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Abstract: Carbon neutrality is an important target in China’s efforts to combat the climate crisis.
The implementation of carbon neutrality requires high crop yields in farmland ecosystems of arid
regions. However, the responses of farmland ecosystems to environmental changes and their effects
on the conversion and intensity of carbon sources/sinks within farmlands in arid regions remain
unclear, which limits carbon sequestration. In this study, we used a set of eddy covariance systems
to observe carbon and water fluxes in cotton and spring maize, two typical crops in arid regions
of Northern Xinjiang in China. The carbon and water exchange and water use efficiency (WUE) of
cotton and spring maize were evaluated over the entire growth cycle with respect to changes in the
environment. Our results show that the carbon sequestration capacity of farmland ecosystems in arid
regions is undeniable and is strongly influenced by the growth and development of plants. Spring
maize, as a representative of C4 plants, exhibited a 58.4% higher carbon sequestration efficiency
than cotton, a C3 plant, and they both reached their carbon sequestration efficiency peak in July.
Throughout the growth period, temperature, net surface radiation, and saturated vapor pressure
differences (VPD) significantly affected the carbon sequestration capacity and WUE of both crops.
Optimal temperatures can maximize the carbon sequestration efficiency of cotton and spring maize;
for cotton, they are 20–25 ◦C, and for spring maize, they are 22–27 ◦C, respectively. In addition, it
is recommended that spring maize be harvested at the end of July when it meets the harvesting
standards for silage feed and achieves the maximum carbon sequestration. Afterward, winter crops
should be planted to maximize the yield and improve the carbon sequestration capacity of farmlands.

Keywords: CO2 flux; cotton field; maize field; eddy covariance; water use efficiency

1. Introduction

The terrestrial ecosystem is an important part of the Earth’s carbon pool, and small
changes in the terrestrial ecosystem can have a profound impact on the total amount of
atmospheric CO2 and promote the positive feedback effects of climate change [1–4]. Thus,
carbon sequestration can be more effective by enhancing, restoring, and optimizing the
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structure, function, and spatial layout of the terrestrial ecosystem. This is an important
path for achieving the goals of carbon peaking and carbon neutrality, and it also provides
the most economical, effective, and safest means of promoting carbon sequestration [5].
According to the Food and Agriculture Organization of the United Nations, the total agri-
cultural land in the world is about 4.7 billion hectares, i.e., approximately one-third of the
global land area [6]. Greenhouse gas emissions from agricultural land exceed 30% of the
global total anthropogenic greenhouse gas emissions, which are equivalent to generating
15 billion tons of carbon dioxide annually. As a major agricultural country, China’s “14th
Five-Year Plan for National Green Agriculture Development” released in 2021 has made
carbon reduction and sequestration in agriculture and rural areas important goals. By mon-
itoring carbon flux in farmlands to ensure and improve crop yield, a deep understanding
of the carbon budget of farmland ecosystems and its relationship with environmental and
human management factors will allow the implementation of appropriate agricultural
management measures to further reduce carbon emissions and increase carbon storage
in farmland ecosystems. This is of great significance for achieving the goals of “carbon
peaking” and “carbon neutrality” as soon as possible.

In order to accurately evaluate the land–atmospheric exchange process of water vapor
and CO2 fluxes, various research methods have been developed on different research scales,
including the open-top growth chamber (OTC) [7], Burnby energy balance method [8],
eddy covariance method (EC) [9], and large aperture scintillator method (LAS) [10]. Among
these methods, the eddy covariance method (EC) is considered to be one of the most di-
rect and reliable methods for obtaining data on CO2, water vapor, and heat fluxes for a
soil–vegetation–atmosphere system, as the EC method has a solid theoretical basis, high
observation accuracy, and continuous stability [11–13]. However, the results obtained
using EC methods can only represent the characteristics of a specific ecosystem in a spe-
cific environment. To extrapolate research results to regional or global scales, they must
be combined with relevant models to decipher complex interactions between terrestrial
carbon and water dynamics and global changes, as well as for quantitative simulation and
prediction of carbon and water dynamics. Models widely used at present for this purpose
include SIB2 [14,15], CEVSA [16], BIOME-BGC [17], Crop-C [18], DNDC [19], CENTRY [20],
ORCHIDE-STICS [21], JULES CROP [22], etc.

The farmland ecosystem is an ecosystem where human activities are most frequent
and intense. The carbon cycle in farmland ecosystems is mainly involved in the exchange
process between the plant and soil carbon pools and the external environment, as well as in
the migration and transformation of different components of a carbon pool [23]. Due to
significant differences in carbon fluxes of different crops and regions, farmland ecosystems
may serve as both carbon sources and carbon sinks. Using the eddy covariance method,
researchers have determined that the carbon flux of farmland ecosystems in the growth
season exhibits a U-shaped curve [24–27]. In particular, farmlands release CO2 at night;
after sunrise, farmlands change from carbon sources to carbon sinks, reaching a daily
carbon sequestration peak around noon [28,29]. Some crops also experienced a “midday
depression of photosynthesis” phenomenon at noon, with a daily carbon flux curve in
the shape of a “W” [30]. The growth of crops is comprehensively influenced by various
factors, such as photosynthetic active radiation, temperature, precipitation, soil moisture,
plant development, and leaf area index. These factors affect the carbon sequestration
capacity of farmland ecosystems, which is significantly lower in the early and late stages
of crop growth than in the period of high yield [31,32]. The main influencing factors of
the same crop vary with different time scales. For example, the carbon flux of maize is
most affected by the net radiation on the hour scale. At the daily scale, the spring maize
is most influenced by the saturation vapor pressure difference, while the summer maize
is most affected by temperature [30]. Studies have also indicated that the leaf area index,
which reflects crop growth, is the main controlling factor of daily carbon flux in crops.
Additionally, net radiation is the primary controlling factor in crop evapotranspiration on
a daily scale [33]. Under the multi-cropping mode, the carbon flux of farmlands roughly
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shows a “W” shaped bimodal curve [34,35]. Different field management measures also
have an impact on farmland carbon flux. For instance, the narrow row spacing is conducive
to the formation of a high biomass and leaf area index, thereby promoting high carbon
sequestration [36]. Compared to traditional tillage methods, the net carbon exchange under
no tillage is neutral [37].

Xinjiang in northwest China encompasses both arid and semi-arid regions; it is among
the most sensitive regions to global change worldwide. It has 7066 thousand hectares of
cultivated land, of which 96% is irrigated. Efficient water use means stronger carbon sink
capacity and higher crop yield [38]. This is of great significance for estimating farmland
yield, efficient water resource utilization, and carbon sequestration and sink enhancement
in arid regions. Relying on its abundant light and heat along with vast land, Xinjiang
has become the largest production base of high-quality commodity cotton in China. In
2021, the total cotton planting area in Xinjiang was 2.48 × 104 km2, with a total output of
5.129 million tons, accounting for 89.5% of the total cotton output in China. The cotton
industry has become a pillar of Xinjiang’s economy and agricultural development. In
2021, the planting area of maize in Xinjiang was 1.11 × 104 km2, with a total output of
10.1265 million tons [39]. Maize is expected to play an increasingly important role in the
national economy of Xinjiang.

With the increasingly severe impact of climate change on ecosystem stability, the im-
plementation of the carbon-neutral target requires farmland ecosystems to ensure high crop
yields. For arid regions, where water resources are extremely scarce, it is more challenging
to achieve high crop yields. Therefore, we chose two typical agricultural fields (cotton and
spring maize) in arid regions of northern Xinjiang, China, as the focus of our research. In
2018, we installed an eddy covariance system at the interface between adjacent cotton and
spring maize fields and segmented the observed CO2 and H2O turbulent flux based on the
flux source partitioning analysis. We used this system to compare and analyze the differ-
ences in carbon and water exchange characteristics, water use efficiency (WUE), and their
relationship with environmental factors in cotton and spring maize fields. The purpose of
this study is to understand the carbon and water exchange characteristics and differences
of typical crops in arid areas and fully utilize the efficiency of instrument observation.
At the same time, this study provides basic support for the accurate assessment of the
carbon sequestration capacity of farmland in arid regions, agricultural policy formulation,
rational allocation of agricultural resources, and implementation of appropriate farmland
management measures.

2. Materials and Methods
2.1. Site Description

The research area is located in Paotai Town, Shihezi City, Xinjiang (44◦49′ N, 85◦33′ E,
elevation: 300 m a.s.1.), situated at the northern central foot of the Tianshan Mountains and
the southwest bottom of the Junggar Basin, within Shawan County in the middle section of
the Tianshan North Slope Economic Belt. It has a temperate arid continental climate, with
hot summers and cold winters. The annual average temperature is 7.9 ◦C, with a sunlight
duration of 2771.3 h and an average annual precipitation amount of 162 mm. The annual
average evaporation is 1892.8 mm, which is more than 10 times of precipitation. And the
annual average frost-free period is 190 days. There are mostly gray desert soil, tidal soil,
and meadow soil that are suitable for the growth of various plants. Irrigation agriculture is
the main industry in this area, with major crops like cotton, maize, wheat, grapes, tomatoes,
watermelons, etc.

As shown in Figure 1, during the experimental observation period (May to October
2018), the daily average temperature (Ta) was 20.2 ◦C, ranging from 2.9 ◦C to 31.8 ◦C. The
highest temperature occurred on 11 August 2018, and the lowest on 30 October 2018. The
daily average temperature of June was the highest at 25.7 ◦C, followed by July and August
at 25.1 ◦C and 24.9 ◦C, respectively. The prevailing wind directions were east/northeast and
west/southwest, with a daily average wind speed of 1.36 m·s−1. More than 80% of days
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had wind speeds below 2 m·s−1. The maximum wind speed was 7.83 m·s−1, occurring on
24 May 2018. The daily average saturation vapor pressure difference (VPD) was 1.15 KPa,
with a range of 0.147–3.196 KPa. The daily average net radiation was 130.6 W·m−2, and the
overall variation trend was similar to that of temperature.

Land 2023, 12, x FOR PEER REVIEW 4 of 15 
 

As shown in Figure 1, during the experimental observation period (May to October 
2018), the daily average temperature (Ta) was 20.2 °C, ranging from 2.9 °C to 31.8 °C. The 
highest temperature occurred on 11 August 2018, and the lowest on 30 October 2018. The 
daily average temperature of June was the highest at 25.7 °C, followed by July and August 
at 25.1 °C and 24.9 °C, respectively. The prevailing wind directions were east/northeast 
and west/southwest, with a daily average wind speed of 1.36 m·s−1. More than 80% of days 
had wind speeds below 2 m·s−1. The maximum wind speed was 7.83 m·s−1, occurring on 
24 May 2018. The daily average saturation vapor pressure difference (VPD) was 1.15 KPa, 
with a range of 0.147–3.196 KPa. The daily average net radiation was 130.6 W·m−2, and the 
overall variation trend was similar to that of temperature. 

 
Figure 1. (a) Observation layout and location of observation stations in the study area (red star). (b) 
The temporal variation characteristics of the environmental factors: Ta, air temperature; VPD, satu-
rated vapor pressure difference; Rn, net radiation. (c) Wind rose: wind speed frequency distribution 
in different wind directions. 

2.2. Experimental Design 
The eddy covariance system was set up at the interface of adjacent fields planted with 

cotton and spring maize. All micrometeorological observations were conducted from May 
to October 2018 (Figure 1). Cotton was planted on the west side, and spring maize was 
planted on the east side. The observed CO2 flux was split according to the flux source area. 
There were 3632 westerly data and 4099 easterly data, with a ratio of 0.89:1. The westerly 
turbulent flux represented cotton, and the easterly turbulent flux represented spring 
maize. Cotton was sown on 16 April 2018, emerged on 30 April, and stopped growing on 
8 October. It was harvested on 25 October. Spring maize was sown on 8 April 2018, 
sprouted on 20 April, and matured on 14 August. It was harvested on 27 August. The main 
growth stages and characteristics are shown in Table 1, and the two crops both used drip 
irrigation under film. 

  

Figure 1. (a) Observation layout and location of observation stations in the study area (red star).
(b) The temporal variation characteristics of the environmental factors: Ta, air temperature; VPD, sat-
urated vapor pressure difference; Rn, net radiation. (c) Wind rose: wind speed frequency distribution
in different wind directions.

2.2. Experimental Design

The eddy covariance system was set up at the interface of adjacent fields planted with
cotton and spring maize. All micrometeorological observations were conducted from May
to October 2018 (Figure 1). Cotton was planted on the west side, and spring maize was
planted on the east side. The observed CO2 flux was split according to the flux source area.
There were 3632 westerly data and 4099 easterly data, with a ratio of 0.89:1. The westerly
turbulent flux represented cotton, and the easterly turbulent flux represented spring maize.
Cotton was sown on 16 April 2018, emerged on 30 April, and stopped growing on 8 October.
It was harvested on 25 October. Spring maize was sown on 8 April 2018, sprouted on
20 April, and matured on 14 August. It was harvested on 27 August. The main growth
stages and characteristics are shown in Table 1, and the two crops both used drip irrigation
under film.

Table 1. Main development stages and basic situation of cotton and spring maize.

Cotton Spring Maize

Growth Period Main Period Plant Height
(cm)

Irrigation Volume
(m3·hm−2)

Growth Period Main Period Plant Height
(cm)

Irrigation Volume
(m3·hm−2)

Sowing Mid-April ~ Late April - 675 Sowing Early April ~ Mid-April - 600
Seedling Early May ~ Early June 28 - Seedling Late April ~ Early May 36 -
Budding Mid-June ~ Late June 50 1350 Jointing Late May ~ Mid-June 106 1550

Flowering and boll Early July ~ Late Aug 63 - Tasseing stage Late June ~ Mid-July 221 1700

Boll opening Early Sept ~ Late Sept 66 2100 Milky maturation
stage Late July ~ Early Aug 230 1850

Maturity Mid-Aug ~ Late Aug 230 -

The eddy covariance system was installed 3.0 m above ground level, and its height
remained fixed throughout the entire growth period of plants. The system included a three-
dimensional ultrasonic anemometer and an open-path infrared gas analyzer. The data
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were measured at a frequency of 10 Hz and stored in a data collector (CR3000 Micrologger,
Campbell Scientific, Logan, UT, USA). The CO2/H2O flux (FC/FH) was calculated using the
covariance of the fluctuating values of vertical wind speed (w′) and CO2/H2O concentration
(ρ′). We used a four–component radiometer installed on the mounting arm (due south
orientation) at a height of 1.5 m to observe upward/downward short-wave and long-
wave radiation. In addition, two soil temperature sensors were buried 0 cm and 5 cm
underground, and a soil humidity sensor and a soil heat flux plate were buried 5 cm
underground near the eddy covariance system. Table 2 provides a detailed description of
the instruments used in this experiment.

Table 2. The basic information of experimental observation systems.

Observation Systems Sensors Observation Variables Height/Depth (m) Acquisition Frequency

The eddy covariance system

Three–dimensional ultrasonic
anemometer (CSAT3, Campbell
Scientific Inc., Logan, UT, USA)

Three-dimensional wind
speed and direction, Ta, RH,
CO2/H2O concentration, H,

LE, Fc, FH

3.0 10 HzOpen–path infrared gas analyzer
(LI-7500A, LI-COR Inc., Lincoln,

NE, USA)

The environmental element
observation system

Four-component radiometer (CNR4,
Kipp and Zonen B. V., Delft,

The Netherlands)
DR, UR, DLR, ULR, Rn 1.5

1 Hz
Soil temperature sensors (109, Campbell

Scientific Inc., UT, USA) Soil temperature 0, −0.05

Soil humidity sensor (Hydra 93640,
Stevens Inc., Portland, OR, USA) Soil moisture −0.05

Soil heat flux plate (HFP01SC,
Hukseflux, Inc., Delft, The Netherlands) Soil heat flux −0.05

where Ta, RH, H, LE, FC, FH, DR, UR, DLR, ULR, and Rn were air temperature, relative humidity, sensible heat
flux, latent heat flux, CO2 flux, H2O flux, total solar radiation, ground-reflected radiation, atmospheric long-wave
radiation, ground long-wave radiation, and net radiation, respectively.

2.3. Data Processing
Conventional Meteorological Data

EddyPro Software v7.0.9 was used to process the original data. Data processing
included the detection and removal of peaks [40], sonic temperature correction [41],
two-dimensional coordinate rotation [42], frequency response correction [43], and Webb–
Pearman–Leuning density correction [44]. After processing, data collected during rainfall
were eliminated. Finally, the fluxes of sensible heat (H), latent heat (LE), and CO2/H2O
(FC/FH) were obtained every 30 min. These values were calculated as follows:

H = ρCρw′T′ (1)

LE = LVw′ρ′V (2)

FC = w′ρ′C (3)

FH = w′ρ′V (4)

where ρ is the air density (kg·m−3), Cρ is the specific heat of air at a constant pressure,
w′ is the fluctuating value of the vertical wind speed, T′ is the potential temperature
fluctuation value, ρ′V and ρ′C are the fluctuating values of water vapor concentration and
CO2 concentration, respectively, and LV is the latent heat of evaporation.

2.4. Statistical Analyses

VPD can be estimated from the relative humidity (RH) of the air temperature (Ta)
as follows:

VPD = 0.611× e
17.27×Ta
Ta+237.3 × (1− RH

100
) (5)
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WUEe is the ecosystem-level WUE. It is the ratio of the yield (kg·hm−2) to the total
water (rainfall + irrigation, m3·hm−2). WUEl is the leaf-level WUE. It is the ratio of the net
ecosystem carbon exchange (NEE, mg·m−2·s−1) to the evapotranspiration (ET, mm·s−1).

SigmaPlot 14.0 and Origin Pro 9.0 were used for data calculation and statistical analysis.
Significance was evaluated at p < 0.05 or p < 0.01, as indicated. We also analyzed the
correlation between FC and WUE with various environmental parameters to identify key
influencing factors.

3. Results
3.1. Monthly Mean Diurnal Variation of Sensible and Latent Heat Fluxes

Terrestrial ecosystems exchange heat and water vapor with the atmosphere in the form
of H and LE. As shown in Figure 2, the diurnal variation in H during the cotton and spring
maize growth and development stages was generally consistent, with a basic distribution
of a single peak that first rises and then falls. H was slightly lower for cotton than for spring
maize in all stages, and the peak occurred earlier in cotton than in spring maize. At different
stages, both cotton and spring maize exhibited a high-low-high trend in H throughout the
growing season. The peak value of H in cotton occurred in May (169.3 W·m−2), followed
by September (155.2 W·m−2) and the lowest value occurred in July (−4.3 W·m−2). The
peak value of H in spring maize took place in September (225.2 W·m−2), followed by May
(163.5 W·m−2), with the lowest value occurring in July (13.9 W·m−2).
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Figure 2. Monthly average daily variation in sensible heat flux (H) and latent heat flux (LE) of cotton
and spring maize.

Diurnal variation in latent heat flux at different growth stages of cotton and spring
maize was similar to those of H, with a single-peak distribution with an initial rise and then
a fall. At different stages, both cotton and spring maize exhibited a low-high-low trend in
LE throughout the growing season. In general, the LE of cotton was slightly lower than that
of spring maize at all stages, and the timing of their respective peak values was relatively
consistent, with both occurring in July (cotton, 383.3 W·m−2; spring maize, 410.6 W·m−2),
followed by August (cotton, 339.9 W·m−2, spring maize, 304.1 W·m−2), and June (cotton,
233.2 W·m−2, spring maize, 292.9 W·m−2). Overall, under the combined influence of
surface energy and plant growth, there was a significant complementary effect between
H and LE of spring maize and cotton during the growth period. And the complementary
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effect was most prominent in July when relatively more energy was transferred from the
ground in the form of LE due to the comparatively lower H.

3.2. Monthly Mean Diurnal Variation of CO2 Flux and Its Correlation with Meteorological Factors

The FC of farmland ecosystems was mainly affected by the combined effects of crop
photosynthesis, respiration, and soil microbial respiration. The FC of cotton and spring
maize exhibited an apparent single-peak U-shaped distribution during the main growing
season (June–August), as shown in Figure 3. At around 10:00 (after sunrise), photosynthesis
began to increase, reaching its peak at around 14:00. Then, it began to decline, becoming
negative during the day, which indicates that the ecosystem was a carbon sink. Before
sunset, photosynthesis gradually weakened until 20:00, and the respiration of crops and
soil microorganisms released CO2. Consequently, CO2 concentrations within the canopy
increased. FC became positive overnight, which indicates that the ecosystem was a carbon
source. This phenomenon was most evident in July, with the peak absorption rate of cotton
reaching 1.023 mg·m−2·s−1 and that of spring maize reaching 1.312 mg·m−2·s−1. Notably,
cotton, as a C3 plant, has lower photosynthesis efficiency than C4 plants like spring maize.
Therefore, the carbon sequestration rate of cotton was lower than that of spring maize
during the main growing season in our study. Additionally, the aboveground stems of
spring maize grew faster and exhibited daytime CO2 absorption features as early as May,
while cotton showed more obvious CO2 absorption characteristics only in June. As spring
maize was harvested at the end of August, its carbon sequestration rate was slightly lower
than that of cotton.
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Data from months with large fluctuations in CO2 flux (May–September) during the
daytime (10:00–20:00) were selected for correlation analysis with Ta, VPD, and net radiation
(Rn) (Table 3). The results showed that solar radiation was the main factor controlling the
CO2 absorption capacity of ecosystems, followed by temperature. Notably, the correlation
between the CO2 absorption capacity of ecosystems and VPD was weak. As Xinjiang is
an irrigated agricultural region, water conditions do not limit the growth of crops. Fitting
the nonlinear relationship between CO2 flux, Rn, and temperature (Figure 4) revealed that
as the temperature and solar radiation increased, CO2 absorption gradually strengthened,
particularly during high solar radiation stages when absorption was more pronounced.
This finding indicates that increased solar radiation and temperature significantly promote
the carbon sequestration rate. However, the CO2 flux intensity decreased when the tem-
perature was too high. Besides, the optimal temperature for cotton growth ranged from
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20 ◦C to 25 ◦C, at which cotton had its highest net photosynthetic production rate and
fastest growth, as it is a state of thermal saturation. At temperatures above 28 ◦C, the pho-
tosynthetic production rate of the cotton crop decreased, and plant growth slowed down
significantly. At temperatures below 20 ◦C, heat was insufficient for optimal cotton growth.
The optimal temperature for spring maize growth ranged from 22 ◦C to 27 ◦C, at which
the net photosynthetic production rate was highest and growth was fastest. However, the
photosynthetic production rate decreased at temperatures below 20 ◦C or above 30 ◦C.

Table 3. Correlation coefficient (R) values for the relationships between CO2 flux (FC) and environ-
mental factors in cotton and spring maize.

Ta VPD Rn

FC of Cotton −0.387 * 0.083 −0.592 **
FC of Spring maize −0.417 ** −0.127 −0.456 **

Ta: daily average air temperature; VPD: saturated vapor pressure difference; Rn: net radiation. * p < 0.05; ** p < 0.01.
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3.3. Monthly Average Daily Variation of Water Vapor Flux and Its Correlation with
Meteorological Factors

The variation features of water vapor flux in cotton and spring maize were consis-
tent with the corresponding latent heat flux. The peak values of water vapor flux for
each month ranged between 21.095 mg·m−2·s−1 and 152.337 mg·m−2·s−1 for cotton and
21.338 mg·m−2·s−1 to 193.939 mg·m−2·s−1 for spring maize. Nevertheless, water vapor
flux and FC showed opposite trends. The strongest changes in the water vapor flux oc-
curred in July, followed by June and August, when spring maize had a higher peak value
than cotton.

In 2018, the cotton yield in the research area was 2261 kg·hm−2, with a total water of
5284 m3·hm−2, including precipitation of 1159 m3·hm−2 and irrigation of 4125 m3·hm−2.
The WUEe of cotton was 0.43. The yield of spring maize is 12,891 kg·hm−2, with a to-
tal water of 6607 m3·hm−2, including precipitation of 907 m3·hm−2 and irrigation of
5700 m3·hm−2. The WUEe of spring maize was 1.95. As crops do not undergo photosyn-
thesis at night, our study of daily WUEl only considered daytime activity (10:00–20:00;
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Figure 5). Overall, the WUEl of cotton was between −6.16 g·kg−1 and −4.35 g·kg−1. On a
daily scale, WUEl intensity weakened gradually with increasing temperature and light. On
a monthly scale, the peak occurred in July, whereas the weakest level occurred in June. For
spring maize, the WUEl was between −7.40 g·kg−1 and −5.84 g·kg−1, slightly higher than
that of cotton. We did not observe a day-to-day trend of the WUEl with respect to changes
in temperature and light. On a monthly scale, the peak WUEl of spring maize occurred in
July, whereas the weakest level was recorded in August.
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Our correlation analyses of WUEl and Ta, VPD, and Rn revealed that the main factors
affecting the WUEl intensity were VPD and Ta, while Rn had relatively less influence on
the WUEl intensity (Table 4). Further fitting of the nonlinear relationship among WUEl
intensity, VPD, and Ta in cotton and spring maize (Figure 6) showed that the WUEl intensity
decreased gradually as the VPD increased because VPD reflects the water potential of leaves,
and an increase in leaf water potential causes stomatal closure, leading to a reduction
in WUEl.

Table 4. Correlation coefficient (R) values for the relationships between WUEl and environmental
factors in cotton and spring maize.

Ta VPD Rn

WUEl of Cotton 0.418 * 0.577 ** −0.039
WUEl of Spring maize 0.456 ** 0.449 * 0.077

* p < 0.05; ** p < 0.01.
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4. Discussion

In this study, we installed an eddy covariance system at the interface between adjacent
cotton and spring maize fields and segmented the observed CO2 and H2O turbulent
flux based on the flux source partitioning analysis. We used this system to compare and
analyze the differences in carbon and water exchange characteristics, WUE, and their
relationship with environmental factors in cotton and spring maize fields. Our research
effectively mitigated the systematic observation errors among different instruments and
saved observation costs. Our findings also provide valuable references for subsequent
studies on farmland and atmospheric observations.

Throughout the growing season, farmland H and LE fluxes exhibited high-low-high
and low-high-low trends, respectively, displaying evident complementary effects. It was
jointly influenced by solar radiative forcing and crop growth. As solar radiation varied in
the growing season, the energy received by the surface showed a low-high-low trend, and
crop growth gradually flourished, with the coverage of the ground reaching its peak in
July. Meanwhile, the H flux reached its minimum value in the growing season, whereas
the LE flux peaked due to the combined effects of plant transpiration and soil evaporation.
Subsequently, as solar radiation weakened and crop growth declined, the LE flux gradually
decreased, and the H flux rebounded to some extent.

Cotton and maize are C3 and C4 plants, respectively, with distinct CO2 properties
during photosynthesis. Unlike C3 plants, C4 plants have an extra CO2 sequestration
pathway, which provides a relatively higher CO2 concentration for the C3 pathway in the
vascular bundle sheath, and this process enhances the assimilation capacity of C4 plants
compared to C3 plants [45]. As a result, spring maize has greater carbon sequestration
capacity than cotton under the same conditions. Based on the flux data of this study, the
NEE of cotton and spring maize throughout the entire growth period were −321.2 g C·m−2

and −549.6 g C·m−2, respectively. Compared with NEE data of other ecosystems at home
and abroad (Table 5), the results of our research showed a high level of carbon balance,
regardless of whether it was in a monoculture or a rotation farmland ecosystem, or a
forest and grassland ecosystem. In contrast to forest and grassland ecosystems, farmland
ecosystems are susceptible to the effects of agricultural activities and human disturbances,
resulting in significant temporal and spatial variations in carbon and water fluxes [46]. Our
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research indicates that temperature and net radiation are the main factors influencing the
carbon sequestration capacity of cotton and spring maize. With the increase in temperature
and net radiation, the carbon sequestration capacity of the two crops gradually increases.
After reaching the optimal conditions, the increases in carbon sequestration efficiency
slow down. The optimal temperature ranges for cotton and spring maize are 20 ◦C–25 ◦C
and 22 ◦C–27 ◦C, respectively. When the temperature is lower than the optimal range,
plants tend to be in their early stages or affected by cold stress, resulting in a lower carbon
sequestration efficiency. On the contrary, when the temperature is higher than the optimal
temperature, plants experience heat stress, leading to stomatal closure and a lower carbon
sequestration efficiency.

Absorbing more CO2 based on the consumption of unit water will greatly improve
water use efficiency. Previous studies reported that there were differences in the carbon
sequestration and water consumption capacities of ecosystems due to differences in crops,
leading to significant differences in their WUE [4,25,32,47,48]. Therefore, spring maize, as
a typical C4 plant, exhibits relatively higher water use efficiency compared to cotton at
both leaf and ecosystem levels. Additionally, the highest carbon sequestration rate and
water use efficiency occurred in July. VPD and Ta were the two main factors influencing
WUE among external environmental conditions. Plant water consumption increases as
VPD increases, which gradually weakens WUE. The relationship between Ta and WUE
is a quadratic function, and too low and too high temperatures are both unfavorable for
the absorption of CO2 by crops, resulting in a decrease in their water use efficiency. This
finding further underscores the significance of identifying the optimal temperature range
for crops.

Farmland ecosystems can improve yields by changing planting systems, fertilization,
and irrigation procedures, as well as other human-controlled measures. In terms of changes
in carbon sequestration flux, spring maize reaches the maximum carbon sequestration
state in July, the same time when spring maize reaches the harvesting conditions for
ensiling feed. Therefore, it is recommended to immediately plant winter crops like winter
wheat or winter vegetables after harvesting spring maize at the end of July to maximize
the utilization of water and heat resources in farmland. And farmland rotation not only
increases farmland production but also maximizes the carbon sequestration capacity of
farmlands. To ensure crop yield sustainability, which is of great significance for the rational
allocation and effective utilization of water resources and economic development in desert
oases, it is necessary to understand the changing characteristics of CO2 and water/heat
transfer pathways, as well as consumption methods in oasis farmland ecosystems, and
explore effective management models to improve WUE.

Table 5. Comparison of net ecosystem carbon exchange (NEE) in different ecosystems.

Site Ecosystem Type NEE/
(g C·m−2) Research Period Source

Ulan Wusu, China Farmland (cotton) −478.6 April–October
2009–2010 [49]

Washington, USA Farmland (wheat) −261 2012–2013 [50]
Nebraska, USA Farmland (maize) −590.0 May–October 2002 [51]
Yingke, China Farmland (maize) −626.0 2008–2009 [52]

Weishan, China Farmland (wheat, maize) −533 ~ −585 2006–2008 [24]
Central Oregon, USA Forest −534 ~ −415 2004–2008 [40]

Northeast China Grassland −89.57 2014 [47]

5. Conclusions

In this study, we utilized a set of eddy covariance installed at the interface between
cotton and spring maize crops in arid regions to analyze the differences in carbon and
water fluxes between the two typical crops, as well as their responses to changes in environ-
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mental factors. Our research effectively mitigated the systematic observation errors among
different instruments and saved observation costs. The research results show that spring
maize, as a typical representative of C4 plants, has a higher carbon sequestration capacity
and water use efficiency than cotton. The NEE of cotton and spring maize throughout their
entire growth period were −321.2 g C m−2 and −549.6 g C m−2, respectively. Therefore,
the carbon sequestration capacity of farmland ecosystems in arid regions is undeniable and
is greatly influenced by the growth and development of plants. Throughout the growth
period, temperature, net surface radiation, and VPD significantly affected the carbon se-
questration capacity and WUE of cotton and spring maize. In addition, based on the
changes in the carbon flux of spring maize, it was recommended to immediately plant
winter crops like winter wheat or winter vegetables after harvesting spring maize at the
end of July to maximize the utilization of water and heat resources in farmlands. Moreover,
farmland rotation not only increases farmland production but also maximizes the carbon
sequestration capacity of farmlands.
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