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Abstract: The biophysical effect of land cover changes (LCC) on local temperature is currently a
hot topic. This work selects one of the nine agricultural divisions in China, the Sichuan Basin and
surrounding regions, as the study area. By combining long-term series satellite remote sensing prod-
ucts with the space-and-time method, the spatial and temporal variations of the actual biophysical
effects of LCC on land surface temperature (LST) are obtained. The results show that: (1) From
2001 to 2020, LCCs from Savannas to Cropland, from Cropland to Savannas, and from Savannas
to Mixed Forest occurred frequently within the study area, and their area proportions of the total
conversions are 21.7%, 18.5%, and 17.6%, respectively. (2) The biophysical feedback of LCC in the
study area led to a LST increase of 0.01 ± 0.004 K at annual scale, which presents a seasonal pattern
of “strong warming in summer and autumn yet weak cooling in winter”. It can exacerbate 14.3% or
alleviate 8.3% of the background climate warming effect, illustrating the importance of biophysical
effects on local climate change. The interaction between savannas and cropland or mixed forest and
urbanizations formed the main driver for the above patterns. (3) Both the occurrence area of LCC
and the warming effects at annual or seasonal scale show a trend of “first rising and then declining”,
whereas the cooling effect in winter exhibits continuous enhancement over time. The monodirectional
or mutual conversion between cropland and savannas is the dominant conversion responsible for
these temporal patterns. The findings can provide realistic scientific guidance for informing rational
policies on land management and targeted strategies for climate change response in the study area.

Keywords: land surface temperature; biophysical effects; land cover change; Sichuan Basin and
surrounding regions

1. Introduction

Global warming has become a tremendous challenge for human society, especially in
recent years when global land surface temperature (LST) has repeatedly broken its historical
records [1,2], which accompanied a large number of conversions between multiple land
cover types resulting from human activities and natural disturbances [3]. In fact, there is a
close interaction between these two major phenomena. On the one hand, land cover change
(LCC) can influence the concentration of greenhouse gases in the atmosphere through
biogeochemical processes, thereby impacting temperatures on a global scale [4]. On the
other hand, LCCs affect surface radiative and non-radiative forcing by altering biophysical
properties such as surface albedo and roughness, leading to LST change on a local scale [5].
However, quantifying the impacts of biophysical processes precisely is still challenging
and remains a challenge in global climate change study [6].

Compared with climate model simulations and field observations, remote sensing
technology can obtain real observational information over large areas at a lower cost. There-
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fore, it is being increasingly utilized in the study of how the biophysical feedback from LCC
impacts LST [7]. Currently, there are two main methods for quantifying the biophysical
feedback of temperature. The first adopts the idea of space-for-time substitution, wherein
the temperature difference between two adjacent areas with different land cover types is
used as a virtual representation of the biophysical effect of LCCs [8–10]. For example, the
LST difference between adjacent open land and forest represents the effects of deforestation
(temperature of grassland minus temperature of forest) or afforestation (temperature of
forest minus temperature of grassland), respectively [11,12]. However, this method does
not involve actual type conversions and can only provide potential impacts corresponding
to an ideal and complete conversion. In reality, LCCs (especially at large spatial scales) are
generally gradual and incomplete, so the potential impacts obtained from the space-for-
time substitution method can overestimate the strength of vegetation conversion and are
usually used as reference information for possible impacts [13]. The second method em-
ploys a combination of spatial and temporal approaches (i.e., the space-and-time method),
estimating the impact of LCC on temperature by comparing temperature signals where
conversions occurred with those in nearby areas where no conversion occurred [4,14].
Unlike the space-for-time substitution method which only requires spatial information,
this method also relies on time information about the occurrence of cover type conver-
sion events. As a result, it can provide a more valuable policy reference by capturing the
true impact on temperature. Unfortunately, existing large-scale studies often use coarse
spatial resolution (e.g., 0.05◦) land cover data or LST data, which makes it challenging to
capture enough vegetation conversion pixels to support effective analysis, thereby limiting
the widespread use of this method in practice [7]. Overall, although the space-for-time
method can only provide potential “marginal impacts”, it remains the dominant approach
in existing research.

The biophysical effects of LCC on LST have gained widespread attention. Research on
this topic usually focuses on individual type conversions; however, the majority of research
has centered around forest changes which have strong disturbance capabilities [11,15–17],
though some other studies have also analyzed land surface changes by cropland expan-
sion [10,18,19] and shrub invasion [20]. Currently, there is still a lack of comprehensive
studies involving all types of conversions. Regarding the research areas, previous work
focusing on China (a country with numerous hotspots of LCCs) has mainly concentrated
on analyzing the Northeast region [21,22], the Northern arid and semi-arid regions [19,23],
the Loess Plateau [13,24], and the Southern regions of China [16,25]. The Sichuan Basin
and its surrounding regions, which are one of China’s nine major agricultural divisions
and an important ecological conservation area in Southwest China, have received little
attention in terms of research on the impact of LCC on LST. In this context, this study uti-
lizes high-resolution (1-km) remote sensing data to overcome data scarcity. By employing
the space-and-time approach, we aim to reveal the actual impact of all LCCs on LST in
the Sichuan Basin and its surrounding regions. Taking into account the representativeness
of the study area, the findings can be extrapolated to similar regions worldwide. Overall,
the work is intended to provide targeted guidance for land use management, ecological
environment protection, and climate change response policies.

2. Materials and Methods
2.1. Study Area

The Sichuan Basin and its surrounding regions are situated between 97◦ E to 110◦ E
and 26◦ N to 34◦ N (Figure 1). The area is mainly composed of the administrative regions
of Sichuan Province and Chongqing Municipality. This area borders the Qinghai–Tibet
Plateau, Yunnan–Guizhou Plateau, Qinling Mountains, and Wushan Mountains, resulting
in complex terrain with significant elevation variations. The landscape types include
high mountains, hills, plains, and basins. The region experiences diverse climate types,
encompassing subtropical monsoon climate, highland temperate climate, and tropical
rainforest climate. Its annual mean temperature is between −5 ◦C to 18 ◦C and annual
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mean precipitation is about 1037.5 mm [26]. As one of China’s nine major agricultural
divisions, the Sichuan Basin and its surrounding regions support a variety of agricultural
production, with a focus on crops such as rice, corn, cotton, and rapeseed. However, due
to the prevalence of mountainous and hilly areas, the distribution of cultivated land is
fragmented with small-scale farming. This, in turn, leads to significant land use pressure
and frequent land cover conversion. The consequent intense LST variation makes it one of
the most ecologically vulnerable regions in Southwest China, facing severe challenges [27].
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Figure 1. The location and topography of the Sichuan Basin and surrounding regions.

2.2. Data

The study utilized the MODIS (Moderate Resolution Imaging Spectroradiometer)
Global Land Cover Type product, i.e., MCD12Q1, for the years between 2001 and 2020
to obtain yearly land cover information at a spatial resolution of 500 m (https://ladsweb.
modaps.eosdis.nasa.gov/search/ (accessed on 12 May 2022)). The product combines obser-
vations from both the Terra and Aqua satellites in the morning and afternoon, respectively.
The MCD12Q1 data are generated using an ensemble supervised classification method of
which the base algorithm is a decision tree, and ensemble classifications are estimated using
boosting and further processed with various prior knowledge and ancillary information
to improve classification accuracy [28]. It provides six classification systems including
the International Geosphere-Biosphere Programme (IGBP) and the Food and Agriculture
Organization of the United Nations (FAO). The dataset in conformity with the IGBP clas-
sification standard (ID = 1) was used. To make the results clearer, the land surface was
reclassified into several major types by combining similar subtypes (summarized in Table 1).
For instance, woody savanna and savanna were categorized as savannas. Ultimately, nine
land cover types were identified relevant to LCC in the study area (Evergreen needleleaf
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forest, Evergreen broadleaf forest, Deciduous broadleaf forest, Mixed Forest, Savannas,
Grassland, Cropland, Urban, and Bare Soil).

Table 1. Table of land cover classification.

Abbreviation Class Subclass

ENF Evergreen Needleleaf Forests /
EBF Evergreen Broadleaf Forests /
DBF Deciduous Broadleaf Forests /
MF Mixed Forests /

SAV Savannas
Woody Savannas

Savannas
GRA Grassland /

CRO Cropland Croplands
Cropland/Natural Vegetation Mosaics

URB Urban /
BAR Bare Soil /

Currently, satellite-derived LST data can only provide instantaneous temperatures
under clear sky conditions when satellites transit. Although LSTs in these moments have
certain indicative significance, for example, the day/night transit time of the afternoon
satellite is approximately the moment of maximum/minimum temperature within a day,
the temperature can still fluctuate with surrounding environmental variations, leading
to significant uncertainties in the analysis [29]. Unlike previous studies that used instan-
taneous temperature for analysis [4,15,16,19,21], this study utilized monthly averaged
LST to reflect temperature responses to LCCs. The dataset is produced based on 1-km
resolution MODIS temperature products (MOD11A1 and MYD11A1), incorporating one
multi-temporal weighted average transformation model and two temporal aggregation
strategies (i.e., average by observation and average by daily mean temperature). The
dataset also takes into account the influence of clear sky conditions. For more specific
details, please refer to Liu et al. (2023) [30]. Compared to the common two-moment simple
averaging method [5,31], the monthly average LST dataset produced by Liu et al. has more
complete spatial coverage and higher inversion accuracy. The time span for the LST data is
between 2001 and 2020, in accordance with that of the land cover dataset, and can be freely
accessed (https://zenodo.org/record/6618442#.YqB1UoRByUl (accessed on 20 August
2022)) [32].

2.3. Methods
2.3.1. Identification of Pixels with Land Cover Change

Previous research indicated that the inter-annual variations determined by the MCD12Q1
data may not accurately reflect the actual transitions [33]. Although the Collection-6 ver-
sion of the product has improved data stability by using a Markov chain model for post-
processing [34], the accurate mapping of land cover has not been perfectly achieved [28].
Therefore, we implemented a two-step processing procedure to further alleviate this prob-
lem. Firstly, from a spatial consistency perspective, it is necessary to upscale the 500-m
MCD12Q1 data to 1 km to match the LST data. A 1-km pixel is considered valid only
if it contains at least three 500-m pixels with identical land cover type to improve the
confidence level of the land cover type data [35]. Secondly, from a temporal consistency
perspective, a 1-km pixel that maintains the same land cover type for several consecutive
years is more reliable than those with a one-year result [14]. We set a threshold of five years
to determine the initial type and converted type, meaning that only the land cover that
remained unchanged for at least five years can be marked as a valid sample. Accordingly,
the pixels that have undergone a LCC are identified using 10-year data (i.e., maintaining
one type for the first five years and transitioning to another type for the following five
years), instead of considering only the changes between two consecutive years. From
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2001 to 2020, there are 11 ten-year sliding time windows (e.g., 2001–2010, 2002–2011, . . .,
2011–2020), allowing us to obtain a total of 11 pairs of LCC data.

2.3.2. Quantification of Actual LST Effect

For a central pixel which has undergone LCC, its local-scale LST variation can be con-
sidered as a combination of the impact of background climate and land type conversion [4].
With this assumption, the temperature variation of pixels that did not experience type
conversion is entirely determined by the background climate. Furthermore, different pixels
within an appropriate neighborhood are generally presumed to share the same background
climate [7,8,11,21], and the temperature variation of adjacent pixels with the same initial
land cover type as that of the central pixel, while without type conversion, are borrowed to
estimate the background climate impact of the LCC. Therefore, for a central converted pixel
i, the biophysical effect on temperature (Infli) can be estimated using the following formula:

Infli = ∆Ti − mean(∆TNC,i) (1)

where ∆Ti represents the total LST variation of pixel i, and mean(∆TNC,i) is the average
LST variation of nearby pixels that have not undergone LCC. It can be seen that the
mean(∆TNC,i) is crucial in calculating Infli. In line with previous research [4,9], this study
sets a 9 km × 9 km sliding window as the neighborhood range. Additionally, to mitigate the
influence of other factors like terrain, this study further applies inverse distance weighting
to compute mean(∆TNC,i). It should be noted that if there are not enough neighboring pixels
with stable land cover, the target LCC pixel would be discarded.

For the entire study area, the comprehensive impact of LCC (Inflall) is calculated using
an area-weighted approach, as shown in Equation (2):

In f lall =

m
∑
t=i

n
∑

i=1
In f li × Areai

m
∑
t=i

n
∑

i=1
Areai

(2)

where Areai is the area of pixel i in the study area, n is the number of pixels with the t-th
type of LCC, and m is the total number of types of different LCCs.

Furthermore, it is necessary to analyze the contributions of different LCCs to the
overall impact on the total study area, which is described as the relative impact of type t
(RInflt), as shown in Equation (3):

RIn f lt =

n
∑

i=1
In f li × Areai

m
∑
t=i

n
∑

i=1
Areai

(3)

where the symbols have the same meanings as in Equation (2). By comparing Equations (2)
and (3), it can be observed that the sum of the relative impacts of different LCCs is equal to
the comprehensive impact on the entire study area. In other words, the combined effects of
various LCCs on LST in the study area can be determined by adding up their respective
relative impacts.

Moreover, it is necessary to select an appropriate temperature change indicator. Pre-
vious studies have used various methods to represent temperature change information,
such as the difference between the average temperatures of two consecutive periods [25],
the difference between the temperature of the first year of the first period and the last year
of the second period [4], or the trend of temperature change over the study period [14].
In order to obtain relatively stable temperature change results, the difference between the
average LST of the last 5 years and the average LST of the previous 5 years is calculated as
the indicator to characterize temperature changes.
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3. Results
3.1. Overview of Land Cover Change

From 2001 to 2020, a total of 16,633 1-km pixels in the Sichuan Basin and surround-
ing regions underwent LCCs, accounting for approximately 2.9% of the total study area.
Among them, 12,486 pixels (75.1%) experienced one type of conversion, 4004 pixels (24.1%)
experienced two types of conversion, and less than 1% of the pixels underwent three or
four types of conversion. In total, there are 22 different types of conversions.

Combining Figure 2a with Figure 1, it can be observed that the two most prominent
conversion types are the interactions between Savannas and Cropland (cropland expansion
and cropland reduction account for 21.7% and 18.5% of total conversions, respectively).
These conversions are mainly concentrated in the Sichuan Basin (at elevations below
500 m), followed by the conversion from Savannas to Mixed Forest, accounting for 17.6%
of total conversions, and distributed in the undulating mountains on the eastern, southern,
and northern sides of the Sichuan Basin (at elevations between 500 and 1000 m). The
conversion from Grassland to Savannas also accounts for over 10% of total conversions,
while these pixels exhibit no clustering pattern and are scattered in the high undulating
mountains in the western region (at elevations above 2500 m). The conversion from Mixed
Forest to Savannas and from Savannas to Deciduous Forest account for around 5% of total
conversions, which are distributed in the western and northern regions of the Sichuan Basin
in low undulating mountains (at elevations between 1000 and 2500 m). The remaining
16 types of conversions are predominantly scattered in high undulating mountains at
elevations above 4000 m and together account for 20.9% of total conversions. Furthermore,
according to Figure 2b, only the interaction between Savannas and Cropland exhibits a
relatively higher conversion degree, meaning that within a 5-km pixel, there are more than
five 1-km pixels that have undergone land cover changes.

3.2. The Spatial Distribution of the Impact of Land Cover Change on LST

Figure 3 shows the LST variations for pixels with cover type conversion within the
study area. In terms of overall impact between 2001 and 2020, the biophysical feedback
of LCC causes a local LST increase of 0.01 ± 0.004 K at the annual scale (Figure 3a). It
also exhibits distinct seasonal patterns, with LST changes of 0.01 ± 0.000 K in spring,
0.02 ± 0.004 K in summer, 0.02 ± 0.002 K in autumn, and −0.01 ± 0.006 K in winter,
indicating that LCC leads to a local LST response characteristic of “warmer in summer
and colder in winter”. Furthermore, compared to the space-for-time method, the space-
and-time method has the advantage of capturing the background climate impact at the
same location and time period, allowing for a more intuitive reflection of the magnitude
and sign of the biophysical effects of LCC [4,13]. As shown in Figure 3b, unlike the LST
response from cover changes, the background climate exerts a local warming effect both at
the annual scale (0.18 ± 0.024 K) and in the four seasons (0.30 ± 0.022 K, 0.18 ± 0.019 K,
0.14 ± 0.025 K, and 0.12 ± 0.026 K in spring, summer, autumn, winter, respectively), while it
shows a decreasing trend in the magnitude of its impact from spring to winter. Comparing
the biophysical feedback of type conversion to that of the background climate influence,
the ratio of them is only 5.6% (0.01 K/0.18 K) at the annual scale, indicating a relatively
insignificant effect. However, when examining different seasons, the ratios increase to
11.1% in summer and 14.3% in autumn, and particularly in winter, where the biophysical
feedback mitigates the background climate’s warming effect by 8.3%. This highlights the
significant role of LCC in mitigating or exacerbating the impacts of climate change.
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Figure 2. Overall land cover change in the Sichuan Basin and surrounding regions. For display
purposes, the original 1-km pixels were upscaled to 5 km. (a) The spatial distribution of the main
conversion types, i.e., the conversion with the largest area within a 5-km pixel, where the percentages
in the legend represent the proportion of the conversion type area to all conversion pixels. (b) The
count of 1-km pixels that have undergone cover type conversion within a 5-km pixel. SAV, CRO, MF,
GRA, and DF are abbreviations for Savannas, Cropland, Mixed Forest, Grassland, and Deciduous
Forest, respectively.

Based on the grid map in Figure 3a, it is evident that the mutual conversion between
cropland and sparse grassland has the largest relative impact, where the annual effect of
cropland reduction is 0.012 ± 0.002 K, while the annual effect of cropland expansion is
−0.009 ± 0.002 K. Compared to Savannas, the cooling effect brought by cropland is mainly
attributed to increased irrigation or evapotranspiration [36,37]. According to Figure 2a, the
conversion area from Savannas to Cropland (21.7%) is larger than that from Cropland to
Savannas (18.5%), indicating that the cooling effect per unit area due to cropland expansion
is smaller than the warming effect caused by cropland reduction. This further emphasizes
the importance of preserving cropland. Moreover, the significant summer warming effect
(0.021 ± 0.001 K) caused by the conversion from Cropland to Savannas and the strong winter
cooling effect (−0.011 ± 0.003 K) caused by the conversion from Savannas to Cropland are
the primary cause for the seasonal disparity in LST effects across the entire study area.
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Figure 3. The changes in land surface temperature for pixels with land cover changes in the Sichuan
Basin and surrounding regions from 2001 to 2020. (a) The biophysical influences of land cover change,
and (b) the influences of background climate change. The numbers in magenta represent the overall
effect for the entire study area, whereas the grids show the relative effect of each conversion type.
The numbers in parentheses represent standard errors. SAV, CRO, URB, MF, GRA, DBF, ENF, EBF,
and BAR are abbreviations for Savannas, Cropland, Urban, Mixed Forest, Grassland, Deciduous
Broadleaf Forest, Evergreen Needleleaf Forest, Evergreen Broadleaf Forest, and Bare Soil, respectively.

Urbanization also has a significant LST impact, with the conversion from Savannas to
Urban land causing a relative warming effect of 0.003 ± 0.000 K at annual scale, and the con-
version from Cropland to Urban land causing a relative warming effect of 0.002 ± 0.000 K
at annual scale. The areas of these two conversions are relatively small (Figure 2a), ac-
counting for only 0.79% and 0.64% of the total converted pixels; however, the fact that
such minor proportions can lead to significant relative impacts highlights the powerful
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warming effect of urbanization. Although urbanization leads to a local LST increase at the
annual averaged level, it exhibits stronger warming in summer than in winter, which also
facilitates the overall summer warming in the entire study area. The findings are consistent
with previous studies on the seasonality of urban heat island effects [38,39], demonstrating
the reliability of the analysis in this study.

The mutual conversion between Mixed Forests and Savannas also shows noticeable
relative impacts, especially in autumn, where both conversions result in a warming effect
of 0.004 K. This is the main reason for the seasonality of their impact in the study area.
The absence of the opposing effects in these two reverse conversions may be attributed to
their different locations. According to Figure 2a, the conversion from Savannas to Mixed
Forests is distributed in the eastern, southern, and northern mountainous regions of the
Sichuan Basin (at altitudes between 500 and 1000 m), while the conversion from Mixed
Forests to Savannas is distributed in the western mountainous regions of the Sichuan Basin
(at altitudes between 1000 and 2500 m). In addition, Savannas are complex grassland
ecosystems typically composed of continuous grasses with scattered trees or shrubs, and
Mixed Forest is a type of forest ecosystem where different species of trees coexist and
intermingle [40]. The complicated components of Savannas and Mixed Forest may also
result in similar LST impact in their mutual conversions. Moreover, the mutual conversion
between Savannas and Grassland/Evergreen Needleleaf Forests, the conversion from
Evergreen Needleleaf Forests to Grassland, and the conversion from Savannas to Evergreen
Broadleaf Forests also contribute significantly to the overall LST effect in the study area
(with absolute values of annual relative impact ranging from 0.001 K to 0.002 K). On the
other hand, the mutual conversion between Savannas and Deciduous Broadleaf Forests, the
internal forest conversions (i.e., Mixed Forests interconverted with Deciduous Broadleaf
Forests, Evergreen Needleleaf Forests, and Deciduous Broadleaf Forests), the mutual
conversion between Grassland and Bare Soil, and the Grassland reversion from Cropland
produce a weak contribution to the overall impact in the study area (with relative impacts
close to 0 K).

3.3. The Temporal Pattern of the Impact of Land Cover Change on LST

According to Figure 4a, the area of LCC in the Sichuan Basin and its surrounding
regions shows an obvious trend of “first rising and then declining” from 2001 to 2020, and
the peak occurred in the sliding time window from 2004 to 2013, with a conversion area of
2492 km2. The annual impact on LST also exhibits a similar trend of “first rising and then
declining”, while the peak occurs in the two windows of 2005–2014 (0.03 ± 0.008 K) and
2006–2015 (0.03 ± 0.007 K). On the seasonal scale, the LST impact in spring, summer, and
autumn also follows the “first rising and then declining” trend. The peak value occurred
in the window of 2005–2014 for spring (0.03 ± 0.005 K), and the window of 2006–2015 for
summer (0.05 ± 0.006 K) and autumn (0.04 ± 0.005 K), resulting in the abovementioned two
peaks on the annual scale. In contrast, the LST impact in winter is mostly a cooling effect
and exhibits a significant monotonic decreasing trend with a slope of −0.002 K (p < 0.05).
This phenomenon indicates that the winter cooling effect caused by LCC in the study area
is continuously strengthening over time.

To explore the reasons for the temporal variations in area and temperature impact,
the trends of area and relative impact of each type of conversion over time were further
analyzed. According to Figure 5, the conversion area from Cropland to Savannas shows
a similar “rising first and then declining” pattern in area variation to that for the overall
area (with a high correlation coefficient of 0.92), which is the determinant for the overall
area variation in the study area (Figure 4a). As for the temperature impact, as shown in
Figure 6e, the conversion from Savannas to Cropland basically determines the continuous
enhancement of the winter cooling effect (with a correlation coefficient of 0.70). However,
on the other hand, for the other three seasons and the annual scale (Figure 6a–d), the
conversion from Savannas to Cropland is not the predominant influence on determining
the overall performance. Instead, the combined effects of mutual conversions between
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Cropland and Savannas show a similar temporal variation pattern to the overall impact
(with correlation coefficients of 0.74, 0.76, 0.72, and 0.69 for the annual, spring, summer,
and autumn scales, respectively).
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Figure 6. The temporal variations of biophysical temperature effect for each land cover change in the
Sichuan Basin and surrounding regions. (a–e) are the results for the annual, spring, summer, autumn,
and winter averages, respectively. Different colors represent different conversions, the bold lines with
purple color in (a–d) are the mutual changes between Cropland (CRO) and Savannas (SAV), and the
bold line with orange color in (e) is the conversion from SAV to CRO.

4. Discussion

This study primarily centered on assessing the influence of LCCs on LST within the
Sichuan Basin and its neighboring areas. Nevertheless, these findings can be substantiated
by prior research on both a global and regional scale related to LST. For regional LST change
in some areas with similar geographic and climatic conditions to those in the Sichuan basin,
the cropland areas are coldest relative to impervious surfaces [41]. It was parallel with
our finds regarding LCCs, which reminds us of the negative effect of urban sprawl into
agricultural land and should be taken into account in policy making. Specifically, the
warming effect of urban areas showed similar seasonal LST variation patterns as that in the
urban heat island effect [38,42,43]. In terms of the LST impact on human well-being, the
methods and findings are also indicative for global climate mitigation and food security.
As temperature variation was proved to impact agricultural yields, more cautions should
be paid to regions with distinct LCCs and LST change [44].

The study provides realistic insights into the actual impacts, rather than the potential
envelope effects [13], of LCCs on LST. However, the magnitude of overall LST changes
on the annual scale remains relatively small (i.e., 0.01 K). There are three possible reasons
for this phenomenon. Firstly, it is important to note that the land cover data used in
this study are not flawless. The classification system employed in the MCD12Q1 data
may introduce some inaccuracies into analyses relying on this product, especially when
evaluating LCC in forested regions [45], which constitute the primary land cover types
in our study area. Secondly, according to the analysis in Sections 3.1–3.3, conversions
involving Savannas played a dominant role in both the spatial and temporal variations of
LST impact. As mentioned in Section 3.2, Savannas are a complex grassland ecosystem
containing multiple cover components. Hence, the conversions from Savannas to other
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types may involve complex internal conversions of different covers; for example, the
conversion from Savannas to Cropland may be the conversion from internal Grassland
to Cropland, while the conversion from Savannas to Broadleaf Forest may come from the
reduction in a large number of internal trees. According to Figure 3, these conversion types
showed very weak relative impacts, resulting in an overall insignificant effect. Last but
not least, the study area is characterized by mountainous and hilly terrain with small and
fragmented parcels, leading to a relatively low degree of land cover conversion. Previous
research has shown an approximate linear relationship between the conversion degree
and its LST impact [13], meaning that a lower conversion degree can ultimately lead to
a smaller LST impact. To overcome these limitations, employing higher-resolution land
cover data, such as the 30-m resolution Globe30 product [46], to calculate the LST impact of
land cover conversion at the pure pixel level rather than the mixed pixel level as in this
study may be a more feasible approach.

5. Conclusions

Based on satellite remote sensing land cover and monthly averaged LST data from
2001 to 2020, this study focused on the impact of LCCs on LST in one of China’s nine major
agricultural divisions, the Sichuan Basin and surrounding regions. The main conclusions
are as follows:

(1) From 2001 to 2020, approximately 2.9% of the pixels in the study area underwent
LCCs, and the distribution of different conversion types was mainly regulated by
altitude. The most prevalent conversion was the interaction between Savannas and
Cropland within the Sichuan Basin.

(2) During 2001–2020, the biophysical feedback of LCCs led to an annual average LST
increase of 0.01 ± 0.004 K, which exhibited a seasonal pattern of strong warming in
summer and autumn and weaker cooling in winter. Overall, these conversions can
exacerbate or alleviate the background climate warming effect of about 10%. The main
reasons to the above patterns were the conversions between Savannas and Cropland,
between Mixed Forest and Savanna, and in urbanization.

(3) Both the area of LCCs and the warming impact on annual and seasonal scales demon-
strated a “first rising and then declining” trend over time. However, the cooling
impact in winter showed a continuous enhancement trend. The monodirectional
or mutual conversions between Cropland and Savannas were the dominant factors
driving the temporal pattern of variations in area and temperature impact.
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