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Abstract: Soil organic carbon (SOC) is widely recognized as an essential indicator of the quality
of arable soils and the health of ecosystems. In addition, an accurate understanding of the spatial
distribution of soil organic carbon content for precision digital agriculture is important. In this study,
the spatial distribution of organic carbon in topsoil was determined using four common machine
learning methods, namely the back-propagation neural network model (BPNN), random forest
algorithm model (RF), geographically weighted regression model (GWR), and ordinary Kriging
interpolation method (OK), with Helan County as the study area. The prediction accuracies of the
four different models were compared in conjunction with multiple sources of auxiliary variables. The
prediction accuracies for the four models were BPNN (MRE = 0.066, RMSE = 0.257) > RF (MRE = 0.186,
RMSE = 3.320) > GWR (MRE = 0.193, RMSE = 3.595) > OK (MRE = 0.198, RMSE = 4.248). Moreover, the
spatial distribution trends for the SOC content predicted with the four different models were similar:
high in the western area and low in the eastern area of the study region. The BPNN model better
handled the nonlinear relationship between the SOC content and multisource auxiliary variables and
presented finer information for spatial differentiation. These results provide an important theoretical
basis and data support to explore the spatial distribution trend for SOC content.

Keywords: environmental auxiliary variables; machine learning; spatial distribution; soil organic carbon

1. Introduction

Soil is the largest carbon reservoir in terrestrial ecosystems, holding approximately
three times as much carbon as the atmospheric carbon pool and two and a half times as
much carbon as the terrestrial vegetation carbon pool [1–3]. Agricultural soils in particular
are a huge carbon reservoir. By storing huge amounts of organic carbon (SOC), agricultural
soils play an important role in sustaining soil fertility for promoting plant growth and
mitigating climate change [4,5]; they also hold more than 10% of global organic carbon
stocks. SOC not only helps maintain soil fertility and soil microbial activity, but it also
has a marked impact on soil health in that it affects soil water, nutrient retention capacity,
and soil structure [6,7]. As the most active and important component of the global carbon
pool, agricultural SOC is highly spatially heterogeneous and vulnerable to human activities
and various natural factors, including climate, soil properties, and topography [8–11].
Therefore, the exploration of the spatial distribution of agricultural SOC is necessary for
carbon balance sustainment and soil health improvement [12].

Remote sensing technology based on satellites has been increasingly used to detect
and classify objects on Earth [13]. Remote sensing data are obtained by applying complex
prediction pipelines [14]. Currently, the combination of remote sensing technologies and
geographic information systems (GISs) has opened up new opportunities for soil science
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research [15]. For example, using remote sensing techniques, Abdoli et al. [16] predicted
soil organic carbon (SOC) in selected agricultural soils in parts of Iran, Dhiman et al. [17]
predicted soil nutrients in North India, and Jia et al. [18] predicted the soil potential of
hydrogen (pH) in the north of Yinchuan based on remote sensing data and machine learning
algorithms. Remote sensing technology and machine learning (ML) have made a new
contribution to the research progress of soil properties.

ML technology is known to be effective in organizing and processing large amounts
of data from different sources [19]. Zhao et al. [20] compared the prediction of pH and soil
texture using the random forest algorithm (RF) model and other models; they concluded
that the local uncertainty observed by the other models was overestimated to a greater
extent than that of the RF model, which was better able to quantify the predicted uncertainty.
Hao et al. [21] used a BPNN to predict the best measure of land tillage protection and
the regression coefficient between the predicted and actual output values. In modeling
soil attributes, such as the geographical distribution of physical properties and nutrients,
strength of furrow erosion, and influence of environmental factors, neural network models
were remarkably accurate [22,23]. Lu et al. [24] predicted soil heavy metals using the
back-propagation neural network (BPNN) and RF models; the prediction results showed
that the BPNN model had a better prediction performance. Wang et al. [25] compared
the geographically weighted regression (GWR), ordinary Kriging (OK) interpolation, and
multiple linear regression (MLR) models for SOC prediction and concluded that GWR
had the highest prediction accuracy. Yuan et al. [26] used GWR to reveal an effective tool
for the spatial variability of environmental variables, which allowed for a better spatial
understanding of the complex relationships between environmental parameters, which
was difficult to achieve with traditional statistical analyses. In summary, it is clear that
various algorithms produced different performances and results.

Meanwhile, there was a mostly nonlinear characteristic between SOC content (as an
output variable) and remotely sensed data (as an input variable) [16], so classical linear
models may not be suitable for identifying complex nonlinearities. ML models, such as
the RF and BPNN models, can help capture nonlinearities and further improve estimation
accuracy [27,28]. Additionally, different environmental factors could have an impact on
ML performance. The relative importance of remote sensing indices for SOC prediction
was higher in Zeraatpisheh’s study [29]. However, Mahmoudzadeh [30] argued that
elevation had a greater impact on SOC predictions. Therefore, the choice of different
environmental variables could also have an impact on the prediction results; this is also
crucial to understand the effects of environmental factors on SOC [31]. Therefore, two
classical models and two ML algorithms were selected and used to understand the optimal
model and effect of environmental factors on SOC in our study area.

Helan County is located in the Ningxia Hui Autonomous Region of Northwest China.
It is a major grain producing zone with arid and semiarid regions [32], and there is an
important arable land reserve in Ningxia [18]. Therefore, an accurate and effective analysis
of the spatial distribution of SOC content in local agricultural soils is essential to assess soil
health and optimize land management in the area [33]. However, the spatial distribution
and prediction of organic carbon in the agricultural soils of Helan County, based on
multisource variables and ML algorithms, have been little studied. The objectives of this
study were to (1) understand the characteristics and influencing factors of the spatial
distribution of SOC content; (2) identify a set of auxiliary variable combinations with a
high impact on SOC prediction; and (3) determine the best machine learning algorithm for
SOC spatial prediction performance in the study area.

2. Materials and Methods
2.1. Geologic Setting

Located in Helan County in the Ningxia Hui Autonomous Region of Northwest China
(Figure 1), the research region belongs to the Yellow River Diversion and Irrigation District.
There are hilly regions in the west and plains in the east, the average altitude being 1250 m.
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The research area has a temperate continental dry climate zone, with an average annual
evaporation of 2000 mm from soils and rivers, a mean annual precipitation of 113.3 mm, a
frost-free period of 188 days, a mean annual temperature of 8.5 ◦C, a maximum temperature
of 35 ◦C, and a minimum temperature of approximately −20 ◦C [34]. The soil type was
mainly light grey calcium soil. The soil here is low in clay and sand content and is mainly
cultivated for maize, wheat, and rice.
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Figure 1. Location of the soil-sampling sites in the study area.

2.2. Sampling and Chemical Analysis

The sampling points were laid out in a grid format, with the surface cover removed
using a wooden shovel. Soil samples were collected using a five-point sampling method
and then placed in brown glass jars. A total of 117 soil samples were collected in October
2021 from a soil depth of 0 to 20 cm (Figure 1). The soil samples were air dried, ground, and
sieved to determine the content of the indicators; these included SOC, pH, and electrical
conductivity (EC). The SOC content was determined using the potassium dichromate
volumetric method.

2.3. Environmental Covariates

Twelve environmental covariates (Table 1) were selected to predict the SOC, includ-
ing geographic coordinates (X and Y coordinates), topographic factors (elevation, surface
curvature, profile curvature, slope, and aspect), remote sensing factors (NIR, SWIR.1, and
SWIR.2), and soil physicochemical factors (EC and pH). The pH and electrical conductivity
(EC) were determined in the laboratory by the electrode method. The spatial distribution
of soil EC and pH in the study area was obtained through OK interpolation. Topographic
factors are the most widely used environmental factors in the prediction of soil proper-
ties. In this study, a Landsat 8 digital elevation model (DEM) with a 30 m resolution was
downloaded from the geospatial data cloud platform to obtain various topographic factors
(https://www.gscloud.cn/ (accessed on 25 February 2022)). Following this, and having
considered previous research [33,35–37], five topographic factors (elevation, surface curva-
ture, profile curvature, slope, and aspect) were obtained after processing with ArcGIS 10.6
software. Landsat 8 remote sensing data from the Computer Network Centre of the Chinese

https://www.gscloud.cn/
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Academy of Sciences’ geospatial data cloud platform were used to derive remote sensing
variables. After radiometric calibration and atmospheric correction using ENVI5.3 software,
the short infrared wave 1 (SWIR.1), short infrared wave 2 (SWIR.2), and near-infrared band
(NIR) were extracted because the SOC was sensitive to these bands. Soil pH and EC were
selected as environmental covariates. Figure 2 clearly shows the auxiliary variables in space.
For better predictions, the variance inflation factor (VIF) for the environmental covariates
was calculated before being embedded into the models. When the VIF > 10, the variables
were excluded before being substituted into the models.

Table 1. Sources of environment variables.

Extracted Parameters Sources Reference Spatial Resolution

EC Laboratory measurement [33,38]
30 mpH [36,39]

Slope

Geospatial data cloud platform
to obtain various topographic

factors
(https://www.gscloud.cn/

(accessed on 25 February 2022 )).

[33,35–37]

30 m

SWIR.2 [7,40]
Y [41]

SWIR.1 [7,40]
NIR [7,39]

X [41]
Profile curvature [33]
Surface curvature [33]

Aspect [33]
Elevation [33,35,36]
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2.4. Theory and Algorithms
2.4.1. Variance Inflation Factor

The VIF is an indicator used to assess the degree of multicollinearity in a multiple
linear regression model. It is the ratio of the variance in explanatory variables in the

https://www.gscloud.cn/
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presence of multicollinearity to the variance in explanatory variables in the absence of
multicollinearity [42]. The formula is calculated as follows:

VIFi =
1

1− R2
i

(1)

where R2
i denotes the coefficient of determination xi between the ith variable in the indepen-

dent variable matrix and the variables outside it. It is the result of an ordinary least-squares
(OLS) regression in which xi is the dependent variable and the remaining variables are the
independent variables [43].

If the variables xi and other variables have no covariance, then R2
i = 0 and VIFi = 1.

However, this is simply an ideal condition. Covariance between numerous independent
variables is almost always present. VIFi increases as the linearity between the variables
increases. Therefore, the higher the VIF, the closer the multicollinearity between the
variables. When the VIF is greater than 10, multicollinearity exists [44].

2.4.2. Ordinary Kriging Model

The OK method is an element of geostatistics and is based on structural analysis and
the semi-variance function theory. The method provides an optimal, continuous regional-
ized variable evaluation of known sampling point data based on a linear combination of
values between sampling points [45].

Z× (x0) =
n

∑
i=1

λi(Zxi) (2)

In equation: Z× (x0) denotes the value of the point waiting for valuation x0, Z(xi)
denotes the ith valid observation (i = 1, 2, . . . , n), and λ is the weight generated by the
semi-variance function and ∑ λ = 1.

2.4.3. Random Forest Model

The RF model is an algorithm combined with a bagging algorithm and a machine
tilting method. To boost model performance, the RF model trains several CART decision
trees. In the training phase, it employs bootstrap sampling to obtain various sub-training
datasets from the input training dataset to train several decision trees in succession. Notably,
the RF model assesses variable importance using the variable importance metric, which is
the overall reduction in nodal impurity of the split variable as determined with a regression
averaging the residual sum of squares over all tree branches [46]. The error values in
this study leveled off and were minimized when trees = 1000, as shown in Figure 3. In
the training phase of the RF model, the regression variables (influences) and points of
regression were evaluated using the mean square error function [47]. The RF classification
result is obtained by voting on the output of each classification decision tree; however, in
regression prediction [48], the projected value is the average of all regression tree outputs,
and the expression is as follows:

h(x) = (
1
k
)

k

∑
i=1

h(X; θi) (3)

where h(x) is the predicted value, θi is an independently distributed random vector that
can determine the growth of the decision tree, X is the input matrix, h(X; θi) is the output
of the ith regression tree, and k is the number of regression trees.
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2.4.4. Geographically Weighted Regression Models

GWR displayed the regionally varied correlations between the dependent and inde-
pendent variables, as well as the set of parameter estimates for each site [26].

YGWR(s0) = β(s0) +
k

∑
i=1

β(s0)X(s0) (4)

where YGWR(s0) is the estimated value of the dependent variable Y at point s0, Xk(s0) is
the measured value of the kth explanatory variable at point s0, βi(s0) is the local estimation,
and k is the number of independent variables.

2.4.5. Back-Propagation Neural Network Model

As a multi-layer feed-forward neural network, the BPNN is trained according to the
error reverse propagation algorithm and uses the gradient search technique to minimize
the error of the network’s actual and expected output values [49]. In this paper, the BPNN
model was used for SOC prediction, and a 3-layer BPNN was constructed, i.e., with an
input, middle, and output layer (Figure 4).
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2.4.6. Precision Evaluation

The 82 randomly generated points used for fitting were involved in all analysis
processes, and the remaining 35 validation points were used to verify the spatial results.
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Both the root mean square error (RMSE) and mean relative estimation error (MRE) among
the predicted and test data are commonly used to assess the accuracy of the model [50].
The MRE and RMSE of the estimates and measurements at the validation points were used
to evaluate the precision of the different methods in predicting the SOC content of the
study area. The lower values of the RMSE and MRE demonstrated that the model was
more accurate [51]:

MRE =
1
n

n

∑
i=1

|ŷi − yi|
yi

(5)

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)2 (6)

where ŷi is the estimated value of the SOC at i, yi is the measured value of SOC at i, n is the
number of validation points; in this paper, n = 35. When MRE and RMSE are close to 0,
the interpolation accuracy is higher.

2.5. Data Preprocessing

The OK, GWR, BPNN, and RF models were selected to predict the spatial distribution
of soil organic carbon, based on the applicability of different spatial distribution prediction
models in the study area. The 117 datasets described in Section 2.2 were randomly divided
into a 70% fitting set and 30% validation set. The SOC content was calculated using
Microsoft Excel 2021 software, and the statistical analysis of the relevant data was completed
with SPSS 26.0 software. The multisource environmental factors were obtained from the
Chinese Geospatial Data Cloud, and the data were processed with ENVI 5.3 and ArcGIS
10.6. The OK method was performed with ArcGIS 10.6, the RF model with R4.2.0, the
BPNN model with MATLAB 2022, and the GWR model with GWR4 software.

3. Results
3.1. Descriptive Statistics

The results showed that the SOC content ranged from 1.176 to 53.134 g/kg (Table 2).
The coefficient of variation for the SOC content was 0.544, which indicated that the spatial
variability was strong. According to the Second National Soil Census Nutrient Classification
Standards [52], the average organic carbon content in the study area was at a medium level
(10~20 g/kg). Comparing the SOC content in other arid and semiarid regions (Shaanxi
8.2 g/kg [53] and Gansu 11.17 g/kg [54]), the SOC content in the study area was high.

Table 2. Descriptive statistical characteristics of SOC content.

Soil Sample Sites No. of
Samples Max(g/kg) Min(g/kg) Mean(g/kg) Standard

Deviation
Coefficient
of Variation Skewness Kurtosis

Group 1
Fitted points.1 82 53.134 1.178 12.155 7.419 0.610 3.447 15.704

Validation points.1 35 18.815 3.710 11.105 3.288 0.296 −0.023 0.158

Group 2
Fitted points.2 82 36.728 1.178 11.391 4.575 0.402 1.913 10.756

Validation points.2 35 53.134 3.710 12.896 9.383 0.728 3.340 12.052

Total sample points 117 53.134 1.178 11.841 6.440 0.544 3.643 17.154

To ensure the validity of the experimental results, the dataset was randomly divided
into 70% fitted points and 30% validation points, randomly selected twice and divided
into two groups; the group with a low degree of variability was selected as the final result.
The mean value of the SOC content was 12.155 g/kg at the fitted site and 11.105 g/kg at
the validation site in Group 1. The mean value of the SOC content was 11.391 g/kg at
the fitted site and 12.896 g/kg at the validation site in Group 2. The degree of variability
for Group 1 was better than that of Group 2, so Group 1 data were chosen for a spatial
prediction analysis.
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3.2. Relationship between SOC Content and Multisource Environmental Factors
3.2.1. Importance Ranking of the Influencing Factors

Environmental variables such as soil physical, chemical, and topographic factors
determine SOC distribution on regional and continuous scales [55,56]. The significance
and ordering of the effects of different environmental factors on SOC levels in the study
area greatly varied. As shown in Figure 5, EC contributed the most to the accuracy of SOC
spatial distribution prediction, having an importance of 38.65%, followed by SWIR.2 at
24.01%, then NIR at 14.85%, slope at 13.31%, and SWIR.1 at 13.08%; the remainder had an
importance of less than 10%. Among them, the remote sensing factor accounted for the
largest share of the overall importance at 44%, the soil physicochemical factor accounted
for 27%, the topographic factor for 21%, and the geographical coordinates for 8%.
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3.2.2. Interactive Correlation of Impact Factors

The results of the interaction correlation analysis (Figure 6) showed that the SOC
had different correlations with the six auxiliary variables, X, EC, SWIR.1, SWIR.2, DEM,
and slope, at different lag distances and in different directions. There was an interactive
negative correlation between SOC and X when the lag distance was four, with an interac-
tive correlation coefficient of −0.184. In addition, EC, SWIR.1, SWIR.2, DEM, and slope
interacted with the SOC at lag distances of 7, 0, 4, 3, and 6. Among them, X, SWIR.1, and
DEM showed an interactive negative correlation with SOC, while EC, SWIR.2 and NIR, pH,
Y, aspect, surface curvature, and profile curvature were not interactively correlated with
SOC at lag distances from −7 to 7. These illustrated the non-linear relationship between
the environmental factors and SOC.

3.3. Spatial Distribution of Organic Carbon Content

The general trend of the spatial distribution of SOC content predicted with the OK,
GWK, BPNN, and RF models was basically the same, with all showing a spatial pattern
of higher values in the western region and lower values in the eastern region (Figure 7).
The predictive SOC content ranged from 5.97 to 30.72 g/kg, 10.15 to 14.18 g/kg, 7.40 to
27.09 g/kg, and 9.54 to 13.79 g/kg for the OK, GWR, BPNN, and RF models, respectively.
The results in Figure 8 showed that the BPNN frequencies (frequencies = 60) were the
closest statistical ranges (frequencies = 60) to the original SOC data compared with those
of the OK, GWR, and RF models, indicating a more accurate range of SOC prediction for
the BPNN model. The relative importance of environmental factors (Figure 5) suggested
that EC, SWIR.2, and NIR were the main environmental factors affecting SOC content.
Combined with the spatial distribution map of environmental factors (Figure 2), the above
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influencing factors showed higher values in the northwestern region than in the other
regions. This was consistent with the spatial distribution of SOC content in the study area.
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3.4. Prediction Precision Analysis

The MRE and RMSE of the values measured and predicted with the OK method were
higher than those of the other prediction methods, which indicated its lower accuracy
(Table 3). In contrast, the BPNN’s MRE and RMSE were the smallest, indicating that the
accuracy of the prediction was the best (Table 3). This was consistent with Reda’s [57] results
which predicted SOC using different machine learning algorithms; the BPNN prediction
accuracy was better.

Table 3. MRE and RMSE for different SOC content prediction methods.

Prediction Method MRE RMSE

OK 0.198 4.248
RF 0.186 3.320

GWR 0.193 3.595
BPNN 0.066 0.257

The relative accuracy of SOC content prediction in the control group was improved by
1.2%, 13.2%, and 0.5% for the RF, BP, and GWR models, respectively, compared with the OK
model. In addition, the RF and BPNN models improved by 0.7% and 12.7%, respectively,
with the GWR model as the reference, and the BPNN model improved by 12% with the RF
model as the reference. This result indicated that the BPNN model can better capture the
complex relationship between SOC and environmental factors, having an overall higher
prediction accuracy and better prediction results than those of the OK, RF, or GWR models.
Tang et al. [58] predicted wheat yield using a linear regression model and a BP neural
network; their results indicated that the BP neural network predicted better than the linear
regression model. Yang et al. [59] used the Kriging and BPNN models to predict the
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Normalized Difference Vegetation Index (NDVI), demonstrating that the BPNN produced
higher estimations than the Kriging model. Reda et al. [57] used Partial Least-Squares
Regression (PLS), a BPNN, and Ensemble Learning Modeling (ELM) to predict SOC and
total soil nitrogen (STN); their results indicated that the BPNN showed excellent accuracy
in the prediction of SOC and STN. In conclusion, the BPNN prediction accuracy has been
shown to be superior to other models, as well as being suitable for predicting different
variables in different regions.

4. Discussion and Conclusions
4.1. Discussion

The average SOC content in the surface layer of farmland in Helan County was
11.841 g/kg, which was a medium level. The analysis of the SOC content characteristics
of the study area showed that there was high variability in the SOC content in the study
area. The reason for this was that the SOC content of farmland is closely related to anthro-
pogenic activities. Previous studies have shown that higher carbon inputs usually increase
SOC storage [60], and eventually, SOC accumulation improves soil properties, hydraulic
conductivity, and agglomeration stability [61]. Wu et al. [62] found that agricultural land
has often been ploughed and fertilized for a long time, with a thick plough layer and high
SOC content. Ebhin [63] and Ma [64] found that the SOC content in farmland receiving
farmyard manure fertilizer or straw, as well as NPK fertilizer, was much greater than that
in farmland receiving only NPK chemical fertilizer. Frequently, the animal manure from
the farms in the study area is scattered in the surrounding fields, causing an increase in the
SOC content of the surrounding farmland. Further investigation showed that some areas of
the study fields had been cultivated using fertilizer and animal manure, while others had
been cultivated using chemical fertilizer alone, resulting in large variations in SOC content
in some parts of the study area.

In this study, the RF, OK, BPNN, and GWR algorithms were selected for SOC content
prediction. The prediction accuracy results demonstrated that the BPNN > RF > GWR
> OK. The nonlinear relationship between certain environmental auxiliary factors and
SOC may have impacted geographical prediction. Among the four algorithms, the BPNN
was more suitable for predicting the spatial distribution of SOC in the study area. The
researchers found that the BPNN algorithm essentially implemented a mapping function
from inputs to outputs, and mathematical theory suggested that the BPNN algorithm
had the ability to implement complex nonlinear mapping [65]. In addition, there was less
influence from environmental factors in the BPNN model, so its prediction accuracy was
improved compared with that of the other models [66]. There are many factors that affect
the accuracy of SOC content prediction results in farmland, such as climate change and
the spatial resolution of remote sensing images [29,37]. Therefore, more comprehensive
investigations into the influence of human factors on SOC are required to improve the
accuracy of SOC measurement [67].

4.2. Conclusions

(1) The SOC content ranged from 1.178 to 53.134 g/kg, with an average of 11.841 g/kg,
which is a medium level. The SOC greatly varied and was distributed unevenly
in the study area, mainly due to the nonuniform application of fertilizer during
crop cultivation.

(2) The main environmental factors affecting the spatial distribution of SOC in this study
area were EC values and remote sensing factors, with EC values accounting for
38% of the relative importance and remote sensing factors accounting for 44% of all
environmental factors.

(3) Compared with the OK (MRE = 0.198, RMSE = 4.248), GWR (MRE = 0.193, RMSE = 3.595),
and RF (MRE = 0.186, RMSE = 3.320) models, the prediction accuracy and results of
the BPNN (MRE = 0.066, RMSE = 0.257) model were better, and the simulated spatial
distribution map could better represent the actual distribution of the SOC. The results
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showed that the BPNN model was more suitable for the prediction of the distribution
of SOC in the study area.

(4) In this study, four different models were selected to predict the SOC content in
Helan County, and the optimal model suitable for the prediction of SOC content was
determined; this provides theoretical support for refined agricultural management.
This study was limited to the applicability analysis of the four models described
above; however, our method requires enhancement to render it applicable to the
spatial distribution of SOC.
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Abbreviations

Abridgement Full Name
OK ordinary Kriging
GWR geographically weighted regression
RF random forest
BPNN back-propagation neural network
SOC soil organic carbon
ML machine learning
pH potential of hydrogen
MLR multiple linear regression
DEM digital elevation model
SWIR1 short infrared wave 1
SWIR2 short infrared wave 2
NIR near-infrared band
EC electrical conductivity
VIF variance inflation factor
X longitude
Y latitude
RMSE root mean square error
MRE mean relative estimation error
NDVI normalized difference vegetation index
PLS partial least squares regression
ELM ensemble learning modeling
STN total soil nitrogen
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