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Abstract: Land, as an essential resource for social, economic and ecological activities, is regarded
as a key factor in material production. Against the background of rapid social and economic
transition, land-use carbon emissions have gradually drawn due attention. However, few studies
have been conducted to explore the spatial relationship of land-use carbon emissions at the sub-
regional level, especially within Sichuan Province, China. This study is aimed at unpacking the
spatial network of land-use carbon emissions in Sichuan Province by employing the panel data
from 2006 to 2021 and using the method of Social Network Analysis. The results indicate that the
net land-use carbon emissions of various prefecture-level divisions in Sichuan generally showed
an inverse and asymmetrical “V-shaped” trend. The network correlation was improved and the
stability was enhanced, gradually developing into a multi-centric structure. In addition, the spatial
relationship among different clusters in the network undergoes a transition from intra-regional to
inter-regional spillover. Based on these findings, the carbon balance zoning policy was discussed
to provide references for how to coordinate roles and positions in the network when optimizing
land-use carbon emission management policies in sub-regional areas with rapid social and economic
development.

Keywords: spatial network; land-use carbon emissions; social network analysis; carbon balance
zoning; Sichuan

1. Introduction

Land, an essential resource for social, economic and ecological activities, is regarded
as a key factor in material production. Land use changes (LUC) generate fundamental
impacts on carbon emissions and hence contribute to climate change, especially against
the background of rapid social and economic transition and given the increasing energy
consumption for better human livelihoods and well-being [1,2]. According to the report
issued by the Intergovernmental Panel on Climate Change (IPCC), the natural response
of land to human-induced environmental change caused a net sink of approximately
11.2 GtCO2 yr−1 between 2007–2016 (equivalent to 29% of total CO2 emissions) [3]. High-
lighting land-use carbon emission reduction activities to promote sustainable land use,
fulfilling the goal of carbon neutrality and actively responding to climate change is thus of
great importance for policy-makers. In addition, cooperation is desperately needed within
regions in terms of carrying out carbon emission reduction activities and between such
regions [4]. Different levels and types of collaboration have been carried out worldwide
since the adoption of the United Nations Framework Convention on Climate Change in
1992. The spatial network of land-use carbon emissions in the collaborative process has
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been restructured as well [5]. Specifically, the network centrality and the roles within
the network clusters of different countries have changed over time in the collaboration
of engaging in land-use carbon emission reduction activities. Some countries gradually
became the center of the network, while others were at the edge and play net spillover roles
within the cluster [6].

As the second-largest economy and one of the largest carbon emitters, China plays
a pivotal role in the collaborative network to achieve the goal of global carbon neutrality.
China is also facing significant challenges in reducing carbon emissions in the context of a
substantial social and economic transition. The gross domestic product (GDP) per capita
increased from CNY 385 in 1978 to CNY 85,698 in 2022, an increase of 221.59 times. The
urbanization rate also increased from 17.92% to 65.22% during the same period. The rapid
social and economic transition indicates that China needs to take more effective actions to
achieve its carbon neutrality goals. At the 75th General Assembly of the United Nations
in 2020, China, for the first time, proposed achieving a carbon peak by 2030 and carbon
neutralization by 2060 [7]. Since that time, a national “double control” system to control
the carbon emission quantity and intensity was put forward, and a national action plan
for a carbon peak by 2030 was launched to highlight ten key actions in terms of promoting
carbon reduction activities. Top-down actions promoted by China’s central government
have generated positive and significant carbon emission reduction effects. According to
the data released by the Carbon Emission Accounts and Datasets (CEADs) for emerging
economies, the carbon emissions per unit of GDP are decreasing, although the temporal
trend of China’s total carbon emissions is generally increasing. In 2021, carbon emissions
per unit of GDP in China were reduced by 3.8% compared to 2020 and experienced a
cumulative decrease of 50.8% compared to 2005 [8]. Amid COVID-19 lockdowns and a real
estate slump, the emissions barely changed from 2021 to 2022, but the overall yearly decline
was the first since structural reforms drove emissions lower in 2015 [9]. These effects cannot
be achieved without the provincial efforts in the country since China’s central government
breaks down carbon emission reduction tasks to each province. More importantly, specific
and executable carbon emission reduction action plans and policies are developed at the
provincial level. Attention should thus be paid to provinces as an important sub-regional
type in analyzing the network relationship of land-use carbon emissions. In addition,
China is still seeing rapid social and economic development, which means that its land
use would accordingly undergo dynamic changes, and related land-use carbon emission
reduction activities still face great challenges [10]. The allocation of land use quotas, such
as the addition of construction land and the amount of preserved arable land, is also
generally achieved within a province, which is similar to the decomposition system of
carbon emission reduction tasks. Thus, it is indispensable to analyze the spatial network of
land-use carbon emissions within a province to better understand China’s land-use carbon
emission management system.

However, less attention has been given to the spatial network of land-use carbon
emissions within a province both in China and around the world. In fact, the sources and
sinks of carbon from LUC are significant in global, national, regional, and sub-regional
carbon budgets [11–14]. Therefore, extensive studies have focused on calculating carbon
emissions from LUC. Several different models, datasets and methods have been applied.
Among them, Smith and Rothwell (2013) examined land-use carbon emissions between
1700 and 2000 using a simple mechanistic carbon-cycle model with regional and ecosystem
specific parameterizations based on the global gridded data, finding that the estimation
result was smaller than the native values from the Global Change Assessment Model
result due to lower net reforestation in the Representative Concentration Pathway (RCP)
4.5 gridded land-use data product [15]. Mahowald et al. (2016) explored the role of
human land use and land cover change in modifying the terrestrial carbon budget in
simulations forced by RCP8.5 using the Community Earth System Model and estimated a
cumulative carbon loss of 490 Pg C between 1850 and 2300 [16]. Despite extensive research
on measuring and simulating large-scale and long-interval land-use carbon emissions at the
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global level [17–21], analyzing land-use carbon emissions at national and regional levels
has attracted much attention. The differences are that studies at national and regional
levels usually focused on a shorter time span and lower scale area [22–24]. For example,
Hung et al. (2021) used the coefficient method and aggregated remote sensing data between
2002 and 2012 in Vietnam to calculate carbon emissions in the fields of land use, land use
change, and forestry [25]. Compared with the analysis at global, national and regional
levels, spatially explicit information on land-use carbon emissions at the sub-regional level
is of value for the implementation of local carbon emission mitigation policies. Ulrich et al.
(2023) estimated the carbon fluxes related to land use and land cover change in the state
of Baden-Württemberg in Germany based on four types of data resources, providing a
solid carbon emission analysis to local authorities [14]. To formulate feasible local policies,
sub-regional land-use carbon emissions should be given more attention and require more
exploration.

Land-use carbon emissions are closely related to the social, economic and ecological
activities which have spatial relationships [26,27]. In addition to estimating the sources and
sinks of carbon from LUC at different levels, the spatial network or relationship of carbon
emissions was also explored to further understand the correlation structure of carbon
emissions within or across regions [6,28,29]. Social Network Analysis (SNA) subsequently
was regarded as a prevalent method to explore spatial relationships [28,30]. Using SNA
and data from 1995 to 2018, Yu et al. (2022) analyzed the overall characteristics of the spatial
correlation network of 41 cities in the Yangtze River Delta region in China and clarified the
roles of cities in the land-use carbon emission network [31]. Wang et al. (2018) classified
provinces into four clusters based on the internal relationship of the carbon emission
network of various provinces in China using data from 2008 to 2014 [32]. Compared with
the conventional spatial relationship analysis based on attribute data, SNA uses relational
data to identify the key nodes and clusters in the carbon emission network, which could
provide a new perspective to understand the internal structure of the spatial network
of land-use carbon emissions [33]. In addition, feasible local carbon emission reduction
policies, such as carbon balance zoning, can be introduced and optimized based on the
analysis of spatial networks or relationships combining attribute data and relational data.
However, few studies have shed light on this combination to analyze the spatial network
within a province and provide policy implications for local authorities. Against this
background, our study takes Sichuan Province in China as the case and uses the data from
2006 to 2021 to explore the sub-regional spatial network of carbon emissions from LUC,
which could enhance our understanding of the local carbon emission spatial relationships
in two ways: (i) analyzing the features, clusters, and evolutions of the spatial network of
land-use carbon emissions at the sub-regional level; and (ii) providing a reference for local
carbon emission management policies through a comprehensive analysis based on attribute
data and relational data.

2. Materials and Methods
2.1. Study Area

Situated in southwest China (Figure 1), Sichuan Province is of great importance in
providing support for national development strategies, including the “Belt and Road”
initiative, the “Yangtze River Economic Belt” strategy and the “Chengdu-Chongqing
Dual-City Economic Circle” strategy. Its strategic position among provinces has brought
unprecedented development opportunities to the province. According to data released by
the National Bureau of Statistics of China, the GDP of Sichuan Province increased from
CNY 2651.80 billion in 2013 to CNY 5674.98 billion in 2022, achieving a growth rate of
1.14 times and ranking sixth among 31 provinces of mainland China. In the meantime, the
urbanization rate rose from 44.96% to 58.40%, which promoted significant social transfor-
mation within the province. A total of 21 prefecture-level divisions form the administrative
structure of the province, with the headquarters located in Chengdu. The population
was 83.74 million in 2022. Complex and diverse terrain is distributed on a territory land
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area of 486,000 km2. The rapid development and strategic position among provinces in
China make Sichuan Province a typical case to help understand the sub-regional spatial
relationship of land-use carbon emissions from LUC.
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Figure 1. Geographical Location of the Study Area. Note: GS(2020)4619. 

  

Figure 1. Geographical Location of the Study Area. Note: GS(2020)4619.

Specifically, Sichuan’s rapid development and strategic position brought about dra-
matic LUC and posed great challenges to its carbon emission reduction plans, which makes
it a suitable case to analyze carbon emissions from LUC. As shown in Figure 2, the area of
woodland, which is a land use type associated with carbon sinks, increased by 8925.20 km2

from 2006 to 2021, while the area of grassland decreased by 4365.84 km2 and the water area
decreased slightly. Two primary sources of carbon emissions for LUC, namely, cultivated
land and construction land, had different trends. The area of cultivated land decreased by
7741.83 km2, while that of construction land increased by 8925.20 km2. The construction
land per unit area generally carries more economic, social and ecological activities, and the
carbon emissions are correspondingly larger. Therefore, areas such as Sichuan Province
with rapid development are usually associated with dramatic increases in construction
land and carbon emissions and warrant more effective action plans to manage land-use
carbon emissions.

In December 2016, Sichuan Province was selected as the second batch of carbon
emission trading pilots in China. To pilot Chinese Certified Emission Reduction (CCER)
transactions, a series of local policies need to be formulated or optimized. Among them,
an energy consumption control plan for production activities on different types of lands
was formulated in 2017. Since then, energy consumption in land use activities in Sichuan
has been under control. According to the data issued by the China Energy Statistical
Yearbook (2007–2022), the consumption of different types of fossil energy in Sichuan has
decreased or increased at a lower rate in recent years. For example, the consumption of
raw coal was 83.88 million tons in 2006, increased to 114.09 million tons in 2011, decreased
to 101.17 million tons in 2016, and further decreased to 79.71 million tons in 2021. In fact,
various actions have been taken in practice within the province to promote carbon emission
reduction activities from LUC before being selected as the pilot, such as strengthening the
management of agricultural, industrial and mining lands and promoting the recuperation
of grasslands, forests and wetlands. Thus, it is possible to analyze the spatial network of
land-use carbon emissions within Sichuan Province to provide policy references for local
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authorities in China and other developing countries intending to implement similar pilot
programs.
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Figure 2. Land Use Changes of the Study Area.

2.2. Data Sources

The annual China Land Cover Dataset (CLCD) is adopted to analyze LUC in our study.
This dataset employs 335,709 Landsat images on the Google Earth Engine (GEE) platform
to construct a 30 m resolution annual land cover monitoring database of China [34,35]. As a
sequential and high-resolution dataset, it has been used as the basic dataset to analyze LUC
in several studies since it is able to reflect the rapid development and a series of ecological
projects (e.g., Gain for Green) in China and reveal the anthropogenic implications of LUC
under the condition of climate change (e.g., Liu et al. (2023) [36]). To explore the dynamics
of the spatial network of land-use carbon emissions within Sichuan Province, we built a
pooled prefecture-level dataset based on CLCD with time series of 2006, 2011, 2016 and
2021. We chose 2006 as the base year for two reasons. Firstly, 2006 marked a milestone, as
it was the year when China’s carbon emissions first surpassed those of the United States,
making China the world’s largest carbon emitter [37,38]. Secondly, there was a significant
lack of energy consumption data for various prefecture-level divisions in Sichuan before
2006. Subsequently, an accessible dataset with widely used 5-year intervals from 2006 to
2021 was built.

Statistical data for the relevant years used in this study include population, energy
consumption, and GDP, which were mainly obtained from the Sichuan Statistical Yearbook,
China Energy Statistical Yearbook, and Statistical Bulletins of 21 prefecture-level divisions.
Following the study of Sun et al. (2022) [28], a linear regression method was employed to
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fit the trend and interpolate the missing data in divisions with limited data gaps. China’s
county-level carbon emission data in the Carbon Emission Accounts and Datasets (CEADs)
and the carbon emission inventories of 290 Chinese cities were also used to interpolate the
missing data in divisions with consecutive data gaps [39,40]. The data of spatial distance
between prefecture-level divisions in Sichuan Province were obtained from the platform of
China’s City Distance.

2.3. Methods
2.3.1. Model of Land-Use Carbon Emission Measurement

This study adopts the most widely used carbon emission coefficient method to cal-
culate the prefecture-level land-use carbon emissions of Sichuan Province [41,42]. The
classification system of land use types is defined based on the classification of land use
types in the CLCD database and China’s national standard of “Classification of Land
Use” (Standard No. GB/T 21010–2017) and with reference to the state conditions of land
cover in Sichuan. Finally, land use types were divided into six categories: cultivated land,
woodland, grassland, water area, construction land, and unused land. Among them, the
carbon emissions of cultivated land, woodland, grassland, water area, and unused land
were calculated using the direct emission coefficient. The equation is as follows:

Ce = ∑ Si·Vi (1)

where Ce is the total land-use carbon emissions excluding the emissions of construction
land. Si is the area of land use type i (i = 1,2, . . . , 5, representing cultivated land, woodland,
grassland, water area and unused land, respectively). Vi is the land-use carbon emission
coefficient per unit area of land use type i. Vi is defined based on the study of Lan et al.
(2012) [43] and Ji et al. (2023) [44]. Positive values of Vi represent emissions and negative
values represent absorption.

The carbon emissions of construction land were calculated using the indirect carbon
emission coefficient method due to the large number of economic activities and human
living activities carried by construction land. The calculation was processed by measuring
the fossil energy consumption and population respiration according to the 2019 IPCC
Guidelines for National Greenhouse Gas Inventories based on the following equations:

Cc = C f + Cp (2)

C f = ∑ Ej × θj × f j (3)

Cp = N × b× 365 (4)

where Cc denotes the total carbon emissions of construction land. C f is the carbon emis-
sions of fossil energy consumption, and Cp is the carbon emissions of the population.
Ej represents the energy consumption of fossil type j. According to the IPCC guidelines,
the fossil types included in this study are raw coal, coke, natural gas, gasoline, diesel,
fuel oil, liquefied petroleum gas, and kerosene, and j = 1,2, . . . , 8. θj is the coefficient of
converting the energy consumption of fossil fuel type j into standard coal. f j is the carbon
emission coefficient of fossil fuel type j. The related coefficients are shown in Table 1. N
is the population, and b is the daily carbon emissions per person. Following the study of
Wei and Chen (2021) [45], b was defined as 0.2455 kg carbon per person per day. The total
carbon emissions of each prefecture-level division in Sichuan Province (C) were the sum of
Ce and Cc.

C = Ce + Cc (5)
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Table 1. Energy Standard Coal Conversion Coefficient (ESCCC) and Carbon Emission Coefficient
(CEC).

Fossil Types ESCCC (104 tce/104 t) CEC (104 tce/104 t)

Raw coal 0.7559 0.7143
Coke 0.8550 0.9714

Natural gas 0.4483 1.2143
Gasoline 0.5538 1.4714

Diesel 0.5921 1.4571
Fuel oil 0.6185 1.4286

Liquefied petroleum gas 0.5042 1.7143
Kerosene 0.5714 1.4714

2.3.2. Model of Land-Use Carbon Emission Spatial Network Analysis

• Modified gravity model and spatial correlation matrix

Following the studies of Sun et al. (2022) [28] and Yu et al. (2022) [31] and applying
the traditional gravity model with variables related to land-use carbon emissions, a modi-
fied gravity model was built to measure the spatial correlation degree and to construct a
spatial correlation matrix of land-use carbon emissions. The modified gravity model has
been widely used to measure spatial interactions. It was inspired by the law of universal
gravitation and initially introduced to the field of economics by Walter Isard to analyze the
interactions between two regions involving distance parameters and scale parameters [46].
The core concept of this model is that the interaction between two regions is directly pro-
portional to the scale parameters and inversely proportional to the distance parameters [47].
The carbon emission ties between two divisions are thus directly proportional to their
carbon emission scales and inversely proportional to their spatial distance [6]. However,
divisions with larger carbon emission scales but lower economic development levels might
be at the edge of the spatial network of carbon emissions. Therefore, we built a modified
gravity model that not only included the carbon emission scale and distance factors be-
tween two divisions but also incorporated economic and social factors that influence the
spatial connection of land-use carbon emissions between two divisions. The equation is as
follows:

Qmn =
Cm

Cm + Cn
·

3
√

NmCmGm
3
√

NnCnGn

D2
mn/(Im − In)

2 (6)

where Qmn is the correlation degree of land-use carbon emissions between division m and
division n. C and N are the same as defined above. G, D, and I denote the gross domestic
product, the spatial distance between m and n, and the per capita income, respectively.
Based on this model, the gravity matrix of land-use carbon emissions is obtained. The
average value of gravity in each row is taken as a comparison value. A value greater than
the average level is recorded as 1, otherwise, it is recorded as 0. The spatial correlation
matrix is then constructed.

• Social Network Analysis model and spatial network characteristics

(a) Overall spatial network characteristics

In this study, the indicators of four dimensions, network density (ND), network
correlation (NC), network hierarchy (NH), and network efficiency (NE), are chosen to
analyze the overall network structure of land-use carbon emissions in Sichuan Province.
ND indicates the closeness of the node association in the entire network structure. The
higher the network density, the closer the connections between nodes. NC reflects the
stability or robustness of the network structure. The greater the degree of correlation, the
more stable the network structure. NH measures the degree of asymmetry of the spatial
correlation network. A higher value of hierarchy indicates that the individual node plays a
“leading” role in the spatial network and has a controlling effect on the flow of elements
within the network. NE measures the number of network connection lines, and the lower
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the network efficiency is, the more stable and complex the spatial network of land-use
carbon emissions. The corresponding equations of ND, NC, NH, and NE are shown as
follows:

ND =
r

k(k− 1)
(7)

NC = 1− v
k(k− 1)/2

(8)

NH = 1− s
max(s)

(9)

NE = 1− δ

max(δ)
(10)

where k is the number of nodes in the network and r is the number of actual relationships.
k(k− 1) denotes the maximum possible number of network relationships. v is the number
of unreachable node pairs within the network. s is the number of symmetrically reachable
node pairs, and max(s) is the maximum number of symmetrically reachable node pairs
in the network. δ is the number of redundant lines in the network, and max(δ) is the
maximum number of possible redundant lines.

(b) Network structure characteristics of individual nodes

The spatial network characteristics of individual nodes were analyzed using three
indicators: degree centrality (DC), betweenness centrality (BC) and closeness centrality
(CC). DC measures the centrality of a node in the network. The higher DC is, the closer
the node is to the center of the network. BC reflects the intermediary role of a node in
the network. When a node is on the shortest distance of more node pairs, its value of BC
will be higher. If BC is higher than the average value, its intermediary role in controlling
and regulating land-use carbon emissions in other divisions will be stronger. CC measures
the ability of a node in the network not being controlled by other nodes. When the CC of
a node is higher than the average value, the distance between the node and other nodes
in the network is relatively close, and correspondingly it will have more advantages in
promoting factor flows within the network. The equations of DC, BC, and CC are shown
as follows:

DC =
dm

(k− 1)
(11)

BC =
2 ∑m ∑n

hmn(τ)
hmn

[(k− 1)(k− 2)]
(12)

CC =
∑m gmn

(k− 1)
(13)

where dm is the number of nodes directly associated with node m. hmn is the number
of shortest paths from node m to node n. hmn(τ) is the number of those paths that pass
through node τ. Thus, hmn(τ)/hmn measures the probability that a third node τ is on the
shortcut between nodes m and n. gmn is the distance of the shortest path from node m to
node n.

(c) Network structure characteristics of clusters

The Block Model of SNA is used to analyze the cluster network structure of the land-
use carbon emissions of Sichuan Province. Through spatial clustering, the internal structure
state and the role of each member in the association network are depicted. Members with
the same role form a cluster. The interaction mechanisms and influence paths among the
clusters can be evaluated via a density matrix and image matrix of the network. Following
the study of Sun et al. (2022) [28], we chose an iteration criterion of 0.2 and a maximum
partition density of two and obtained four cluster types (Table 2). Assuming that cluster Bk
includes bk nodes, the maximum number of possible relationships of all members in the
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network will be bk(k− 1), and the maximum number of possible internal relationships is
bk(bk − 1). Thus, the ratio of expected internal relationships of cluster Bk in the rational
situation is (bk − 1)/(k− 1), which is used as an indicator to determine the type of cluster.
By using the relationships of nodes to identify the clusters within the network, nodes
having similar relationships with other nodes can be classified into the same group. Given
that the position of a node in the network is determined not only by the node itself but also
by other nodes connecting to it, it is more suitable to use social network cluster analysis
to identify the roles of the clusters within the network than to use normal cluster analysis
which is generally based on indicator values to classify different clusters.

Table 2. The Division of Cluster Types.

Ratio of Internal
Relationships

Ratio of Accepted Relationships

≈0 >0

≥ (bk − 1)/(k− 1) Bidirectional spillover cluster Net beneficiary cluster
< (bk − 1)/(k− 1) Net spillover cluster Brokers cluster

3. Results
3.1. Land-Use Carbon Emission Measurement Results

Based on the panel data collected from CLCD and other related statistical materials, the
prefecture-level land-use carbon emissions of Sichuan Province were calculated. According
to the results shown in Figure 3 and Table 3, the net land-use carbon emissions of various
prefecture-level divisions in Sichuan Province showed an overall trend of increasing first
and decreasing from 2006 to 2021 afterwards, except that Luzhou, Mianyang, Guang’an,
and Dazhou showed different trends. Chengdu, as the headquarter of the province, has
maintained the pressure of ranking first in net land-use carbon emissions over the years,
although the emissions varied and decreased in the long run. The net land-use carbon
emissions of Ganzi and A’ba remained negative, indicating that the carbon compensation
rates of these two divisions are relatively high, which could thus play essential roles in
carbon sink functions in Sichuan Province. Other divisions showing an initial increase
followed by decreasing land-use carbon emissions are mainly affected by provincial carbon
emission policies, especially those launched after Sichuan was selected as the national
carbon emission trading pilot in 2016. The central government’s first round of environmen-
tal protection supervision in Sichuan Province started in 2016. The superposition of the
above factors jointly contributed to the reduction of land-use carbon emissions in most
prefecture-level divisions within and after 2016. In addition, land-use carbon reduction
activities are related to LUC, which is a slow process and needs to be coordinated with
economic and social development [48,49]. This may be the reason why land-use carbon
emissions in Luzhou, Mianyang, Guang’an, and Dazhou showed different characteristics
compared with other cities.

According to a quantitative research report on the degree of regional cooperation
in the “Chengdu-Chongqing Dual-City Economic Circle”, Luzhou, Mianyang, Guang’an,
and Dazhou were relatively active in regional collaborative development activities [50].
Thus, there might be lags in coordinating economic and social development and land-use
carbon emission reduction actions in these four divisions. In summary, on the one hand,
the results shown in Figure 3 and Table 3 shed light on the effectiveness of the carbon
emission reduction policies launched in 2016 and after 2016 within Sichuan Province.
On the other hand, the results reflect the heterogeneity in the trade-offs between carbon
emission reduction activities and local economic and social development.



Land 2023, 12, 1927 10 of 22

Land 2023, 12, x FOR PEER REVIEW  10  of  23 
 

to be coordinated with economic and social development [48,49]. This may be the reason 

why  land-use carbon emissions  in Luzhou, Mianyang, Guang’an, and Dazhou showed 

different characteristics compared with other cities.   

 

Figure 3. Carbon Emission and Carbon Sequestration of Different Prefectural-level Divisions within 

Sichuan. 

According to a quantitative research report on the degree of regional cooperation in 

the  “Chengdu-Chongqing Dual-City Economic Circle”, Luzhou, Mianyang, Guang’an, 

and Dazhou were relatively active in regional collaborative development activities [50]. 

Thus, there might be lags in coordinating economic and social development and land-use 

carbon emission reduction actions in these four divisions. In summary, on the one hand, 

the results shown  in Figure 3 and Table 3 shed  light on  the effectiveness of  the carbon 

emission reduction policies launched in 2016 and after 2016 within Sichuan Province. On 

the  other  hand,  the  results  reflect  the  heterogeneity  in  the  trade-offs  between  carbon 

emission reduction activities and local economic and social development. 

Table 3. Land-use Carbon Emissions of Different Prefecture-level Divisions within Sichuan. 

Prefecture-Level 

Divisions 

Net Carbon Emissions from LUC (104 t) 

2006  2011  2016  2021 

Chengdu  1616.342  2423.794  2349.454  2007.995 

Zigong  200.060  299.599  176.580  94.701 

Panzhihua  983.071  1734.065  1554.043  1013.417 

Luzhou  192.149  177.543  245.389  274.453 

Deyang  408.255  612.795  586.253  374.641 

Mianyang  299.691  256.433  133.906  218.615 

Guangyuan  134.121  268.563  281.175  212.513 

Suining  192.084  285.521  289.036  236.673 

Neijiang  186.097  235.673  254.253  221.905 

Leshan  198.759  281.096  434.076  380.609 

Nanchong  265.829  409.410  416.904  366.848 

Meishan  173.676  257.715  184.637  68.921 

Figure 3. Carbon Emission and Carbon Sequestration of Different Prefectural-level Divisions within
Sichuan.

Table 3. Land-use Carbon Emissions of Different Prefecture-level Divisions within Sichuan.

Prefecture-Level Divisions
Net Carbon Emissions from LUC (104 t)

2006 2011 2016 2021

Chengdu 1616.342 2423.794 2349.454 2007.995
Zigong 200.060 299.599 176.580 94.701

Panzhihua 983.071 1734.065 1554.043 1013.417
Luzhou 192.149 177.543 245.389 274.453
Deyang 408.255 612.795 586.253 374.641

Mianyang 299.691 256.433 133.906 218.615
Guangyuan 134.121 268.563 281.175 212.513

Suining 192.084 285.521 289.036 236.673
Neijiang 186.097 235.673 254.253 221.905
Leshan 198.759 281.096 434.076 380.609

Nanchong 265.829 409.410 416.904 366.848
Meishan 173.676 257.715 184.637 68.921

Yibin 392.790 644.051 569.767 350.725
Guang’an 170.038 232.763 248.672 255.512
Dazhou 171.693 291.092 290.736 297.374

Ya’an 23.236 75.615 72.691 33.513
Bazhong 18.318 55.492 79.262 39.867
Ziyang 60.034 86.826 95.591 67.770

A’ba −79.964 −17.817 −24.923 −37.450
Ganzi −189.255 −102.977 −105.254 −183.496

Liangshan 98.047 324.702 309.262 275.431

3.2. Land-Use Carbon Emission Spatial Network Analysis
3.2.1. Overall Spatial Network Characteristics of Land-Use Carbon Emissions

The results shown in Table 4 and Figure 4 reflect that the spatial correlation network
of land-use carbon emissions was improved and that the network stability was enhanced
in Sichuan from 2006 to 2021. Specifically, the network density (ND) of land-use carbon
emissions showed an asymmetrical “N-shaped” trend of a fluctuating increase, reflecting
that the interactions among nodes in the spatial network were strengthened over time.
Interestingly, we found that the overall density value of the spatial network in Sichuan in
2016 was the lowest in the whole study interval. This is perhaps because each division



Land 2023, 12, 1927 11 of 22

focused on the work of environmental protection inspection in 2016, and the increase in the
mean gravity blurred the identification of the spatial correlation relationship among divi-
sions. The network correlation (NC) of land-use carbon emissions showed an asymmetrical
“V-shaped” trend, with the inflection point appearing in 2011. The overall increase in NC
from 2006 to 2021 reflected the enhanced stability of the entire spatial network in Sichuan,
which was further verified by the results of the network hierarchy and efficiency. The net-
work hierarchy (NH) of land-use carbon emissions in Sichuan, measuring the asymmetry
of the spatial correlation network, showed an opposite trend to NC. The decline in the NH
value of land-use carbon emissions indicates that the dependence of the spatial correlation
network on a single node or a few nodes is reduced. This result is consistent with the
prefecture-level development situation within Sichuan Province in recent years. With the
implementation of a series of sub-regional development strategies, Sichuan Province has
promoted the coordinated development of various divisions while enhancing the links and
promoting the flow of factors among regions. Thus, the development process depends
more on the entire network than just on a central division. Figure 4 also shows that, in the
process of development, the regional network has gradually transformed from a single
center to multiple centers. In addition, the decrease in network efficiency (NE) from 0.905
in 2006 to 0.747 in 2021 reflects the increase in the interconnection within the land-use
carbon emission network, further verifying the improvement of network stability.

Table 4. Overall Network Structure Characteristics of Land-use Carbon Emissions within Sichuan.

Indicators
Overall Network Structure Characteristics

2006 2011 2016 2021

ND 0.145 0.162 0.141 0.231
NC 0.356 0.333 0.372 0.427
NH 0.521 0.611 0.521 0.333
NE 0.905 0.837 0.879 0.747

3.2.2. Spatial Network Characteristics of Nodes of Land-Use Carbon Emissions

Although the overall spatial network structure of land-use carbon emissions within
Sichuan Province shows increased correlation and enhanced stability, the changes of in-
dividual nodes (divisions) in the network are heterogeneous. According to the results
shown in Table 5, the status of some nodes in the network (such as Deyang, Mianyang,
Meishan, and Ziyang) improved, while the status of other nodes declined or remained
unchanged (such as Panzhihua, Dazhou, and Chengdu). The heterogeneity of the status
changes of different nodes reflects that the relative centrality of each node in the network
varies over time even though the value of the degree centrality (DC) might remain un-
changed. A possible reason for this is that in the process of development, some divisions
have relatively more enhanced flow of production factors with central nodes, especially
those related to carbon emissions such as population, investment, and technology, while
others do not have such an enhanced flow level [51]. In addition, changes in the ability of
each node to be unaffected by other nodes and to influence other nodes also varied across
time but were consistent with the trend of decreasing dependence on a single center in the
overall network. Specifically, Chengdu maintained the central position concerning both
the independence and influence on other nodes in the network, which could be verified by
the highest value of its betweenness centrality (BC) and closeness centrality (CC). Deyang,
Mianyang, and Ziyang also have higher BC and CC values above the average, of which
Deyang and Mianyang have gradually developed into network centers. These two divi-
sions have better economic location conditions and governance abilities, hence showing
more connections with other cities while remaining relatively independent. The BC and CC
values of Panzhihua, Guangyuan, Dazhou, and A’ba remained extremely low in 2006 and
2021. These divisions are geographically located in the fringe area of the province with an
economically lagging development level. Thus, it is difficult for these divisions to control
or dominate the land-use carbon emissions of other divisions in the network although they
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might be active in regional collaborative development activities. Compared with the results
of land-use carbon emissions and the characteristics of the overall spatial network, it could
be inferred that through the flow of production factors such as population, technology, and
capital within Sichuan Province, the positions of different nodes have changed, reshaping a
multi-centric network structure of land-use carbon emissions.

Land 2023, 12, x FOR PEER REVIEW 2 of 3 
 

 

(a) (b) 

  
(c) (d) 

Figure 4. Spatial Network Structures and Network Relationships of Land-use Carbon Emissions in
Sichuan, 2006, 2011, 2016, and 2021. Note: The spatial network structures are located at the upper of
the subfigures, and the network relationships are located at the lower of the subfigures.



Land 2023, 12, 1927 13 of 22

Table 5. Spatial Network Centrality of Different Prefecture-level Divisions within Sichuan.

Prefecture-Level Divisions
DC BC CC

2006 2021 2006 2021 2006 2021

Chengdu 95.000 95.000 66.842 40.544 95.238 95.238
Zigong 25.000 20.000 1.711 0.132 57.143 54.054

Panzhihua 20.000 5.000 1.404 0.000 40.816 36.364
Luzhou 20.000 20.000 3.004 0.132 55.556 54.054
Deyang 60.000 70.000 13.026 11.342 71.429 74.074

Mianyang 35.000 55.000 1.579 4.412 58.824 66.667
Guangyuan 15.000 20.000 0.000 0.000 52.632 54.054

Suining 15.000 35.000 0.000 0.579 52.632 58.824
Neijiang 10.000 30.000 0.000 0.763 51.282 57.143
Leshan 5.000 35.000 0.000 3.351 50.000 60.606

Nanchong 15.000 30.000 0.000 0.588 52.632 57.143
Meishan 5.000 15.000 0.000 0.088 50.000 52.632

Yibin 15.000 40.000 1.798 4.719 54.054 62.500
Guang’an 15.000 25.000 0.000 0.325 52.632 55.556
Dazhou 20.000 20.000 0.000 0.000 54.054 54.054

Ya’an 5.000 20.000 0.000 0.088 50.000 54.054
Bazhong 25.000 35.000 0.351 0.658 55.556 58.824
Ziyang 15.000 50.000 0.175 4.772 52.632 64.516

A’ba 10.000 15.000 0.000 0.000 51.282 52.632
Ganzi 15.000 25.000 2.412 0.561 54.054 55.556

Liangshan 10.000 20.000 1.382 10.105 52.632 55.556

3.2.3. Spatial Network Characteristics of Clusters of Land-use Carbon Emissions

The iterative convergence method of the Concor module in Ucinet software was
adopted to identify the cluster types in Sichuan. The results are shown in Table 6. Accord-
ing to the results, the spatial effect of land-use carbon emissions in Sichuan has mainly
undergone a transition from intra-regional to inter-regional spillover. The divisions in-
cluded in each cluster in different years varied slightly, although the cluster types changed
considerably, which reflects that the members within the cluster have experienced a certain
extent of coordinated and consistent development. Specifically, the central divisions, i.e.,
Chengdu, Mianyang, and Deyang, remained consistently in the first cluster of the spatial
network [52]. Their cluster type transitioned from a “Bidirectional Spillover Cluster” in
2006 to a “Net Benefit Cluster” in 2011 and 2016 and then reverted to a “Bidirectional
Spillover Cluster” in 2021. With their economic and transportation advantages, the central
divisions could attract various factors and serve as the primary recipient of production
factors. Meanwhile, the central divisions also play a role in the outward transmission
of the flow of factors such as capital and technology, which is the main reason for the
transition of the central divisions from “Net Benefit Cluster” to a “Bidirectional Spillover
Cluster”. In addition, it is interesting to find that Suining, Bazhong and Nanchong, another
three divisions were included in the first cluster in 2021. Their cluster type transitioned
from “Broker Cluster” in 2006, 2011, and 2016 to “Bidirectional Spillover Cluster” in 2021,
indicating that their focus on developing external relationships paid off and their abilities
to attract production factors were enhanced.

The second cluster in the network, which included Guang’an, Ganzi, A’ba, Dazhou,
etc., was identified as the “Broker Cluster” in 2006, 2011, and 2016 and transformed to the
“Net Spillover Cluster” in 2021. Among them, Guang’an and Dazhou showed different
land-use carbon emission trends from 2006 to 2021. Combining the results of their carbon
emission trends with the transformation of their cluster types, it can be observed that
although these two divisions struggled to be integrated into the “Chengdu-Chongqing
Dual-City Economic Circle” strategy, they still faced challenges regarding the outflow
of resources [53]. Meishan and Ziyang, two divisions affected both by the strategies of
“Chengdu-Deyang-Meishan-Ziyang” intra-city integration and the “Chengdu-Chongqing



Land 2023, 12, 1927 14 of 22

Dual-City Economic Circle”, have experienced a development trend from the coordination
in the early stage to the difference in the later stage within the network. The cluster type of
Ziyang transformed from “Broker Cluster” in 2006 to “Bidirectional Spillover Cluster” in
2011 and 2016 and then reverted to “Broker Cluster”, while that of Meishan changed to
“Net Spillover Cluster”. This could be mainly attributed to the difference in geographic
and economic location conditions. Upon further examination of the members included in
the third and fourth clusters, it was observed that the compositions changed considerably
over time, indicating a lower stability in cluster structure. This is primarily because the
economic development levels of these divisions were at or below the intermediate range in
the province, leading to spillover effects of land-use carbon emissions in their development
process. In addition, it is worth noting that in 2021, Ganzi and A’ba were also included in
the “Net Spillover Cluster”. This was likely due to a series of poverty alleviation policies
that had promoted land development activities in these two regions in recent years and
resulted in carbon spillover effects.

Comparing the four clusters within the network, we find that the first and second
clusters exhibited greater stability over time, especially the central divisions. Among
them, the centrality of Mianyang and Deyang increased, while the centrality of Chengdu
maintained the same level. Other divisions demonstrated a relatively more diverse range
of changes in the cluster characteristics of land-use carbon emissions. We further calculated
the network density of each cluster and graphed the density network to explore the
relationships in between [54], as shown in Figure 5. The overall structure of the clusters
showed a “network-type” characteristic. The first cluster held a central position and
was linked to the second, third, and fourth clusters from 2006 to 2021. However, the
relationship between the first and second clusters was comparatively unstable, although
their internal sectors were relatively stable. In addition, the relationships between the first
and second clusters were unidirectional in 2011 and 2021. This was partially because of
the carbon sink spillover effect from the second cluster to the first cluster. The second
cluster also held a unidirectional relationship with the fourth cluster while maintaining a
bidirectional connection with the third cluster. The third cluster held a stable bidirectional
connection with the fourth cluster, which indicated a mutually beneficial relationship. By
combining the above results, it could be inferred that while the overall correlation of the
land-use carbon emission network of Sichuan Province had been strengthened, the internal
correlations of different clusters showed a tendency to be weakened due to the intensifying
development differentiation among divisions.
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Table 6. Clusters of the Land-use Carbon Emission Network in Sichuan, 2006, 2011, 2016, and 2021.

Year Cluster No. Cluster Type Division
Number of

Relations Received
Number of

Relations Issued

Ratio of
Expected
Internal

Relations
(%)

Ratio of
Actual

Internal
Relations

(%)
Inside Outside Inside Outside

2006

The First
Cluster

Bidirectional
Spillover Cluster

Chengdu;
Mianyang;

Deyang
6 32 6 6 10 50

The Second
Cluster Broker Cluster

Guang’an; Ganzi;
Meishan; Ziyang;

Suining;
Guangyuan; A’ba;

Nanchong;
Leshan; Bazhong;

Dazhou

3 6 3 26 50 10

The Third
Cluster

Net Spillover
Cluster

Panzhihua;
Zigong 0 7 0 8 5 0

The Fourth
Cluster

Net Spillover
Cluster

Luzhou; Ya’an;
Yibin; Neijiang;

Liangshan
0 7 0 12 20 0

2011

The First
Cluster

Net Beneficial
Cluster

Chengdu;
Mianyang;

Deyang
6 29 6 6 10 50

The Second
Cluster Broker Cluster

Guang’an; Ganzi;
Suining;

Guangyuan; A’ba;
Nanchong;
Bazhong;

Liangshan;
Dazhou

5 3 5 23 40 18

The Third
Cluster

Bidirectional
Spillover Cluster

Yibin; Meishan;
Ya’an; Neijiang;
Luzhou; Ziyang;

Zigong

14 7 14 9 30 61

The Fourth
Cluster

Net Spillover
Cluster

Panzhihua;
Leshan 0 4 0 5 5 0

2016

The First
Cluster

Net Beneficial
Cluster

Chengdu;
Mianyang;

Deyang
6 27 6 6 10 50

The Second
Cluster Broker Cluster

Guang’an; Ganzi;
Suining;

Guangyuan; A’ba;
Nanchong;

Bazhong; Dazhou

8 2 8 19 35 30

The Third
Cluster

Bidirectional
Spillover Cluster

Yibin; Liangshan;
Ya’an; Neijiang;
Luzhou; Zigong

5 4 5 8 25 38

The Fourth
Cluster

Bidirectional
Spillover Cluster

Panzhihua;
Ziyang; Meishan;

Leshan
1 6 1 6 15 17

2021

The First
Block

Bidirectional
Spillover Cluster

Chengdu;
Mianyang;

Deyang;
Nanchong;

Bazhong; Suining

27 32 27 9 25 75

The Second
Cluster

Net Spillover
Cluster

Guang’an; Ganzi;
Meishan;

Guangyuan; A’ba;
Dazhou

0 5 0 24 25 0

The Third
Cluster

Net Spillover
Cluster

Panzhihua;
Leshan; Yibin;

Zigong
0 15 0 15 15 0

The Fourth
Cluster Broker Cluster

Luzhou; Ya’an;
Neijiang; Ziyang;

Liangshan
3 15 3 19 20 14
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4. Discussion and Policy Implications

Against the background of rapid development and urbanization, activities aimed at
reducing land-use carbon emissions in Sichuan and other sub-regional areas will continue
to face significant challenges, especially in regard to simultaneously supporting different
levels of development strategies while meeting the development needs for different di-
visions. Therefore, more effective policies should be formulated to better address these
challenges. Before delving any further into the discussion, it is necessary to review the
related policies recently issued by Sichuan Province to identify the focus of policy opti-
mization. In general, Sichuan Province has issued a series of land-use carbon emission
reduction plans, including promoting multi-level collaborative innovation for carbon emis-
sion reduction within prefecture-level divisions. For example, according to the “Sichuan
Province Collaborative Efficiency Enhancement Action Plan for Pollution Reduction and
Carbon Emission Reduction” issued by seven departments, including the Provincial Energy
Bureau, in July 2023, each prefecture-level division is required to formulate local collabo-
rative efficiency enhancement action plans for pollution reduction and carbon emission
reduction. In addition, the implementation of carbon emission reduction tasks will be
included in the provincial-level ecological and environmental protection inspection and
local party-government joint accountability assessment. Carbon emission management
policies were also adopted in other areas in China and across the world [55–58]. Hedemann-
Robinson (2017) argued that there were various levels of challenges the European Union
needed to address in the legislative engagement of different member states in relation to
environmental inspections, which reflected the difficulty in environmental cooperative
governance [57]. Considering the close connection between land use activities and carbon
emission reduction, more effective policies should focus on optimizing the management
of land-use carbon emissions from the perspective of cooperation and at the sub-regional
level.

The optimization of land-use carbon emission management of prefectural-level divi-
sions in Sichuan primarily involves adopting decentralized actions at present. However,
a spatial and systemic cooperation network has not been formed within the province.
Furthermore, this is not only the case in Sichuan but also the reality faced by other areas.
Consequently, formulating an effective carbon emission reduction plan and taking it into
consideration in the foundational work of spatial planning in provincial or state land
use management is crucial [59,60]. The key problem of formulating an effective carbon
emission reduction plan then emerges. Given that land-use carbon emissions are spatially
connected within a province or a state and that different divisions have different positions
and play various roles within the network, another problem is how to integrate the spatial
network with local economic development realities and formulate division-specific plans.
Under these constraints, carbon balance zoning could provide a way to solve the above
problems [61–63].

Based on low-carbon objectives, using indicators such as carbon emissions and ecolog-
ical carrying capacity, and focusing on the spatial relationship and the cluster types and
roles, carbon balance zoning could be formulated to develop a spatial and systemic network
for land-use carbon emission management optimization of different regions [45,62]. Taking
Sichuan Province as a case, we tried to combine the attribute data of ecological carrying
capacity and the economic contribution coefficient of carbon emissions and relational data
of spatial network analysis with the newest data to conduct carbon balance zoning. A total
of four main carbon balancing zones were classified: carbon sink zone, low-carbon zone,
economic zone, and high carbon zone based on the attribute data of ecological carrying
capacity and the economic contribution coefficient of carbon emissions. Overlaying the
main classification types with the spatial network cluster analysis based on relational
data, seven carbon balancing zones were finally classified: carbon sink functional zone,
low-carbon development zone, decentralized linkage zone, total carbon emission control
zone, general linkage zone, core linkage zone, and high carbon optimization zone. The
overlay zoning results are shown in Figure 6. The analysis of different zones is conducted
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based on the zoning results of Sichuan Province, which could also provide insights for
other sub-regional areas to conduct carbon balance zoning and optimize carbon emission
management policies.
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(a) Carbon sink functional zone: In Sichuan’s case, examples include Mianyang and
Bazhong. There are natural scenic spots such as Sichuan Xuebaoding Nature Reserve
and Sanjianghu National Wetland Park. This zone could represent areas with rel-
atively high economic contribution coefficients of land-use carbon emissions. This
zone should make full use of existing carbon sink resources and protect such re-
sources, maintain a stable economic growth rate, vigorously develop local tourism,
and encourage local industries to thrive.

(b) Low-carbon development zone: In Sichuan’s case, examples include A’ba, Ganzi, and
Guangyuan. This zone represents areas with strong carbon sequestration capacity and
rich carbon sink resources but low levels of economic and social development. There-
fore, this region should focus on developing low-carbon green industries according to
local conditions, and transforming ecological advantages into economic advantages.

(c) Decentralized linkage zone: In Sichuan’s case, examples include Liangshan and
Ya’an. This zone has a high land-use carbon compensation rate and relatively low
economic benefits per unit of carbon emissions. This type of zone should focus on
the transformation of its economic development paths, through which the zone can
drive the adjustment of the energy consumption structure, accelerate technological
innovation, and enhance its economic strength. The zone should also play the role of
an intermediate “bridge” in the network and establish more ecological connections
with surrounding areas to share the land-use carbon source pressure.

(d) Total carbon emission control zone: In Sichuan’s case, examples include Chengdu,
Deyang, Suining, and Nanchong. This zone usually has sub-regional centers and
lies at the center of the entire carbon emission network. Therefore, the economic
development advantage is prominent, and the carbon sink capacity is weak. Since the
total carbon emissions are generally high, this type of zone should focus on protecting
the ecological environment and realizing coordinated development, accelerating tech-
nological modernization, and achieving energy conservation and emission reduction.
Furthermore, it should also make full use of the core position to radiate surrounding
areas and drive their economic development and technological progress.
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(e) General linkage zone: In Sichuan’s case, examples include Meishan, Zigong, Yibin,
Dazhou, and Guang’an. This zone is spatially connected to other areas with a land-use
carbon emission spillover effect. It represents areas with relatively abundant resources
and industrial transfer, which results in carbon emissions overflow. Therefore, this
zone should make full use of its energy advantages, improve energy utilization, and
pay attention to ecological protection while controlling energy consumption and
focusing on energy-saving development.

(f) Core linkage zone: In Sichuan’s case, examples include Luzhou, Neijiang, and Ziyang.
The regional average GDP is relatively high, and the ecological pressure is moderate.
This zone plays a “broker” role in the spatial network. Therefore, its linkage with the
surrounding areas is strong. This area should continue to control carbon sources and
reduce the impact on the surrounding areas. Moreover, it should engage in stabilizing
and optimizing the source of land-use carbon sinks, alleviating the carbon pressure of
the whole province, and better exerting the linkage effect.

(g) High carbon optimization zone: In Sichuan’s case, examples include Panzhihua and
Leshan. This zone represents areas with a high total amount of carbon emissions and
low ecological carrying capacity. This type of zone should establish the development
strategy of ecological priority and green development, strictly control the energy
consumption and pollution discharge of enterprises, accelerate technological reform,
and build a green and low-carbon industrial system, thus achieving low-carbon
sustainable development.

Local governments play an essential role in achieving land-use carbon emission re-
duction goals. Decomposing the task of reducing land-use carbon emissions to the local
level can facilitate the development of more specific, flexible, and adaptable carbon reduc-
tion plans. Furthermore, local governments can encourage and support local innovation,
achieving collaborative governance of carbon emission reduction across different regions
by directly managing and controlling land resource utilization [64]. Therefore, it is of
practical significance to optimize the management of land-use carbon emissions at the
local level [65,66]. Effective policies should also focus on approaches to enhance local
governments’ capacity to manage land-use carbon emission reduction activities. However,
there are challenges for local governments in terms of promoting sub-regional cooper-
ative land-use carbon emission reduction activities, including how to take the position
and function of different divisions in the spatial network into consideration and how to
promote cooperation across divisions. Taking Sichuan Province as a representative case
to unpack the sub-regional spatial network of land-use carbon emissions, we attempt to
apply the research findings to the local land-use planning system by conducting carbon
balance zoning analysis. The results of our study are expected to provide references for the
optimization of local carbon emission management policies in the following two aspects.

First, the position and function of different divisions in the spatial network should be
considered when formulating local land-use carbon emission reduction policies. There is
a close connection between land use activities and carbon emissions, and the differences
in economic and social development levels determine the different situations in which
land resources are used [10,67,68]. Thus, the divisions with different economic and social
development levels have various positions and functions in the land-use carbon emission
network. Taking the positions and functions of the divisions in the spatial network into
account when formulating carbon emission policies can make them more reasonable and
targeted. Second, coordinated governance across divisions and differentiated zoning for
carbon balance management should be included in the optimization of land-use carbon
emission reduction policies. Land-use carbon emissions are spatially connected and have
spillover effects. Thus, coordinated governance is necessary for an enhanced and sustain-
able spatial network of land-use carbon emissions, especially regarding the protection of
nature reserves, the development of jointly built industrial parks, and other cross-regional
land use issues.
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5. Conclusions

Faced with global warming challenges, green, low-carbon, and sustainable develop-
ment has become the goal of various countries and cities worldwide and is also the current
focus of China’s government. Among them, land use, as an important factor behind the
rapid increase in carbon emissions and thus resulting in global warming, has long drawn
the attention of the government in terms of identifying suitable approaches to sustainably
use land. It is crucial to deeply tap the enormous potential of carbon emission reduction in
land use and optimize related measures to use land. Different levels of spatial networks
have been developed in efforts to reduce carbon emissions and promote sustainable land
use. In addition, extensive studies have explored the estimation of the sources and sinks of
carbon emissions from LUC based on attribute data and unpacked the spatial network of
land-use carbon emissions based on relational data. However, few studies have shed light
on combining the measurement of land-use carbon emissions and the analysis of spatial
networks with local economic and ecological realities to formulate local land use manage-
ment plans. Thus, the differences in roles and functions of different areas within the spatial
network of land-use carbon emissions could not be adequately taken into consideration.
Furthermore, not enough attention has been paid to the spatial network of land-use carbon
emissions within a province, which is a typical sub-regional area and plays a fundamental
role in achieving carbon emission reduction goals.

Taking Sichuan Province as a case study, this study aims to unpack the spatial network
of land-use carbon emissions of different prefecture-level divisions within the province.
Panel data from 2006 to 2021 and an applicable method of Social Network Analysis were
employed. The characteristics of the spatial network of Sichuan Province were analyzed,
and a carbon balance zoning policy was formulated. We found that the net land-use carbon
emissions of various prefecture-level divisions in Sichuan Province generally showed a
trend of initially increasing and then decreasing from 2006 to 2021. In addition, the spatial
correlation network of land-use carbon emissions was improved and the network stability
was enhanced. However, through the flow of carbon-emission-related production factors
such as population, technology, and capital within Sichuan Province, the positions of
different nodes gradually changed, developing into a multi-centric network structure. In
addition, the spatial effect has undergone a transition from intra-regional to inter-regional
spillover, with weakening internal correlations of different clusters in the network. Based
on these findings, we proposed a planning tool for carbon balance zoning to better consider
the roles and functions of different divisions in the spatial network when formulating local
land-use carbon emission reduction policies. The findings of our study are expected to
provide references for the optimization of land-use carbon emission management policies
in sub-regional areas with rapid social and economic development. These areas, as essential
sources of carbon emissions with high growth potential, may contribute a crucial role in
global decarburization efforts. With available datasets, future studies can focus on smaller-
scale spatial networks to further extend sub-regional land-use carbon emission research
within these areas.
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