,
coupled with an expansion of regions exhibiting medium EVI values. Nevertheless, it is
important to note that a decline in tree cover has already manifested as a prominent trend in
Kenya since 2001 [29]. Analyzing data spanning from 2001 to 2019, Abera et al. (2022) [29]
reveal that the decrease in woody cover across both Ethiopia and Kenya was four times
more pronounced than the corresponding increase, resulting in a marked overall decline.
Furthermore, it is worth highlighting that savanna ecosystems exhibited a relatively higher
propensity for recovering woody cover compared to other types of ecosystems over the
same period [29]. Importantly, similar to the observations made by Martens et al. (2021) [13],
differences in projections regarding biome changes among various studies can be traced
back to differences in modeling methodologies and climate datasets. For instance, the study
by Martens et al. (2021) [13] focused on changes at a continental scale, primarily examining
the influence of CO2 level, and did not include projections for 2050.
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Moreover, climate change is set to trigger major transformations in ecosystem func-
tioning and the delivery of ecosystem services across Kenya. Key ecosystem services
encompassing food supply, timber resources, climate regulation, provision of clean water,
recreational opportunities, and conservation efforts will all face the impacts of shifting veg-
etation patterns [81]. These changes in the spectrum of ecosystem services, brought about
by alterations in vegetation patterns, will undoubtedly have varying effects on different
groups of stakeholders. For example, the projected expansion of arid landscapes primarily
marked by scattered shrub vegetation stands to substantially decrease the available grazing
capacity, likely imposing sizable impacts on both wildlife and pastoralists who depend
on grassland habitat [84]. Besides climate factors, the depletion of protective vegetation
cover through deforestation, along with intense livestock grazing, can exacerbate this
phenomenon, accelerating soil erosion and advancing desertification [85–87]. In addition,
numerous species exhibit a strong correlation with specific biome types [88]. An abrupt
alteration in vegetation is also undoubtedly poised to lead to substantial reductions in
biodiversity [9,89]. The depletion of forests in Kenya will have a large impact on the
biodiversity of these habitats. Particularly within Kenya’s protected areas, we forecast an
alarming forest loss exceeding 50%, intensifying the urgency of addressing these ecological
challenges. Taking into account the large scale and rapid pace of this transformation, a
central point of discussion emerges: the extent to which species can adapt to survive the
climatic changes [9,81]. Furthermore, based on our model, we forecast two widespread
types of vegetation shifts across Kenya: one suggests a transformation from savanna and
forest to scattered shrubland, while the other envisions a shift from forest to savanna.
Overall, these predictions imply a process of landscape simplification, which could lead to
an increased risk of species extinctions [90,91].

For a forward-looking perspective aimed at gaining deeper insights into the impacts
of climate change and vegetation shifts, there is potential to develop more sophisticated
models that consider alternative methodological approaches and other potential drivers of
vegetation changes. These may include factors such as changes in soil nutrients and CO2
levels, as well as projections related to population growth and increased livestock density.
In Kenya, soil fertility and crop production have steadily decreased due to continuous soil
plowing and insufficient soil nutrient levels, compounded by a growing population [92].
Consequently, prioritizing soil nutrient conservation and optimizing rainwater utilization
could prove to be significant [92], but are unlikely to be major drivers of future national-
scale dynamics. A more substantial limitation of our study is the absence of consideration
for the direct physiological impact of future CO2 increases on vegetation. This topic is
underscored by previous research [13,93]. For instance, it has been suggested that elevated
carbon dioxide (CO2) levels can influence the growth rate of juvenile plants, potentially
impacting tree recruitment and the transition from open savannahs to woodlands [93].
Furthermore, there is evidence from other studies that increased CO2 concentrations are
correlated with greater woody plant density when other global drivers like rainfall remain
consistent [15]. However, it is worth noting that attributing these changes to global drivers,
including CO2, has been a topic of debate, as other factors such as grazing and fire patterns
are likely also involved [93]. Changes in arid savannahs appear to have a less clear-cut
connection to the effects of CO2 and may be more strongly influenced by overgrazing [93].
In summary, these limitations highlight the need for developing a more comprehensive
understanding of the complex interplay of factors influencing vegetation changes in the
region. Regarding the projected population increase, from around 230 million in 1950,
Africa’s human population increased to over 1 billion in 2010, with projections foreseeing a
potential further rise to as much as 5.7 billion by the end of the twenty-first century [94].
This remarkable growth has triggered the expansion of agricultural areas and the decline of
native forests and other woody vegetation [95–97]. Indeed, the influence of population on
woody vegetation has been observed in Africa; regions with rapid population expansion
tend to exhibit a decline in woody vegetation on average [98]. The southwestern region of
Kenya, where our model predicts alarming forest loss in the future, is also the most densely



Land 2023, 12, 2052 15 of 20

populated region in the country [99]. As a result, the effects of population growth could
potentially amplify our projections. Moreover, the southwestern region of Kenya is also
currently the one with the highest density of livestock [70]. In our findings, we observed
a modest yet positive influence of livestock density on EVI. This positive relationship
between the EVI and livestock density can be explained by several relations. It may arise
from the presence of more livestock in regions with greater productivity, which does not
necessarily imply a direct impact of livestock on vegetation. Instead, it could also sug-
gest that livestock contributes to woody encroachment. As demonstrated for example by
Archer et al. (2017), the encroachment of woody plants coincided with the global intensifi-
cation of livestock grazing [100]. This intensification, through the reduction of fine fuels,
resulted in a decrease in both the frequency and intensity of fires, subsequently facilitating
woody plant encroachment. From a conservation perspective, woody plant encroachment
poses a threat to the preservation of grassland and savanna ecosystems, as well as their
unique biodiversity [100]. This is particularly relevant considering that over the next three
decades, the consumption of livestock products is projected to slow down in developing
countries, with the notable exception of Africa [101]. Significantly, this continent is ex-
pected to experience an increase in demand for animal products, which could result in
the relocation of livestock production closer to urban areas [101]. In Sub-Saharan Africa,
meat and milk consumption are projected to grow by 3.4% and 2.9% per year, respectively,
surpassing growth in other developing regions [101]. This phenomenon is likely to have
significant and unprecedented effects on the livestock sector, impacting the environment
and public health [101]. It has already been emphasized that socioeconomic pressure factors
will need to be carefully considered in the future, e.g., when devising management plans
for protected areas in the region [25].

5. Conclusions

Our research indicates potential future major landscape changes across Kenya due to
climate-driven vegetation shifts. In the moderate SSP 2–4.5 scenario, low EVI ecosystems
are forecasted to expand at the expense of savannas, grasslands, and forests. In the extreme
SSP 5–8.5 scenario, there could be widespread savannization, reducing both arid-zone
vegetation and forests. In both scenarios, high EVI areas decrease in area, likely leading to
reductions in forested lands. However, our findings were obtained through model projec-
tions, which inherently involve assumptions and uncertainties. One of these limitations
could be the simplicity of the model used; however, considering that the primary objective
of this study was to provide a national-scale overview, we chose not to employ overly
complex models, such as machine learning models like artificial neural networks or random
forests. While these models may have a better ability to capture non-linear and monotonic
relationships, they could potentially complicate the interpretation of the direction and
strength of the individual drivers’ effects on vegetation. In a region characterized by a
seasonally dry and hot climate, we could reasonably anticipate monotonic relationships
between EVI and each of the predictors. Therefore, our approach may represent the best
compromise for capturing such relationships while maintaining model simplicity. Another
factor to consider is the lack of accounting for certain other factors that might impact
vegetation, e.g., rising atmospheric CO2 levels. Despite these limitations, our study serves
as a starting point in advancing our understanding of the complex ongoing and potential
future dynamics in vegetation on the influence of anthropogenic global change. Hence, our
study can be regarded as an initial step in the more comprehensive analysis of potential
future vegetation changes in Kenya under anthropogenic climate change, with the primary
goal of offering a comprehensive national-scale perspective. In conclusion, the analysis of
ecosystem projections for the near- and longer-term future climate scenarios is of utmost
importance in shaping effective policymaking, guiding infrastructure decisions, and fa-
cilitating assessments of climate change’s repercussions on ecosystems [82]. Such climate
scenarios and associated forecasts of impacts on ecosystems and society play a pivotal role
in formulating robust strategies encompassing drought adaptation, resilient ecosystem
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conservation, as well as climate change mitigation actions. Through the findings of this
study, a quantitative, spatially explicit overview of potential future vegetation conditions
in Kenya is provided, providing an important part of the basis for informed and targeted
efforts in climate change adaptation and mitigation.
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