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Abstract: With the increase in energy demand, environmental issues such as carbon emissions are
becoming more and more prominent. China will scale its intended nationally determined contribu-
tions by adopting more vigorous policies and measures. China aims to have CO2 emissions peak
before 2030 and achieve carbon neutrality before 2060. The current challenge and priority of China’s
high-quality development is to ensure a harmonious balance between the ecological environment
and the economy. The South-to-North Water Diversion Project passes through Beijing, Tianjin, Henan,
and Hebei, which were chosen as the study sites. The carbon emission data was from the China
Carbon Emission Database 2000–2019. Decoupling modeling using statistical yearbook data from
four provinces and municipalities. KMO and Bartlett’s test used SPSS 27 software. The selection of
indicators was based on relevance. Analyses were performed using the extended STIRPAT model
and ridge regression. Moreover, projections of carbon peaks in the study area for 2020–2035 under
different rates of change were simulated by the scenario analysis method. The results show that:
(1) The decoupling analysis of the four provinces and cities from 2000-2019 gradually shifts to strong
decoupling; (2) Resident population, energy structure, and secondary industry as a proportion of
GDP significantly impact carbon emissions; (3) From 2000–2035, Beijing and Henan experienced
carbon peaks. The peak time in Beijing was 96.836 million tons in 2010. The peak time in Henan was
654.1004 million tons in 2011; (4) There was no peak in Hebei from 2000–2035.

Keywords: carbon peaking; decoupling; South-to-North Water Diversion Project; STIRPAT mode

1. Introduction

Against the backdrop of a slowdown in total world carbon emissions, there are signifi-
cant differences between the developed economy’s and the emerging economy’s current
carbon emissions status and the emissions outlook. Research on carbon emissions has
become the attention of scholars at home and abroad [1,2]. The successive establishment of
the United Nations Framework Convention on Climate Change, the Kyoto Agreement, and
the Paris Agreement demonstrate the international community’s collaborative endeavors
toward worldwide low-carbon progress. Their ultimate goal is to reduce emissions and
save energy, controlling the temperature’s rise. In order to achieve green development, it is
necessary to study issues such as carbon emissions and their influencing factors [3]. China
has made ecological progress an essential part of its 13th Five-Year Plan, implementing
the development concepts of innovation, coordination, greenness, openness, and sharing
through scientific, technological, and institutional innovation. This includes the imple-
mentation of an optimized industrial structure and the building of a low-carbon energy
system. Developing green buildings and low-carbon transport establishment of a national
carbon emissions trading market and a series of other policy measures will form a new
pattern of modernization and construction for the harmonious development of humanity
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and nature [4,5]. China is aiming to reach the highest point of its carbon dioxide emissions
by 2030 and to become carbon neutral by 2060.

Scholars worldwide have utilized the STIRPAT model to explore the trajectories and
peak periods of HCEs in 30 provinces in China until 2040 and have formulated three dis-
tinct scenarios (baseline, low, and high) to predict carbon peaks. The findings indicate
that in at least one of the scenarios, 25 provinces have the potential to achieve peak HCE
by 2030, whereas five provinces would fall short of meeting the 2030 emissions target [6].
Changes in carbon emissions also require more certainty due to uncertainty about future
development patterns, making meeting peak targets challenging. Taking Shandong, Henan,
and Guangdong as three of China’s most populous provinces as examples, the effects
of uncertainty in carbon accounting principles, drivers, and simulation mechanisms on
achieving peak targets were analyzed [7]. They used the LMDI method to decompose
and analyze the driving factors affecting China’s carbon dioxide emissions by studying
the detailed situation of 41 sub-industries from 2000 to 2016. Based on various official
policies and documents, the carbon intensity reduction potential for 2020 and 2030 was
predicted [8]. This paper investigates carbon emission peaks in China based on a compara-
tive analysis of energy transition in China and the United States [9]. A novel multifactor
decomposition method for carbon emissions is proposed [10]. Multifactor decomposition
models based on the Kaya Identity extension and the LMDI decomposition methodology
from energy, economic, and social perspectives provide quantitative results. On this basis,
an evaluation system was constructed by applying the entropy weight method, and the
carbon emission indices of six power generation modes in China were generated from
three dimensions: environment, energy, and economy. It also established a carbon emission
dynamic model based on the carbon emission data of the past 40 years and, combined with
Tapio’s decoupling theory, predicted China’s carbon emissions under multiple scenarios
for the next 40 years. Based on the carbon emission panel data of countries along the “Belt
and Road” from 1970 to 2018 and the environmental Kuznets curve (EKC) theory, a panel
model was established for each country group for research [11]. The study proposes that
carbon substitution, carbon emission reduction, carbon sequestration, and carbon recycling
are the four main ways to achieve carbon neutrality, of which carbon substitution will be
the backbone of carbon neutrality [12]. According to the high, medium, and low scenarios,
China’s carbon emissions are projected to fall to 22 × 108, 33 × 108 and 44 × 108 tons in
2060, respectively. Seven implementation recommendations are made for China to achieve
carbon neutrality. The results show that the earlier the time of peak carbon emissions,
the more significant the economic impact on China; under the three scenarios of peak
carbon emissions, government revenues and savings have a significant decline, and the
rest of the economic indicators do not cause too much impact; the impact of peak carbon
emissions on the output of the construction industry is small, and the output of the other
sectors has a slight increase [13]. Focusing on natural resource management under the
“dual-carbon” objective, nine experts proposed innovative natural resource management
strategies from different perspectives, providing reference and reference for the construc-
tion of a low-carbon oriented natural resource management system based on the multi-level
perspective of “resource elements-territorial space-ecosystem”. This provides a reference
for constructing a low-carbon-oriented natural resource management system based on the
multi-level perspective of “resource elements, land space, and ecosystem”. [14].

In summary, there is still some controversy among many scholars as to whether China
can achieve the goals of carbon peaking and carbon neutrality on time, and there are some
areas for improvement in the analysis of carbon peaking at the basin level [15]. This study
uses the provinces and cities through which the South-to-North Water Diversion Project
passes as the study area to analyze, build models, and carry out prediction analyses to
provide the government with corresponding carbon peak strategies.
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2. Research Area

The four provinces and cities of Beijing, Tianjin, Hebei, and Henan, through which the
central line of the South-to-North Water Diversion passes, were used for the study (Figure 1).
The provinces and cities through which the South-to-North Water Diversion passes have
a significant impact on China’s socio-economic development. In the meantime, “Beijing–
Tianjin–Hebei” has emerged as the third most significant economic district, following “The
Yangtze River Delta” and “Pearl River Delta”. The effectiveness of its carbon emission
reduction is directly related to the achievement of China’s carbon emission reduction
targets [16–19]. The South-to-North Water Diversion Mainline Project, an essential part of
the National South-to-North Water Diversion Project, is a major strategic infrastructure
built to alleviate the severe shortage of water resources in China’s Huanghua Hai Plain
and optimize the allocation of water resources and is a century-long project related to the
sustainable economic and social development of the receiving areas in the provinces and
cities of Henan, Hebei, Tianjin, and Beijing and the well-being of the future generations.
The regional scope of the South-to-North Water Diversion Project is geographically vast.
The spatial differences in each region’s resources, population, economy, and industrial
structure are apparent, and the specific measures for regional carbon emission reduction
are different. Research on land use carbon emissions and influencing factors in the region
provide a theoretical and practical basis for its emission reduction.
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3. Research Methods and Data
3.1. Analysis of Carbon Emissions

From 2000–2019, Beijing’s carbon dioxide emissions have been characterized by a “U”
shape, beginning with an increase and then a decrease. The amount increased from
63,471,900 tons in 2000 to its highest point of 96,836,000 tons in 2010 and has since de-
creased to 70,611,800 tons in 2019. From 2000–2019, Tianjin has seen a steady increase in
its CO2 emissions, with a slight peak from 2010 to 2013 and a total of 151,032,500 tons
in 2013. Hebei’s carbon dioxide emissions rose steadily from 2000–2019, with the most
significant surge occurring between 2000 and 2013. The total amount of CO2 released in
2013 amounted to 657.72 million tons. From 2014–2017, there was a slight decrease, which
kept rising. From 2000–2019, Henan experienced a fluctuating amount of CO2 emissions.
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There was an upward trend from 2000–2011 and a downward trend from 2012–2019. The
total amount of CO2 released in 2019 amounted to 463,998,300 tons (Figure 2).
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Among the four provinces and cities of Beijing, Tianjin, Hebei, and Henan in the
period of 2000–2019, Beijing and Tianjin’s annual carbon dioxide emissions were relatively
small. Hebei’s carbon dioxide emissions commonly remained high, and only in 2011, 2012,
and 2018 did Henan’s carbon dioxide emissions exceed those of Hebei, which shows that
Hebei is a large province in terms of carbon dioxide emissions.
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3.2. Research Methodology
3.2.1. Decoupling Model

The concept of decoupling was introduced by the Organization for Economic Co-
operation and Development in 2002. This concept describes models and demonstrates the
correlation between economic growth and environmental quality impairment [20]. Tapio
proposed an improved decoupling model in 2005. The decoupling analysis method has
been widely used in major industries, and this study uses decoupling analysis to study the
relationship between economic growth and carbon emissions, as shown in Equation (1).

MIt2−t1 =
%∆CE

%∆GDP
=

CEt2 − CEt1
CEt1

GDPt2 − GDPt1
GDPt1

(1)

In Equation (1), MIt2−t1 is the decoupling index from moment t1 to moment t2, CEt2
and CEt1 are the carbon emissions at t1 and t2. GDPt2 and GDPt1 are GDP at moments t1
and t2.

They use elasticity values of 0, 0.8, and 1.2 as thresholds to account for the decoupling
of CO2 from economic growth. For example, when the elasticity value is less than 0,
CO2 shows strong negative or strong decoupling. Therefore, the status and degree of
CO2 decoupling must be determined according to the situation. The specific indicator
system [21–23] is shown in Table 1.

Table 1. Tapio Decoupling Indicator System.

Status Decoupling State ∆CE ∆GDP MI

Decoupling Strong decoupling <0 >0 MI < 0
Weakly decoupling >0 >0 0 < MI ≤ 0.8

Negative decoupling

Recessive decoupling <0 <0 MI > 1.2
Strong negative decoupling >0 <0 MI < 0
Weak negative decoupling <0 <0 0 < MI ≤ 0.8

Expansion negative decoupling >0 >0 MI > 1.2

Connection
Expansion connection >0 >0 0.8 < MI ≤ 1.2
Recession connection <0 <0 0.8 < MI ≤ 1.2

3.2.2. STIRPAT Model

The IPAT equation proposed by Western scholars in the 1970s is a classic model for
exploring the relationship between economic growth and energy consumption [24,25]. Its
expression is shown in Equation (2).

I = P × A × T (2)

In Equation (2), I, P, A, and T represent environmental conditions, population, eco-
nomic affluence, and technology level, respectively. However, the IPAT equation only
considers the relationship between economic development and environmental pressure
on energy consumption and sets it as a simple linear relationship with certain limitations.
Therefore, in this paper, the STIRPAT model obtained by extending the IPAT model was
chosen, and the model’s expression is shown in Equation (3).

I = aPb AcTde (3)

In Equation (3): a is the model coefficient; b, c, d are prognostic factors; e is the
error factor.
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3.3. Data Sources

Carbon emissions from the four provinces and cities of Beijing, Tianjin, Hebei, and Henan
in 2000–2019 were sourced from the China Carbon Emissions Database (CEADs) [26–29].
Resident population, GDP per capita, energy consumption intensity (energy consump-
tion/GDP), energy structure (coal consumption/total energy consumption), and secondary
industry share of GDP are from the China Energy Statistical Yearbook and China Statistical
Yearbook (2000–2019).

4. Analysis of Results
4.1. Decoupling Model Analysis

Carbon decoupling refers to the issue of the relationship between changes in CO2
emissions and economic growth. When economic growth is achieved at the same time
that CO2 emissions grow at a negative rate or a rate less than the economic growth rate,
it can be regarded as decoupling, which is essentially a measure of whether economic
growth comes at the cost of resource consumption and environmental damage. Through
the four provinces and cities through which the South-to-North Water Diversion Project
passes, from 2000–2019, carbon emission and GDP data were calculated according to the
decoupling model, and the decoupling was calculated as shown in (Figure 3).

Land 2023, 12, x FOR PEER REVIEW 7 of 19 
 

3.3. Data Sources 
Carbon emissions from the four provinces and cities of Beijing, Tianjin, Hebei, and 

Henan in 2000–2019 were sourced from the China Carbon Emissions Database (CEADs) 
[Error! Reference source not found.–Error! Reference source not found.Error! Reference 
source not found.Error! Reference source not found.]. Resident population, GDP per cap-
ita, energy consumption intensity (energy consumption/GDP), energy structure (coal con-
sumption/total energy consumption), and secondary industry share of GDP are from the 
China Energy Statistical Yearbook and China Statistical Yearbook (2000–2019). 

4. Analysis of Results 
4.1. Decoupling Model Analysis 

Carbon decoupling refers to the issue of the relationship between changes in CO2 
emissions and economic growth. When economic growth is achieved at the same time that 
CO2 emissions grow at a negative rate or a rate less than the economic growth rate, it can 
be regarded as decoupling, which is essentially a measure of whether economic growth 
comes at the cost of resource consumption and environmental damage. Through the four 
provinces and cities through which the South-to-North Water Diversion Project passes, 
from 2000–2019, carbon emission and GDP data were calculated according to the decou-
pling model, and the decoupling was calculated as shown in (Figure 3).  

Beijing from 2000–2009 experienced a weak negative decoupling, weak decoupling, 
expansion negative decoupling, and a strong decoupling stage for a better trend, eco-
nomic growth, and carbon emissions among the more reasonable. Decoupling mainly al-
ternated between weak and strong decoupling from 2010–2019. Under continuous eco-
nomic acceleration, the economic growth rate was greater than the growth rate of carbon 
emissions, indicating that energy conservation and emission reduction efforts achieved 
the intended results. 

 
Figure 3. Dynamic relationship between carbon emissions and economic growth in four provinces 
and cities from 2000–2019. 

Tianjin’s carbon emissions and economic development in the 2000–2009 timeframe 
were mainly weakly decoupling, with a large amount of carbon emitted mainly from the 
secondary industry, and the growth rate of carbon emissions was greater than that of eco-
nomic growth, leading to excessive carbon emissions. Expansion of negative decoupling 
occurred from 2009–2010, and strong decoupling predominated from 2010–2019, indicat-
ing significant results in energy conservation, emission reduction, and industrial restruc-
turing. The relationship between carbon emissions and economic growth was within a 
more reasonable range.  

Hebei was mainly weakly decoupled from 2000–2009, closely related to Hebei’s en-
ergy emissions. Hebei is a traditional industrial province and China’s number one iron 
and steel province, resulting in a continuous increase in carbon emissions. Strong decou-
pling occurred twice from 2010–2019, in 2016 and 2017, respectively. This demonstrates 
that Hebei promotes the transformation of old and new kinetic energy, accelerates the 
pace of transformation and upgrading of traditional industries, and accelerates the 

2000-2001 2001-2002 2002-2003 2003-2004 2004-2005 2005-2006 2006-2007 2007-2008 2008-2009 2009-2010
Beijing Ⅴ Ⅱ Ⅱ Ⅱ Ⅵ Ⅰ Ⅰ Ⅶ Ⅱ Ⅱ
Tianjin Ⅰ Ⅱ Ⅱ Ⅱ Ⅱ Ⅱ Ⅰ Ⅱ Ⅱ Ⅱ
Hebei Ⅱ Ⅳ Ⅱ Ⅱ Ⅱ Ⅱ Ⅱ Ⅱ Ⅱ Ⅱ
Henan Ⅶ Ⅱ Ⅵ Ⅱ Ⅵ Ⅱ Ⅱ Ⅰ Ⅵ Ⅶ

2010-2011 2011-2012 2012-2013 2013-2014 2014-2015 2015-2016 2016-2017 2017-2018 2018-2019
Ⅰ Ⅱ Ⅰ Ⅵ Ⅰ Ⅰ Ⅰ Ⅱ Ⅱ
Ⅳ Ⅰ Ⅱ Ⅰ Ⅰ Ⅰ Ⅱ Ⅵ Ⅴ
Ⅵ Ⅱ Ⅱ Ⅰ Ⅵ Ⅰ Ⅰ Ⅵ Ⅴ
Ⅶ Ⅰ Ⅶ Ⅰ Ⅰ Ⅰ Ⅱ Ⅰ Ⅰ

Ⅰ Ⅴ
Ⅱ Ⅵ
Ⅳ Ⅶ
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Figure 3. Dynamic relationship between carbon emissions and economic growth in four provinces
and cities from 2000–2019.

Beijing from 2000–2009 experienced a weak negative decoupling, weak decoupling,
expansion negative decoupling, and a strong decoupling stage for a better trend, eco-
nomic growth, and carbon emissions among the more reasonable. Decoupling mainly
alternated between weak and strong decoupling from 2010–2019. Under continuous eco-
nomic acceleration, the economic growth rate was greater than the growth rate of carbon
emissions, indicating that energy conservation and emission reduction efforts achieved the
intended results.

Tianjin’s carbon emissions and economic development in the 2000–2009 timeframe
were mainly weakly decoupling, with a large amount of carbon emitted mainly from the
secondary industry, and the growth rate of carbon emissions was greater than that of
economic growth, leading to excessive carbon emissions. Expansion of negative decoupling
occurred from 2009–2010, and strong decoupling predominated from 2010–2019, indicating
significant results in energy conservation, emission reduction, and industrial restructuring.
The relationship between carbon emissions and economic growth was within a more
reasonable range.

Hebei was mainly weakly decoupled from 2000–2009, closely related to Hebei’s energy
emissions. Hebei is a traditional industrial province and China’s number one iron and
steel province, resulting in a continuous increase in carbon emissions. Strong decoupling
occurred twice from 2010–2019, in 2016 and 2017, respectively. This demonstrates that
Hebei promotes the transformation of old and new kinetic energy, accelerates the pace of
transformation and upgrading of traditional industries, and accelerates the development
of new industries. It also shows that the industry’s momentum toward the middle and
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high end is vital. It is necessary to deeply promote the manufacturing industry’s high-end,
intelligent, and green development.

Henan was mainly dominated by weak decoupling and expansion negative decou-
pling from 2000–2009, with weak decoupling occurring five times and expansion negative
decoupling occurring three times, indicating an irrational match between carbon emis-
sions and economic growth. Strong decoupling occurred six times from 2010–2019. Then,
there was a better match between economic growth and carbon emissions, with economic
growth being more significant than the rate of carbon emissions and a sustained reduc-
tion in carbon emissions. This is closely related to the government’s energy-saving and
emission-reduction policies, industrial restructuring, and green development. The relation-
ship between economic growth and carbon emissions has been gradually harmonized to
promote high-quality development in Henan.

4.2. STIRPAT Model Regression Fit Analysis
4.2.1. Description of Variables

The following is a collection and collation of basic data from four provinces and
municipalities: Beijing, Tianjin, Hebei, and Henan carbon emissions, 2000–2019, permanent
population, GDP per capita, energy consumption intensity (energy consumption/GDP),
and energy structure (coal consumption/total energy consumption). This includes data on
the share of the secondary sector in GDP. The maximum, minimum, mean, and standard
deviation of each variable after taking the logarithm are shown in (Table 2).

Table 2. Description of variables.

Variant Abbreviated
Symbol

Minimum
Value

Maximum
Value

Average
Value

Standard
Deviation

Carbon emissions I 617.61 6577.2 2754.21 2115.56
Permanent population P 1001.14 9901 4937.08 3550.22

GDP per capita A 5450 161,776 45,876.44 35,365.7
Intensity of energy consumption T 0.21 2.43 1.06 0.58

Energy mix Y 0.02 1.3 0.81 0.33
Share of secondary sector in GDP Z 16.2 60.1 44.4 11.93

4.2.2. Variable Correlation Analysis

The base data of the four provinces and cities were logarithmically processed, and
factor analyses of the variables by SPSS 27 software, KMO, and Bartlett’s test are shown in
Table 3. The range of values between 0.7 and 0.8 is barely suitable, and between 0.8 and 0.9
is suitable. The values are 0.8 for Beijing, 0.8 for Tianjin, 0.6 for Hebei, and 0.7 for Henan,
all with a significance of 0.000.

Table 3. KMO and Bartlett’s test.

Beijing Tianjin Hebei Henan

KMO Sampling Suitability Measure 0.8 0.6 0.6 0.7

Bartlett’s
Sphericity

test

Approximate Chi-squared value 183.40 238.29 210.19 186.54
(number of) degrees of freedom (physics) 15 15 15 15

Significance 0.00 0.00 0.00 0.00

After the KMO and Bartlett tests, the indicators that best reflect the input–output
relationship were screened using Pearson correlation coefficients (Figure 4). The closer the
absolute value of the Pearson correlation coefficient is to 1, the stronger the correlation
between the indicator and carbon emissions.
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Figure 4. Pearson correlation between indicators.

There is a strong positive correlation of 0.98 between the resident population and GDP
per capita in Beijing and a strong negative correlation with energy consumption intensity,
energy structure, and the proportion of secondary industry in GDP, which are −0.97, −0.75,
and −0.82, respectively. There is a strong negative correlation between per capita GDP
and energy consumption intensity, energy structure, and the proportion of the secondary
industry. Carbon emissions in Tianjin positively correlate with the resident population and
per capita GDP, up to 0.96. A negative correlation exists between permanent population
and energy consumption intensity, energy structure, and the proportion of secondary
industry in GDP. In Hebei Province, carbon emissions have a strong positive correlation
with permanent population and per capita GDP, reaching the highest, 0.95, and a negative
correlation with energy consumption intensity, energy structure, and the proportion of
secondary industry in GDP. The positive correlation between carbon emission and per
capita GDP in Henan Province is 0.91, and the negative correlation between carbon emission
and energy consumption intensity and energy structure is 0.91.

4.3. Tapio Decoupling Model Analysis

According to the basic form of the STIRPAT model, the extended STIRPAT model was
constructed, and its expression is shown in Equation (4).

I = aPb AcTdYiZje (4)

In order to facilitate subsequent data analysis and processing, Equation (4) is logarith-
mic to obtain Equation (5):

lnI = blnP + clnA + dlnT + ilnY + jlnZ + lne (5)
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In formula (5), b, c, d, i, and j are prediction coefficients representing the amount of
change in carbon emissions b%, c%, d%, i%, and j% that can be induced by a 1% change in
the resident population (10 thousand people), GDP per capita (RMB/person), energy con-
sumption intensity (10 thousand tons of standard coal/billions), energy structure (tons of
standard coal/tons), and the share of secondary industry in GDP (%). The regression model
is used to construct a carbon emission prediction model for the four provinces and munici-
palities of the South-to-North Water Diversion Project and then to analyze carbon peaking
by predicting the future carbon emission trends of the four provinces and municipalities
based on the baseline scenario, the green scenario, and the high-speed scenario.

4.4. Ridge Regression Results

The results of the SPSS 27 software test showed that the variance inflation factor
between the variables was higher than 10. In order to avoid multicollinearity between the
influencing factors, ridge regression analysis was used to fit the carbon emissions to the
influencing factors, and the carbon emission prediction models were constructed separately
for the study area. Individual carbon emission forecasting models were created for the
research region. The pertinent results can be found in Table 4.

Table 4. Carbon emission regression fitting results for four provinces and cities of South-to-North
Water Diversion Central Route Project.

Province P A T Y Z Constant k R2

Beijing 0.2561 0.1878 *** −0.0467 0.1826 *** −0.0601 5.3592 *** 0.05 0.73
Tianjin 1.0539 *** 0.1522 *** −0.0229 −0.0764 0.1613 −0.5087 0.15 0.91
Hebei 3.3382 *** 0.2347 *** −0.1063 ** −0.2363 1.4690 *** −26.7293 *** 0.10 0.96
Henan −0.1369 0.3432 *** −0.3617 *** 0.2525 2.3362 *** −0.7557 0.15 0.93

Note: ***, ** represent p < 0.01 and p < 0.05, respectively.

The resulting carbon emission projection models for Beijing, Tianjin, Hebei, and Henan
are shown in Equations (6)–(9).

lnI = 0.2561lnP + 0.1878lnA − 0.0467lnT + 0.1826lnY − 0.0601lnZ + 5.3592 (6)

lnI = 1.0539lnP + 0.1522lnA − 0.0229lnT − 0.0764lnY + 0.1613lnZ − 0.5087 (7)

lnI = 3.3382lnP + 0.2347lnA − 0.1063lnT − 0.2363lnY + 1.4690lnZ − 26.7293 (8)

lnI = −0.1369lnP + 0.3432lnA − 0.3617lnT + 0.2525lnY + 2.3362lnZ − 0.7557 (9)

According to Equations (6)–(9), the substitution of the data to obtain the carbon
emissions and the projected carbon emissions of the four regions of Beijing, Tianjin, Hebei,
and Henan from 2000–2019 is shown in (Figure 5).

4.5. Peak Carbon Scenario Projections

Based on the extended STIRPAT model, a forecasting study was conducted with 2020
as the base year and 2035 as the end year. In 2020, due to the impact of “new coronavirus
pneumonia”, the scenarios were based on the rates of change in the 13th Five-Year Plan, as
shown in Tables 5–8. The change characteristics for 2021–2035 were divided into three time
periods: 2021–2025, 2026–2030, and 2031–2035, with each period set at five years.
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4.5.1. Basis for Setting Indicators in Beijing

The setting of various indicators in Beijing is shown in Table 5. The population setting
was based on the Beijing Urban Master Plan (2016–2035), which states that the resident
population of Beijing will be within 23 million in 2035, and the resident population of
Beijing will be 21.9 million in 2019, which allowed us to calculate that the average annual
rate of change from 2019–2035 will be controlled to be around 0.3139%. For 2021, the low
speed of the population can be set at 0.2800%, the medium speed at 0.3100%, and the high
speed at 0.3400%, with a constant annual decline of 0.001% during the forecast period. Per
capita GDP was based on the 14th Five-Year Plan for Beijing’s National Economic and Social
Development and the outline (draft) of the long-term goals for 2035. By 2035, per capita
GDP will reach more than 320,000 yuan, and the city’s comprehensive competitiveness
will rank among the highest in the world. In 2019, the per capita GDP of Beijing was
161,776 yuan. It can be calculated that the average annual change rate from 2019–2035 will
be controlled at around 6.1128%. It can be set that the per capita regional gross domestic
product in 2021 will decrease at a low speed of 5.9100%, a medium speed of 6.1128%, and
a high speed of 6.3100%. During the forecast period, the annual average decline will be
0.28%. The energy consumption intensity in Beijing was 0.46% in 2010 and 0.21% in 2019.
Therefore, the change rate between 2010 and 2019 can be calculated to be −5.52%. The
energy consumption intensity in 2021 can be set as −5.8200% at low speed, −5.5200% at
medium speed, and −5.2200% at high speed. The energy structure in Beijing was 0.38% in
2010 and 0.02% in 2019. Therefore, the change rate between 2010 and 2019 can be calculated
to be −9.34%. It can be set that the energy structure in 2021 will have a low speed of
−9.5400%, a medium speed of −9.3400%, and a high speed of −9.1400%. In Beijing, the
proportion of the secondary industry in GDP was 24% in 2010 and 16.2% in 2019, so the
change rate between 2010 and 2019 can be calculated as −3.25% and the proportion of
the secondary industry in GDP in 2021 can be set as −3.5500% at low speed, −3.2500% at
medium speed and −3.0550% at high speed.
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Table 5. Beijing’s indicator settings.

Rate of Change Vintages

Rate of Change Setting

Permanent
Population

GDP per
Capita

Intensity of Energy
Consumption Energy Mix

Share of
Secondary

Sector in GDP

Low

2019–2020 −0.0569% 7.7771% −5.7000% −19.9300% −3.9744%
2021–2025 0.2800% 5.9100% −5.8200% −9.5400% −3.5500%
2026–2030 0.2750% 4.5100% −5.8250% −10.0400% −3.5550%
2031–2035 0.2700% 3.1100% −5.8300% −10.5400% −3.5600%

Middle

2019–2020 −0.0569% 7.7771% −5.7000% −19.9300% −3.9744%
2021–2025 0.3100% 6.1128% −5.5200% −9.3400% −3.2500%
2026–2030 0.3050% 4.7128% −5.5250% −8.8400% −3.2550%
2031–2035 0.3000% 3.3128% −5.5300% −8.3400% −3.2600%

High

2019–2020 −0.0569% 7.7771% −5.7000% −19.9300% −3.9744%
2021–2025 0.3400% 6.3100% −5.2200% −9.1400% −3.0500%
2026–2030 0.3350% 4.9100% −5.2250% −8.6400% −3.0550%
2031–2035 0.3300% 3.5100% −5.2300% −8.1400% −3.0600%

4.5.2. Basis for Setting Indicators in Tianjin

The indicators of Tianjin are set in Table 6. According to the Tianjin Bureau of Statistics
data, by the end of 2021, Tianjin’s permanent population had reached 15.6966 million,
an increase of 0.4% over the previous year. Since 2016, the resident population of Tianjin
has been showing a steady growth trend. Among them, Tianjin’s population growth rate
dropped slightly in 2020 due to the epidemic. However, with the effective control of the
epidemic, Tianjin’s population growth rate rose again in 2021. The population will continue
to grow in the future as Tianjin’s economy continues to develop. According to the plan of
the Tianjin municipal government, the permanent population of Tianjin will reach about
20 million by 2035. In 2019, the resident population of Tianjin was 13.85 million. The annual
change rate from 2019–2035 will be controlled at about 2.7753%. Then, it can be set that
in 2021, the low speed of Tianjin’s resident population can be set as 2.5800%, the medium
speed can be set as 2.7753%, and the high speed can be set as 2.9800%, with an even annual
decline of 0.003% during the forecast period. Gross regional product per capita can be set to
be RMB 54,053 per capita in Tianjin in 2010 and RMB 101,557 per capita in Tianjin in 2019; it
can be calculated that the average annual rate of change from 2019-2035 will be controlled
at about 8.79%. The GDP per capita in 2021 can be set at 8.5884% at low speed, 8.7884% at
medium speed, and 8.9884% at high speed. Energy consumption intensity in Tianjin was
1.00% in 2010 and 0.58% in 2019, so the change rate between 2010 and 2019 can be calculated
as −4.15%. Energy consumption intensity in 2021 can be set to −4.4462% at low speed,
−4.1462% at medium speed, and −3.8462% at high speed. The energy structure in Tianjin
was 0.71% in 2010 and 0.46% in 2019, indicating a change rate of −3.52% between 2010 and
2019. The energy structure can be set at −3.8178% for low speed, −3.5178% for medium
speed, and −3.2178% for high speed in 2021. In Tianjin, the proportion of the secondary
industry in GDP was 52.5% in 2010 and 35.2% in 2019, so the change rate between 2010
and 2019 can be calculated as −3.30%. The proportion of secondary industry in GDP in
2021 can be set as −3.492% at low speed, −3.2957% at medium speed, and −3.0952% at
high speed.

4.5.3. Basis for Setting the Indicators in Hebei

The setting of the indicators for Hebei is shown in Table 7. Population setting: Accord-
ing to the Population Development Plan of Hebei Province (2018–2035), the population of
Hebei Province will increase to 79.1 million people by 2035. In 2019, the resident population
of Hebei Province was 21.9 million people; it can be calculated that the average annual rate
of change from 2019–2035 will be controlled at about 0.39%. The population can be set to
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have a low speed of 0.3636%, a medium speed of 0.3886%, and a high speed of 0.4086% in
2021, with a predicted annual average decrease of 0.01% during the forecast period. The
per capita GDP of Hebei Province was 25,308 yuan in 2010 and 47,036 yuan in 2019, and
the change rate from 2010–2019 can be calculated as about 8.59%. It can be set that the per
capita regional gross domestic product in 2021 will decrease at a low speed of 8.2854%,
a medium speed of 8.5854%, and a high speed of 8.7857%. During the forecast period, the
annual average decline will be 0.02%. Energy consumption intensity in Hebei was 1.53% in
2010 and 0.93% in 2019; therefore, the rate of change between 2010–2019 can be calculated to
be −3.94%, which can be set as −3.9674% for the low rate of energy consumption intensity
in 2021, −3.9374% for the medium rate, and -3.9074% for the high rate. Energy structure in
Hebei was 1.00% in 2010 and 0.88% in 2019; then, the rate of change between 2010–2019
can be calculated as −1.15% and the energy structure in 2021 can be set to be −1.5483%
for the low rate, −1.1438% for the medium rate, and −0.7483% for the high rate. In 2010,
the share of secondary industry in the GDP in Hebei was 52.5%, and in 2019, the share
of secondary industry in the GDP in Hebei Province was 38.7%; then, the rate of change
between 2010–2019 can be calculated as −2.63%, and it can be set that, in 2021, the share of
secondary industry in GDP will be −2.9286% at low speed, −2.6286% at medium speed,
and −2.3286% at high speed.

Table 6. Tianjin indicator settings.

Rate of Change Vintages

Rate of Change Setting

Permanent
Population

GDP per
Capita

Intensity of Energy
Consumption Energy Mix

Share of
Secondary

Sector in GDP

Low

2019–2020 −1.0000% 6.8772% 7.3418% −3.1827% −4.2122%
2021–2025 2.5800% 8.5884% −4.4462% −3.8178% −3.4952%
2026–2030 2.4300% 5.0884% −4.4962% −1.3178% −3.4957%
2031–2035 2.2800% 1.5884% −4.5462% 1.1822% −3.4962%

Middle

2019–2020 −1.0000% 6.8772% 7.3418% −3.1827% −4.2122%
2021–2025 2.7753% 8.7884% −4.1462% −3.5178% −3.2952%
2026–2030 2.6253% 5.2884% −4.1962% −1.0178% −3.2957%
2031–2035 2.4753% 1.7884% −4.2462% 1.4822% −3.2962%

High

2019–2020 −1.0000% 6.8772% 7.3418% −3.1827% −4.2122%
2021–2025 2.9800% 8.9884% −3.8462% −3.2178% −3.0952%
2026–2030 2.8300% 5.4884% −3.8962% −0.7178% −3.0957%
2031–2035 2.6800% 1.9884% −3.9462% 1.7822% −3.0962%

4.5.4. Basis for Setting the Indicators in Henan

The setting of each indicator in Henan is shown in Table 8. In the population setting,
the resident population of Henan Province in 2010 was 94.05 million people, and the
resident population of Henan Province in 2019 was 99.01 million. Then, the rate of change
between 2010 and 2019 can be calculated as 0.53%, and it can be set that the resident
population in 2021 will be 0.4974% at a low rate, 0.5274% at a medium rate, and 0.5574% at
a high rate. The uniform rate of decline is 0.001 percent per year over the projection period.
The per capita GDP of Henan Province was 41,326 yuan in 2016 and 5,450 yuan in 2019. The
annual change rate from 2019–2035 will be controlled at about 7.88%. It can be set that the
per capita regional gross domestic product in 2021 will decrease at a low speed of 7.5824%,
a medium speed of 7.8824%, and a high speed of 8.1824%, with a predicted average annual
decrease of 0.001% during the forecast period. Energy consumption intensity in Henan
Province was 0.95% in 2010 and 0.41% in 2019. Then, the rate of change between 2010 and
2019 can be calculated as −5.66%, and it can be set that the low rate of energy consumption
intensity in 2021 will be −5.9567%, the medium rate will be −5.6567% and the high rate
will be −5.3567%. The energy structure of Henan Province was 1.22% in 2010 and 0.90%
in 2019; then, the rate of change between 2010 and 2019 can be calculated as −2.60%, and
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it can be set that the low rate of energy structure in 2021 can be set to be −2.9025%, the
medium rate can be set to be −2.6025%, and the high rate can be set to be −2.3025%. In
Henan Province, the share of secondary industry in GDP was 57.30% in 2010 and 43.50% in
2019. Then, the rate of change between 2010 and 2019 can be calculated to be −2.41%, and
it can be set that the share of secondary industry in GDP in 2021 will be −2.7084% at low
speed, −2.4084% at medium speed, and −2.1084% at high speed.

Table 7. Setting of indicators in Hebei.

Rate of Change Vintages

Rate of Change Setting

Permanent
Population

GDP per
Capita

Intensity of Energy
Consumption Energy Mix

Share of
Secondary

Sector in GDP

Low

2019–2020 0.2441% 5.3944% −1.5503% −2.4988% −4.6629%
2021–2025 0.3686% 8.2854% −3.9674% −1.5483% −2.9286%
2026–2030 0.3186% 8.3854% −4.1674% −2.0483% −3.1286%
2031–2035 0.2686% 8.4854% −4.3674% −2.5483% −3.3286%

Middle

2019–2020 0.2441% 5.3944% −1.5503% −2.4988% −4.6629%
2021–2025 0.3886% 8.5854% −3.9374% −1.1483% −2.6286%
2026–2030 0.3836% 8.6854% −4.1374% −1.6483% −2.8286%
2031–2035 0.3786% 8.7854% −4.3374% −2.1483% −3.0286%

High

2019–2020 0.2441% 5.3944% −1.5503% −2.4988% −4.6629%
2021–2025 0.4086% 8.7854% −3.9074% −0.7483% −2.3286%
2026–2030 0.4036% 8.8854% −4.1074% −1.2483% −2.5286%
2031–2035 0.3986% 8.9854% −4.3074% −1.7483% −2.7286%

Table 8. Setting of Indicators in Henan.

Rate of Change Vintages

Rate of Change Setting

Permanent
Population

GDP per
Capita

Intensity of Energy
Consumption Energy Mix

Share of
Secondary

Sector in GDP

Low

2019–2020 0.3145% 7.8824% −6.5153% −3.7995% −2.1667%
2021–2025 0.4974% 7.5824% −5.9567% −2.9025% −2.7084%
2026–2030 0.4924% 7.5874% −6.1567% −3.4025% −2.9084%
2031–2035 0.4874% 7.5924% −6.3567% −3.9025% −3.1084%

Middle

2019–2020 0.3145% 7.8824% −6.5153% −3.7995% −2.1667%
2021–2025 0.5274% 7.8824% −5.6567% −2.6025% −2.4084%
2026–2030 0.5224% 7.8874% −5.8567% −3.1025% −2.6084%
2031–2035 0.5174% 7.8924% −6.0567% −3.6025% −2.8084%

High

2019–2020 0.3145% 7.8824% −6.5153% −3.7995% −2.1667%
2021–2025 0.5574% 8.1824% −5.3567% −2.3025% −2.1084%
2026–2030 0.5524% 8.1874% −5.5567% −2.8025% −2.3084%
2031–2035 0.5474% 8.1924% −5.7567% −3.3025% −2.5084%

4.6. Scenario Building

Based on the impact of the high, medium, and low three rates of change in the four
provinces and cities, five scenarios were constructed to carry out the five scenarios for
2020–2035 in each of the four provinces and cities. The results are shown in Table 9.

Low-carbon development scenario (M1): The rates of change between the indicators in
this scenario are chosen to be low, exploring the impact of indicators on carbon emissions
in a lower scenario. Energy efficiency scenario (M2): Only the resident population and
GDP per capita are changed in the low-carbon development scenario, while the rest of the
indicators remain unchanged. In the energy-saving scenario, the industrial structure has
been optimized, energy consumption has decreased, and the proportion of the secondary
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industry to GDP has decreased. Baseline scenario (M3): The median value of changes
among the indicators is adopted, and the influence of the original policy intensity on carbon
emissions is analyzed without adjustment. Ideal scenario (M4): The ideal scenario has an
increase in the resident population, a significant increase in GDP per capita, minimum
energy consumption between categories, and green and energy-efficient development. Free
development scenario (M5): In this scenario, the variation between the indicators is the
highest, and there is no influence from other factors, only from development.

Table 9. Peak carbon forecast scenarios for four provinces and cities, 2020–2035.

Scenarios Permanent
Population

GDP per
Capita

Intensity of
Energy

Consumption

Energy
Mix

Share of
Secondary Sector

in GDP

Low-carbon development scenario (M1) low low low low low
Energy efficiency scenario (M2) middle middle low low low

Baseline scenario (M3) middle middle middle middle middle
Ideal scenario (M4) middle high low low low

Freedom to develop scenario (M5) high high high high high

4.7. Predictive Analyses

From (Figure 6): Beijing and Henan peaked in the 2000–2035 timeframe under the
analysis of different scenarios, with Beijing peaking in 2010 and Henan peaking in 2011.
Carbon emissions continued to decline in two regions, Beijing and Henan, over the next
2035 period. The Tianjin data indicated an upward trend in the 2000–2019 timeframe, with
a downward trend in carbon emissions under the low-carbon development scenario model
over the projection period. Hebei Province did not experience carbon peaking between
2020 and 2035, with an inflection point in 2030 under the low-carbon development model
and an upward trend in carbon emissions under the remaining four models.
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5. Discussion

Wang Wenju et al. analyzed national and provincial governments’ overall objectives
and critical action plans to promote carbon peaking. They used the Mann–Kendall statistical
trend test to examine each province’s carbon emission peaking situation [30]. The study
found that provincial governments have responded positively to the central government’s
request to formulate and actively implement action programs for carbon peaking. Beijing
and Henan have taken the lead in achieving carbon peaking. Provinces have implemented
exceptional government support and financial subsidies, effectively guiding low-carbon
development, reducing carbon emissions, and thus achieving carbon peaks. Han Nan et al.
constructed a carbon emission system dynamics model by analyzing the relationship
between carbon emissions and influencing factors. They set up six scenarios to simulate
and predict their impact on the time of carbon peaking in Beijing, Tianjin, and Hebei [31].
The results showed that under the baseline scenario, Beijing has already achieved peak
carbon. Tianjin is expected to reach peak carbon by 2023, and Hebei is having difficulty
reaching peak carbon by 2035. This is consistent with the findings of this paper.

Our study suggests that Hebei is less likely to reach peak carbon emissions in 2035.
However, Beijing, Tianjin, and Henan could reach peak carbon emissions in the 2020–2030
timeframe. Beijing is actively promoting the construction of a green Beijing, deepening
the implementation of the functional positioning of the capital city, and taking the lead in
establishing the development concept of reduction. Tianjin actively promotes the devel-
opment of a digital economy, the transformation and upgrading of traditional industries,
and the gradual decline of carbon emissions. Henan vigorously promotes energy conser-
vation and emission reduction, accelerates the establishment of a sound economic system
of green, low-carbon, and recycling development, promotes the overall green and low-
carbon economic and social transformation, and helps to achieve the goal of carbon peak
and carbon neutrality. Hebei has formed a diversified pillar industry pattern featuring
resource-consuming and polluting industries such as iron and steel, coal, chemicals, and
equipment manufacturing. The increased CO2 emissions from the excessive use of fossil en-
ergy sources, such as coal, have put enormous pressure on environmental protection. From
the study of decoupling effects, the relationship between economic growth and carbon
emissions in provinces and cities along the South-to-North Water Diversion Central Route
Project has been generally improving in recent years, and a more desirable decoupling will
be achieved in the future.

As of 22 July 2022, the water entering the central canal from the Taocha Canal Head-
work of the first phase of the South-to-North Water Diversion Project exceeded 50 billion
cubic meters, benefiting a population of more than 85 million. The annual volume of water
transferred by the first phase of the Central Route Project has continued to climb from more
than 2 billion cubic meters to 9 billion cubic meters. It demonstrates that the South-to-North
Water Diversion Project continues to develop highly, providing high-quality water security
for the provinces and cities along the route.

In order to reduce energy consumption and achieve carbon reduction goals in the
South-to-North Water Diversion Project, consolidating the foundation of green and low-
carbon management is fundamental. We should strengthen compliance management, con-
tinuously improve green development systems such as environmental protection, pollution
control, energy and resource conservation, and efficient utilization, and low-carbon trans-
formation, and guide the implementation of standards and requirements that are conducive
to green development. We should also establish and improve a long-term mechanism for
green development, actively explore the establishment of effective incentive and constraint
mechanisms, promote innovation in green development management and institutional
innovation, dynamically monitor energy consumption and carbon emissions, achieve mon-
itoring, reporting, and verification of energy consumption and carbon emissions indicators,
and provide decision-making support for green and low-carbon development. Provinces
and municipalities along the route should formulate energy-saving and emission-reduction
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policies suitable for their provinces according to local conditions to contribute to China’s
goal of achieving carbon peaking by 2030.

6. Conclusions

This study uses the STIRPAT model to investigate the carbon emissions of provinces
and cities along the South-to-North Water Diversion Central Route Project. It also forecasts
carbon emissions from 2020–2035 under different scenarios and analyses whether carbon
can be peaked by 2035. The main conclusions are as follows:

(1) The four provinces and municipalities were mainly weakly decoupled in the 2000–2009
timeframe, gradually shifting to strong decoupling from 2010–2019. From the perspec-
tive of decoupling economic development from carbon emissions, a country or region
usually goes through a process progressing from negative decoupling to weak or even
strong decoupling. Moreover, the process is often tortuous. For example, recessionary
decoupling and negative recessionary decoupling can occur under the influence of
political, economic, and environmental factors.

(2) According to the parameters of the model formula for the four provinces and cities, it
can be seen that the resident population and per capita GDP have a more significant
impact on carbon emissions. Due to this, Beijing’s resident population and per capita
GDP can cause a change of 0.2561% and 0.1878% for every 1% change. Every 1%
change in Tianjin’s resident population and GDP per capita can cause a change of
1.0539% and 0.1522%.

(3) There will be carbon peaks in both Beijing and Henan in the 2000–2035 timeframe, with
Beijing peaking at 96.836 million tons in 2010 and Henan peaking at 654.104 million
tons in 2011. Mainly, the continued optimization of the industrial structure, promot-
ing a clean energy transition, and implementing the Peak Carbon Implementation
Program will achieve the Peak Carbon Goal on schedule.

(4) Among the four provinces and cities along the South-to-North Water Diversion Project,
only Hebei did not reach its peak during the period under study, which is related
to a large amount of energy consumption in Hebei, a traditional industrial province.
The total energy consumption in Hebei Province is significant, and its structure is
dominated by fossil energy. The proportions of coal consumption per capita and GDP
energy consumption are higher than the national level, resulting in more significant
carbon emissions.
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