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Abstract: Wetlands provide important ecosystem services, such as water conservation, biodiversity
protection, and carbon sequestration. The Zoige alpine wetland is the largest high-altitude swamp
in the world and plays a critical role in regional ecological balance and climate change. However,
little is known about the fate of its soil organic carbon (SOC) storage. In this study, we estimated the
degradation status of the wetland over the past 35 years and used machine learning to investigate the
dynamics and driving factors of SOC at different soil depths of the Zoige wetland in 1985, 2000, and
2020. We also simulated the future SOC balance under different scenarios. The results showed that
the area of Zoige wetland has degraded by 378.71 km2 in the past 35 years. Increased precipitation
and solar radiation offset the adverse effects of global warming, making the soil act as a carbon
sink in the past 35 years. The total SOC storage of the wetland soils in 1985, 2000, and 2020 was
estimated to be 2.03 Pg, 2.05 Pg, and 2.21 Pg, respectively, with 46.95% of SOC distributed in the
subsoil layers. Climate change was the most important driving factor controlling the SOC storage
of the Zoige wetland, explaining 51.33% of the SOC changes in the soil. Temperature change was
always the most important factor controlling wetland SOC, and precipitation had a greater impact
on the topsoil. Under the temperature control targets of 1.5 ◦C and 2 ◦C, the SOC pool of the Zoige
wetland will decrease by 60.21 Tg C and 69.19 Tg C, respectively. Under scenarios of a 10% and 20%
increase in precipitation, the wetland soil will accumulate an additional 46.53 Tg C and 118.89 Tg C,
respectively. The study results provide important references for the sustainable management of the
Zoige wetland under the background of global climate change.

Keywords: SOC; climate change; machine learning; carbon stock; driving factors

1. Introduction

Wetlands exist in every country globally (everywhere except Antarctica) and in all
types of climates [1]. They are not only an important component of global ecosystems,
but are also one of the most vital living environments for humans [2]. Wetlands have
unique ecological functions, including providing clean water (SDG 6), adapting to climate
change (SDG 13), and supporting biodiversity (SDG 15) [3]. As a result, they are referred to
as the kidneys of the earth. Due to long-term or short-term flooded conditions, wetland
anaerobic environments inhibit the decomposition of litter, resulting in the accumulation
of soil carbon pools [1]. Wetlands have become carbon sinks that mitigate the increase in
atmospheric greenhouse gas concentrations, and also play a particularly significant role
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in regulating and stabilizing the global climate [4]. Although wetlands only occupy 5–8%
of the Earth’s surface, they store 20–30% (2500 Pg) of the world’s total soil organic carbon
(SOC) [1]. In China, wetlands cover a total area of 53.42 × 106 hm2, accounting for 10% of
the global wetland area and 5.58% of the country’s total land area [2].

Due to their ability to sequester carbon for thousands of years, wetland ecosystems
have long been considered one of the most important and effective options for mitigating
global climate change [4]. However, wetlands are highly vulnerable ecosystems that are
easily impacted by climate change and human activities, which have significant effects
on wetland carbon cycling and distribution processes [5]. Increasing evidence suggests
that climate change is greatly altering the functioning and services of wetland ecosystems,
which can be directly and indirectly influenced by changes in temperature, rainfall inten-
sity and frequency, and extreme climate events, such as droughts, floods, and storms [1].
Hydrological changes and rising temperatures may lead to decomposition rates in wet-
lands exceeding photosynthetic production, resulting in CO2 and CH4 emissions into
the atmosphere, exacerbating the greenhouse effect [1,6]. Additionally, wetlands have
been increasingly impacted by human disturbance since the industrial revolution [7], with
3.4 million square kilometers of inland wetlands disappearing from the earth since 1700,
mainly due to conversion into cropland [8]. Wetland losses have been concentrated in
Europe, the United States, and China, and have rapidly expanded since the mid-20th cen-
tury [8]. This non-climatic anthropogenic pressure further affects wetland responses to the
climate [9], greatly impacting wetland structure, function, and carbon storage capacity [10].
Accurately estimating wetland carbon storage is a prerequisite for wetland conservation
and implementation of carbon sequestration enhancement plans [11]. However, a series
of challenges, including field sampling and on-site scaling, along with definition and
inclusiveness of wetland types in different assessments, have made the global wetland
area and carbon stock estimates controversial [12], and this uncertainty will be further
enhanced with continued climate change and intensification of human activities, including
those that are widespread in China’s wetlands [13]. For policymakers, obtaining accurate
estimates of carbon storage and understanding which factors play a major role in organic
carbon changes is crucial for developing sustainable wetland management strategies [14].
However, it is currently unclear whether the organic carbon stocks in wetlands will respond
positively or negatively to climate change in the future, and the relative importance of
biotic, abiotic, and anthropogenic factors in wetland carbon stock dynamics is also unclear.

Globally, climatic, biotic, and edaphic factors often interact with each other and jointly
regulate SOC dynamics through various processes and mechanisms [15]. It is widely be-
lieved that the dynamic changes in SOC depend on the long-term balance between carbon
inputs and carbon losses through a series of geophysical and biochemical processes [16].
Deciphering the effects of different biological, abiotic, and anthropogenic factors on SOC
dynamics is crucial for understanding how SOC responds to future climate change, envi-
ronmental changes, and anthropogenic disturbances [16]. The physicochemical properties
of soil are closely related to the SOC stock under different scales and climate regimes, as the
soil physicochemical environment controls the supply of resources, such as water, nutrients,
and oxygen, which are essential for microbial communities to utilize SOC and for plants to
assimilate carbon to supplement the soil carbon pool [17]. Increasing evidence suggests
that the soil geochemistry and physical structure provide physicochemical barriers to SOC
microbial accessibility [18]; for example, SOC can be physically protected from decomposi-
tion via adsorption and retention in soil aggregates and mineral particles [17]. Vegetative
growth directly controls the carbon source in the soil surface, and plays an important role
in controlling SOC distribution and dynamics through the generation of litter and the
growth, exudation, and turnover of deep soil roots [16]. Environmental changes, such
as CO2 fertilization and nitrogen deposition, may also have a significant impact on SOC
dynamics [19]. Previous research has mostly focused on single independent factors, which
may contribute to uncertainty in the results [16]. Previous studies have shown that for the
global SOC stock, the contribution of climate is much greater in the soil surface layer than in
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the soil itself, but it shows similar importance in the range of 20–200 cm [17], and the impact
of climate on organic carbon change may be overestimated. For China’s SOC dynamics,
the relative contributions of each driving factor show significant spatial heterogeneity [16].
The development process of wetlands is mainly influenced by small-scale landforms and
hydrological processes, and has nonzonal characteristics [20]. In addition, the magnitude,
directionality, and seasonality of hydrological changes are expected to vary by region, and
therefore, the fate of soil carbon stored in wetlands will depend on local conditions [21]. It is
crucial to understand the controlling factors of wetland SOC storage on a site-specific basis
to develop regional sustainable management strategies. It should be noted that although
most research has focused on the dynamics of organic carbon in the soil above 0.3 m, the
main part of SOC storage, which accounts for about half of the global SOC stock, is stored
in soil layers deeper than 0.3 m [22]. Similar to the surface SOC pool, the subsoil SOC
pool can actively respond to climate and environmental changes [22,23], but little is known
about it to date. It has been observed that the loss of subsoil SOC increases under warming
and increased fresh carbon supply, which is concerning [17]. Therefore, it is necessary to
include deep SOC in our scope of concern, which will help develop unbiased strategies for
the effective management of the entire soil profile carbon.

The Zoige alpine wetland (101◦36′–103◦55′ E, 32◦20′–34◦05′ N) is located at the eastern
edge of the Qinghai–Tibet Plateau and is the largest alpine peat wetland in the world. It
possesses unique climate, hydrological, topographical, and soil conditions [24], and plays
an important role in water conservation, water supply, and ecological balance [2]. The
distinctive climate, geology, and geography of the Zoige wetland provide environmental
conditions for a large number of wetland wildlife and flora, making it one of the significant
organic carbon pools in China [25]. However, these wetlands are vulnerable to the impacts
of climate change and human activities [26]. In recent years, the Qinghai–Tibet Plateau
has undergone significant temperature changes [27], with the temperature increasing
by 0.3 ◦C per decade over the past 50 years, approximately three times faster than the
global warming rate [28]. This has affected local atmospheric circulation and the water
cycle, leading to changes in material and energy exchange between the land surface and the
atmosphere [27], which is expected to increase the decomposition of organic matter in alpine
wetlands. Furthermore, the combined effect of frequent artificial drainage, peat extraction,
and livestock grazing has caused severe degradation of the Zoige alpine wetland [26], with
wetland area reduced by over 30% since the 1970s [26]. These processes, and their resulting
changes, may significantly impact SOC stocks. In this context, it is therefore necessary to
quantify the recent changes in wetland area, dynamics of organic carbon, and the relative
importance of influencing factors in the Zoige wetland, as well as to project the expected
carbon dynamics under the 1.5 ◦C and 2 ◦C warming targets, to effectively monitor the
ecological security of plateau wetlands and develop rational sustainable development
policies in accordance with the Paris Climate Agreement. Previous studies on carbon
cycling in the Zoige wetland have mainly focused on greenhouse gas emissions and carbon
loss during different degradation stages [2,28–30], which deepens our understanding of
carbon cycling in the Zoige wetland, but there is currently a lack of knowledge on the
spatiotemporal variation and influencing factors of organic carbon in the Zoige wetland.
Some scholars have used a space-for-time substitution approach to fit independent variables
with carbon stocks to obtain the driving factors of organic carbon change [6,31], but most
of them have only used annual temperature, precipitation, and soil moisture as their
independent variables, neglecting other climate, biological, and soil factors. Additionally,
this method cannot reflect the dynamics of organic carbon in the entire wetland. Based
on this, the objectives of this study were as follows: (1) to analyze the changes in the
area of Zoige alpine wetlands from 1985 to 2020; (2) to quantify the dynamics of organic
carbon content, carbon density, and carbon storage in three standard depth soils (0–20 cm,
20–50 cm, and 50–100 cm) from the Zoige wetlands from 1985 to 2020; (3) to clarify the
relative importance of 17 variables, including climate, environment, and soil properties,
in controlling the SOC storage in different soil layers from the Zoige wetlands; and (4) to
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estimate the dynamics of organic carbon in Zoige alpine wetlands under the 1.5 ◦C and
2 ◦C temperature control targets and increased rainfall of +10%/+20%.

2. Materials and Methods
2.1. Study Area

The study area is located in the Zoige plateau (31◦48′~34◦48′ N, 100◦48′~103◦40′ E),
which is situated on the northeastern edge of the Qinghai–Tibetan Plateau, where the
world’s largest alpine swamp wetland is widely distributed, and is also considered to be
one of the most important water source conservation areas for the upstream Yellow River
and Yangtze River [32]. We chose the Hongyuan, Zoige, Aba, Maqu, and Luqu counties
as our research objects, which cover the entire extent of the Zoige wetland (except for
Section 3.1, where the Zoige wetlands in this study refer to the entire study area). The
average altitude of the study area ranges from 2392 m to 5057 m, with an annual average
temperature of 0.6 ◦C. The lowest average temperature occurs in January (−10.7 ◦C) and the
highest in July (10.9 ◦C), with an annual precipitation of 656.8 mm [33], and a total area of
approximately 42,797 km2 (Figure 1). The most widely distributed vegetation types in this
area are marsh meadows and meadows [6]. Its subtypes include brown earths, dark-brown
earths, cinnamon soils, gray-cinnamon soils, chernozems, skeletol soils, meadow soils,
mountain meadow soils, bog soils, peat soils, felty soils, dark felty soils, and frigid frozen
soils, accounting for a total of 13 subtypes (according to the Genetic Soil Classification of
China (GSCC), see Table S1 for comparison with the Soli Taxonomy (ST)).
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Figure 1. Location of the study area.

2.2. Data Source
2.2.1. Wetland Scope Extraction

The Landsat TM/OLI images were selected for remote sensing analysis and down-
loaded from the US Geological Survey (USGS) website (http://glovis.usgs.gov/ (accessed
on 16 November 2022)). The images had a resolution of 30 m, and those captured during
the vegetation growing season (from June to August) were uniformly chosen. The selection
criteria required a cloud cover of less than 15% (considering the high annual cloud cover
in the study area [34], meeting the usual 5% requirement [35] was challenging). Prior to
wetland extraction, the Landsat TM/OLI images were radiometrically, geometrically, and
atmospherically corrected to eliminate possible errors [2]. To enhance the display contrast
of the land cover, a red–green–blue (RGB) image was generated using the near-infrared
band, red band, and green band, which facilitated the clear differentiation of the water
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bodies. The wetland spatial distribution information for the years 1985, 2000, and 2020
was extracted using the support vector machine (SVM) algorithm for supervised classifi-
cation in the feature extraction module of ENVI 5.3, and some patches were corrected by
combining with the manual interpretation method to improve the classification accuracy
as much as possible. The validation samples were selected from high-resolution Google
Earth images, which provided accurate feature information [36]. The overall number of
validation samples was 116, and the classification accuracy was more than 91%. To calculate
the wetland area, the total area was equal to the number of water body pixels multiplied by
the area of each pixel (in this study, the resolution of the pixels was 30 m, so the area of each
pixel was 900 m2). The quantitative description of the dynamic changes in the wetland area
was calculated using the following formula:

K =
Ub −Ua

Ua
× 1

T
× 100% (1)

where K is the dynamic degree of wetland area change, Ua and Ub are the wetland areas
at the beginning and end of monitoring, respectively, and T is the monitoring duration.
Therefore, the greater the absolute value of the dynamic degree, the faster the wetland area
changes; the lower the absolute value of the dynamic degree, the more stable the change.

2.2.2. Soil Organic Carbon Samples

The data from the 1980s were sourced from the Second National Soil Survey of China
(1979–1985), a national soil survey that provided information on more than 2500 typical soil
profiles, each containing ten key soil parameters for various soil layers (National Soil Survey
Office, 1996). This survey generated a dataset, with location information that characterizes
the spatial position and distribution of each typical soil type. Data from the years 2000
to 2014 were obtained from an open-source database [14], which comprised data from
the published literature and experimental test data collected by the authors and related
research groups from 2004 to 2014. This dataset included SOC values for 4515 0–20 cm soil
layers and 3026 0–100 cm soil layers, with their sampling times labeled. Data from 2015 to
2019 were derived from the Chinese Soil Series Sichuan and Gansu volumes of the National
Science and Technology Basic Work Special Project, which investigated nearly 7000 typical
soil monoliths in China, and analyzed and measured the physicochemical properties of the
horizons, providing reliable soil information since the Second National Soil Survey of China.
Sample sites located in the Zoige alpine wetland were extracted from the above dataset.
The data for 2020 were obtained via field sampling and experimental testing conducted
by our research group. Additionally, data were collected from the published literature
with clear spatial information and sampling year requirements. A total of 138 profiles
were obtained, of which some of the sample points were extracted from the data of the
Second National Soil Survey of China; the data of the Chinese Soil Series were of land use
types other than wetland (13), and the land use types of all the remaining sample points
extracted were wetland (125). The locations and soil subtypes of the sample sites are shown
in Figure 1. Soil bulk density (BD) data were obtained from the National Earth System
Science Data Center (RESDC, https://www.resdc.cn/ (accessed on 6 November 2022)) at a
horizontal spatial resolution of 90 m and vertically included six soil layer depths: 0–5 cm,
5–15 cm, 15–30 cm, 30–60 cm, 60–100 cm, and 100–200 cm.

Due to the inconsistent layer depths among soil profiles in each dataset, we used the
ASRIS spline tool (https://www.asris.csiro.au (accessed on 3 December 2022)) to harmonize
the SOC and BD data to three standard depths (0–20 cm, 20–50 cm, and 50–100 cm). This
harmonization enabled us to calculate SOC stocks in the defined standard layers, thereby
allowing direct comparison of the soil profiles [17]. Of the 138 profiles obtained, including
40 profiles with a depth of 0–100 cm (18 of which contained SOC information at the
3 standard depths, while 22 contained only SOC information at 0–100 cm), 7 profiles had a
depth of 0–50 cm (containing SOC information at 0–20 cm and 20–50 cm), while 91 profiles
encompassed a depth of 0–20 cm. These profiles covered 11 main soil subtypes out of

https://www.resdc.cn/
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the 13 in the Zoige wetland; thus, we considered them to be representative. Following
Xia et al. (2022) [15], for the 18 profiles with SOC information at the 3 standard depths
and the 7 profiles with a depth of 0–50 cm, we randomly selected 15 profiles out of the
given 25 profiles as Group 1 to establish a linear regression equation between SOC content
measured at 0–20 cm and 20–50 cm (Figure S1a). Based on the regression equation obtained
from Group 1, we substituted the measured SOC content of the 10 remaining profiles
(Group 2) at 0–20 cm into the equation to calculate the predicted SOC content at 20–50 cm
and paired these values with the measured SOC content at 20–50 cm using a paired-sample
t-test (p < 0.001) (Figure S1b). Therefore, we considered the prediction model to be effective.
Based on this, we established a regression equation between the measured SOC content at
0–20 cm and 20–50 cm from 25 profiles (y = 0.99x − 1.70; R2 = 0.89, p < 0.001) (Figure S1c),
which was used to predict the unknown SOC content in the 20–50 cm layer based on the
measured SOC content in the 0–20 cm layer. We then used the same method to establish
a regression equation between the measured SOC content at 20–50 cm and 50–100 cm
(y = 1.17x − 1.17; R2 = 0.77, p < 0.001) (Figure S2c), which was used to predict the unknown
SOC content in the 50–100 cm layer.

The organic carbon density (SOCD) of each layer was calculated using the following
equation:

SOCD = SOCC× BD×D/100 (2)

where SOCD is the SOC density (kg C m−2), SOCC is the SOC content (g kg−1), BD is the
bulk density (g cm−3), and D is the soil layer thickness (cm).

Soil organic carbon storage was calculated using the following method:

SOCS = SOCD× S (3)

where SOCS is the SOC storage capacity (kg), SOCD is the mean value of SOC density
across the study area (kg C m−2), and S is the entire study area (m2) (obtained from the
National Bureau of Statistics of China).

2.2.3. Variables Data Sources

Based on the synthesis of previous research [15–18], we identified 17 driving factors
to estimate the soil organic carbon (SOC) stock in the Zoige wetland. These factors were
divided into four categories: soil properties, climate change, environmental characteristics,
and human disturbance (Table S2). The soil properties included the content of clay, silt,
sand, pH value, cation exchange capacity (CEC), and total nitrogen density (TN density).
The soil texture data were obtained from the Resource and Environment Science and
Data Center (RESDC, https://www.resdc.cn/ (accessed on 6 November 2022)), which
was compiled based on soil profile data obtained from the 1:1,000,000 soil type map and
the second national soil survey. These data were divided into three categories: clay,
silt, and sand, and each category was represented as a percentage. The pH, CEC, and
TN density data were obtained from the National Earth System Science Data Center
(NESSDC, http://www.geodata.cn/ (accessed on 8 November 2022)), which is based on
soil profile samples collected from recent Chinese soil surveys. These three indicators were
treated in the same way as SOC and BD. The environmental conditions of soil formation
were precisely characterized and analyzed by integrating geographic information and
remote sensing technology, developing an adaptive depth function fitting method, and
integrating advanced ensemble machine learning methods to generate a high-resolution
three-dimensional digital distribution map of soil properties in China.

The climate variables included temperature (Tem), precipitation (Pre), the humidity
index (HI, the ratio of precipitation to potential evapotranspiration), soil moisture (SW),
vapor pressure deficit (VPD), and solar radiation (SR). The Tem and Pre data were obtained
from the publicly available 1 km resolution monthly mean temperature dataset and monthly
precipitation dataset for China from 1901 to 2021, published by Peng et al. (2019) [37]. The
potential evapotranspiration, SW, VPD, and SR were downloaded from the TerraClimate

https://www.resdc.cn/
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dataset (http://thredds.northwestknowledge.net:8080/thredds/catalog/TERRACLIMATE_
ALL/data/catalog.html (accessed on 10 November 2022)).

The environmental variables included the digital elevation model (DEM), net pri-
mary productivity (NPP), CO2 fertilization (CO2), and nitrogen deposition (ND). The DEM
data used the GDEMV3 30 m resolution digital elevation model (https://www.gscloud.cn
(accessed on 8 November 2022)). The NPP was derived from the MODIS Net Primary
Production Gap-Filled Yearly L4 Global 500 m SIN Grid V006 product (https://search.
earthdata.nasa.gov (accessed on 9 November 2022)). CO2 fertilization was based on the
CAMS global inversion-optimized greenhouse gas fluxes and concentrations product (https:
//ads.atmosphere.copernicus.eu (accessed on 11 November 2022)), which provides the daily
mean atmospheric CO2 concentration. Nitrogen deposition was obtained from the NACP
MsTMIP: Global and North American Driver Data for Multi-Model Intercomparison prod-
uct (https://www.carboncyclescience.us/data-carbon#MsTMIP (accessed on 10 November
2022)), which distinguishes NHx and NOy; here, we summed them up as nitrogen deposition.
We used the global human footprint dataset developed by Mu et al. (2022) [38] for the period
from 2000 to 2018 to represent the degree of human disturbance. This dataset considered eight
variables, including population density, nighttime lights, cropland, pasture, and highways,
and can more comprehensively reflect human pressure.

More than 80% of sample sites have a definite sampling year, and since the carbon
stocks were affected by temperature and precipitation in the previous years, except for
the current year, the average of the five years prior to the sampling year was used as the
temperature and precipitation data, with reference to previous studies [39]. The remaining
15 variables correspond to the sampling year. The values of 17 variables were extracted
from 138 sample points according to their latitude and longitude coordinates (WGS84) [16].
For sample points where only a time range was given, the mean value of the variable within
that time range was used. In addition, we provided statistical descriptions of organic carbon
densities and selected variables for each sample point (Table S3).

2.3. Model Development
2.3.1. Random Forest

Random forest (RF) is a widely used machine learning method that is especially suit-
able for small observation sets and a large number of predictor variables [40]. RF is an
ensemble of decision tree predictors that builds a decision tree for each bootstrap sample,
and the sample selection is independent for each tree [41]. All trees in the forest have the
same distribution, which ensures the robustness of the model [42]. The RF model is com-
monly used for data exploration and modeling complex relationships between predictors
and target variables, and often demonstrates a strong ability to reduce experimental noise,
showing low bias and low variance [40]. It has been successfully used for SOC mapping in
many regions [40,42,43]. This algorithm provides a single prediction value by averaging the
predictions of all trees, and generates a relative importance score for each predictor variable
to reflect its contribution to the RF model [41]. The importance score of each predictor
variable is estimated by observing the increase in prediction error when the variable is
changed, while holding all other variables constant [43]. RF modeling has three parameters
that need to be defined by the user: the number of features used for each node split (mtry),
the number of decision trees in the forest (ntree), and the minimum node size for decision
tree splitting (nodesize) [44]. Increasing the number of decision trees, and reducing the
correlation between trees, can improve the predictive performance of the RF model [42].

2.3.2. Statistical Analysis

The statistical software “R 4.1.2” was used for all statistical analyses (R Core Team,
2019). In this study, soil organic carbon density was used as the dependent variable, and
the 17 driving factors mentioned above were used as independent variables (predictor vari-
ables), and the functional relationship was established using the random forest algorithm.
Three RF models were established using the “randomForest” package in R to simulate

http://thredds.northwestknowledge.net:8080/thredds/catalog/TERRACLIMATE_ALL/data/catalog.html
http://thredds.northwestknowledge.net:8080/thredds/catalog/TERRACLIMATE_ALL/data/catalog.html
https://www.gscloud.cn
https://search.earthdata.nasa.gov
https://search.earthdata.nasa.gov
https://ads.atmosphere.copernicus.eu
https://ads.atmosphere.copernicus.eu
https://www.carboncyclescience.us/data-carbon#MsTMIP
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SOCD in the 0–20 cm, 20–50 cm, and 50–100 cm layers. We developed the best-fitting
models for SOCD by iteratively changing the ntree and mtry parameters. Based on the
error rate and percentage of explained variance under different parameter settings, we used
800 ntree and 5 mtry for all three models. However, it should be noted that conventional
RF models have difficulty capturing temporal changes. Therefore, following the authors
of [16], we split the samples into training sets (1979–2004 and 2010–2020, 72%) and a testing
set (2005–2009, 28%), according to the time series. The square of coefficient of determination
(R2) and significance test (p-value) were used to evaluate the performance of the RF models
(Figure S3). The constructed and validated RF models, using this method, have temporal
scalability, and can be used to estimate the SOCD for any year. Changes in SOCD over time
were explained by changes in the 17 driving factors between years. The prediction maps
were generated using the “raster” package in R.

3. Results
3.1. Changes in the Wetland Area

We analyzed changes in the area of alpine wetlands in Zoige based on remote sensing
data during the vegetation growing seasons from 1985, 2000, and 2020. Wetlands were
primarily distributed in Hongyuan County, which accounted for 43.32% of the entire
wetland area in 2020, followed by Maqu County and Zoige County, which accounted for
25.41% and 17.11%, respectively. Wetlands were least distributed in Aba County, accounting
for only 2.79% of the total wetland area in 2020. The wetland area in the entire study area
showed a gradual trend of degradation. From a temporal perspective, the wetland area
decreased by 378.71 km2 and 224.04 km2 in 2020 and 2000, respectively, compared to 1985.
The degradation was most severe from 1985 to 2000, with a total degradation area of
224.04 km2 and an average annual degradation rate of 0.34% (Table 1).

Table 1. Area and changes in the Zoige alpine wetland from 1985 to 2020.

Region
Area (km2) Area Change (km2) Dynamic Degree (%)

1985 2000 2020 1985–2000 2000–2020 1985–2020 1985–2000 2000–2020 1985–2020

Hongyuan County 2009.58 1669.75 1741.14 −339.83 71.39 −268.44 −1.13% 0.21% −0.38%
Zoige County 655.80 589.17 687.69 −66.63 98.52 31.89 −0.68% 0.84% 0.14%
Aba County 104.41 171.86 112.24 67.45 −59.62 7.83 4.31% −1.73% 0.21%

Maqu County 1199.20 1219.10 1021.48 19.90 −197.62 −177.72 0.11% −0.81% −0.42%
Luqu County 429.21 524.35 456.98 95.14 −67.37 27.77 1.48% −0.64% 0.18%

Summary 4398.28 4174.24 4019.53 −224.04 −154.71 −378.75 −0.34% −0.19% −0.25%

From a spatial perspective, Hongyuan County displayed the most severe degradation,
with an average annual degradation rate of 1.13% from 1985 to 2000, and a total degradation
area of 339.83 km2 in 2000 compared to 1985. Although the situation improved between
2000 and 2020, this area still showed degradation over 35 years. Zoige County, Luqu
County, and Aba County showed an overall trend of wetland recovery (Figure 2).

3.2. Statistical Description of Variables

Table S3 presents the descriptive statistics of SOCD, climate, environment, anthro-
pogenic, and some soil variables across the profiles. These descriptive statistics revealed
that the mean, median, and standard deviation (SD) of SOCD were 33.8 kg/m2, 26.5 kg/m2,
and 31.0 kg/m2, respectively. The coefficient of variation (CV) can eliminate the effects of
measurement scales and units and compare the relative dispersion degree among several
groups of data with different units. The CV values of the variables ranged from 3.8% to
144.8%. Based on the CV values, the NPP, Pre, sand, VPD, SW, silt, ND, clay, Tem, SOCD,
and HF variables displayed moderate variation (10.2~41.4%), while DEM, CO2, and HI
showed slight variation (3.8~6.7%). SR had the highest CV values, which accounted for
144.8%, indicating a strong spatial variability of SR in the alpine wetlands of Zoige.
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3.3. Spatiotemporal Characteristics of Soil Organic Carbon

We quantified the dynamics of soil organic carbon content and density at three stan-
dard soil depths (0–20 cm, 20–50 cm, and 50–100 cm) in the Zoige wetland in 1985, 2000,
and 2020 using the random forest algorithm. The results showed that the SOC content
decreased with increasing soil depth. Carbon sequestration in the Zoige wetland exhibited
significant spatial variability, with the highest carbon storage areas mainly concentrated in
the central swamp wetland, reaching a maximum of 66.22 kg/m2, located administratively
at the junction of Zoige County and Maqu County (Figure 3). The main soil types were
meadow soils, bog soils, and peat soils, and the main land use types were wetlands and
high-coverage grasslands. The areas with low carbon storage were mainly distributed in
Luqu County and Hongyuan County, with the main soil types being dark felty soils and
felty soils, and the lowest value was 41.38 kg/m2.
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In terms of temporal changes, we found that the SOC content in the Zoige wetland
underwent large changes over the past 35 years, mainly occurring in the 0–50 cm soil layer
from 2000 to 2020. The average SOC contents in the 0–20 cm, 20–50 cm, and 50–100 cm layers
in the study area in 2020 were 47.19 ± 3.62 g/kg, 40.22 ± 3.26 g/kg, and 39.21 ± 3.47 g/kg,
respectively (Table 2), which changed by +17.33%, +21.51%, and −4.59%, respectively,
compared to 2000, and by +20.36%, +22.22%, and −3.96%, respectively, compared to 1985.
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The increase in the SOC content in the topsoil (0–20 cm) mainly occurred outside the central
wetland swamp area, while the increase in the SOC content in the 20–50 cm layer was more
evenly distributed throughout the wetland. At the same time, the organic carbon content of
the subsoil (50–100 cm) decreased in the area surrounding the central wetland (Figure S4).

Table 2. Descriptive statistics of SOC, SOCD, and SOC stocks in the Zoige wetlands.

Year
Soil Organic Carbon (g C kg−1) Soil Organic Density (kg C m−2) Soil Organic Carbon Stock (Pg C)

0−20 cm 20−50 cm 50−100 cm 0−20 cm 20−50 cm 50−100 cm 0−20 cm 20−50 cm 50−100 cm

2020 47.19 ± 3.62 43.77 ± 2.90 27.89 ± 2.22 10.69 ± 0.72 17.49 ± 0.99 21.39 ± 2.00 0.48 ± 0.03 0.78 ± 0.04 0.96 ± 0.09
2000 40.23 ± 3.26 33.28 ± 2.21 28.88 ± 2.14 9.10 ± 0.68 14.40 ± 1.00 22.39 ± 1.53 0.41 ± 0.03 0.64 ± 0.04 1.00 ± 0.07
1985 39.21 ± 3.47 33.09 ± 2.23 28.39 ± 2.03 8.86 ± 0.42 14.30 ± 0.80 22.23 ± 1.25 0.40 ± 0.02 0.64 ± 0.03 0.99 ± 0.06

In the past 35 years, the subsoil of the Zoige wetland has shown a loss of organic
carbon, but the significant carbon sequestration in the 0–50 cm soil layer has made the
entire wetland a net carbon sink. In 2020, the carbon densities of the 0–20 cm, 20–50 cm, and
50–100 cm layers in the Zoige wetland were 10.69 ± 0.72 kg/m2, 17.49 ± 0.99 kg/m2, and
21.39 ± 2.00 kg/m2, respectively, changing by +17.35%, +21.66%, and −4.47%, respectively,
compared to 2000, and +20.62%, +22.23%, and −3.78%, respectively, compared to 1985
(Table 2). Organic carbon has continuously accumulated in the 0–50 cm soil layer, with
accumulation rates of 0.35 kg C m−2 yr−1 and 0.36 kg C m−2 yr−1 in the 0–20 cm and
20–50 cm SOC layers, respectively, over the past 20 years. However, the subsoil showed
a loss of carbon. Spatially, over the 35-year period, topsoil organic carbon sequestration
mainly occurred in the central part of the study area, with the maximum change rate of
SOCD reaching 51.12%. The eastern parts of Zoige County and Hongyuan County were
characterized by carbon losses, with a maximum change rate of −0.92%, while most other
areas showed varying degrees of carbon accumulation (Figure 4). The increase in organic
carbon in the 20–50 cm layer mainly occurred in the southern part of Zoige County, the
northern part of Aba County, and the eastern part of Maqu County, with a maximum
change rate of 47.05%. Different degrees of carbon emissions were observed in the marginal
areas of the study area. Except for the strong carbon sink in the central part of the study
area, the subsoil layer in other regions was characterized as a carbon source.

The total SOC storage in the Zoige wetland was 2.03 ± 0.11 Pg, 2.05 ± 0.14 Pg, and
2.21 ± 0.17 Pg in 1985, 2000, and 2020, respectively, mainly distributed in the western part
of Zoige County and southeastern Maqu County (primarily meadow soils, bog soils, and
peat soils) (Figure 3). From 1985 to 2000, the peripheral area of the study site was a carbon
source (primarily dark felty soils, felty soils, and frigid frozen soils), and the central area
showed a slight accumulation of SOC (primarily meadow soils). From 2000 to 2020, the
soil in the study area was a carbon sink, where carbon sequestration was evident at the
boundary of Zoige County and Maqu County (primarily meadow soils and bog soils), and
the region with high SOC content expanded continuously from the central to the southern
parts (Figure S5). The SOC density of the 13 soil types in the Zoige wetland in 2020 ranged
from 47.70 to 54.24 kg/m2, ranked in the order of gray-cinnamon soils > cinnamon soils >
peat soils > meadow soils > bog soils > brown earths > dark-brown earths > frigid frozen
soils > chernozems > dark felty soils > felty soils > mountain meadow soils > skeletol soils
(Table S3). Except for the skeletpl soils, which acted as a carbon source, all other soil types
acted as a carbon sink, where the peat soils had the most significant carbon sequestration
effect, followed by the gray-cinnamon soils and bog soils.
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The organic carbon in the study area was distributed as follows: 20.32 ± 0.83% in the
0–20 cm layer, 32.74 ± 1.16% in the 20–50 cm layer, and 46.95 ± 1.71% in the 50–100 cm
layer (Figure S6). Meadow soils, felty soils, and frigid frozen soils had a lower proportion
of organic carbon in the topsoil, with most of it being distributed in the 50–100 cm soil
layer, with allocation ratios of 44.69~49.67%, 44.60~50.56%, and 43.42~49.65%, respectively
(Table S5). In contrast, organic carbon storage in bog soils, peat soils, dark felty soils, brown
earths, skeletol soils, gray-cinnamon soils, cinnamon soils, and dark-brown earths was
mainly distributed in the 0–50 cm layer. As climate and environmental factors change,
the rate of organic carbon accumulation in the topsoil and subsoil varies, resulting in
adjustments to the distribution ratios of SOC at different depths. The proportion of organic
carbon accumulation in the 0–50 cm layer in 1 m deep soil has increased since 1985 (Figure 5),
and the difference between the topsoil and subsoil SOCDs has gradually narrowed, from
13.70 kg/m2 in 1985 to 10.70 kg/m2 in 2020 (Table 2). The proportion of organic carbon
storage in the subsoil decreased in all types of soils to varying degrees. Brown earths,
dark-brown earths, cinnamon soils, chernozems, meadow soils, mountain meadow soils,
felty soils, dark-brown earths, and frigid frozen soils had an increase in 0–50 cm SOC due to
subsoil organic carbon loss. Although the SOC at 1 m depth increased in the gray-cinnamon
soils, bog soils, and peat soils, more SOC accumulated in the 0–50 cm layer (Table S4).
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Figure 5. Spatial distribution of proportion of SOC stocks in the Zoige wetland distributed among
different soil layers from 1985 to 2020. (a–c) represents the distribution of organic carbon in 0–20 cm,
20–50 cm, and 50–100 cm soil in 2020; (d–f) represents the distribution of organic carbon in 0–20 cm,
20–50 cm, and 50–100 cm soil in 2000; and (g–i) represents the distribution of organic carbon in
0–20 cm, 20–50 cm, and 50–100 cm soil in 1985.

3.4. Relative Importance of Variables

Figure 6 shows the relative contributions of driving factors (i.e., climate change, soil
properties, environmental characteristics, and human disturbance) to the three soil layers
from 1985 to 2020. For the entire Zoige wetland, the average contributions of climate,
soil, environment, and human driving factors to changes in organic carbon storage were
51.33%, 27.60%, 17.23%, and 3.85%, respectively, indicating that climate change was the
most important driving factor category controlling organic carbon storage in the Zoige
wetland over the past 35 years. However, the control over the subsoil (49.15%) was not
as strong as that over the topsoil (55.00%), and the relative contribution of soil properties
increased from 19.04% in the topsoil to 32.87% in the subsoil, indicating an enhanced effect
of soil properties on organic carbon storage with depth. Meanwhile, the influences of
environmental driving factors (from 14.97% to 20.75%) and human disturbance (from 3.01%
to 5.21%) showed slight declines along the soil depth.
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Figure 6. The overall relative influence of environment, climate, soil, and humans on SOC stocks in
three soil depths across the Zoige wetland. The relative influence of four categories of variables are
calculated as the sum of the relative importance of individual variables in each variable group.

In addition, we further quantified the specific factors that affect organic carbon (Figure 7).
The results showed that the main control variables for organic carbon in the topsoil were SR,
Pre, Tem, CEC, and HF, Tem, SR, CO2, VPD, and Pre for 20–50 cm, and Tem, SR, CEC, TND,
and clay for 50–100 cm. Temperature change was always the important factor controlling
wetland organic carbon, followed by solar radiation. Precipitation had a greater impact on the
topsoil, but its control over the organic carbon in the 20–100 cm layer was reduced. Human
disturbance showed similar features. Among the environmental category variables, CO2 had
the greatest impact on SOC storage, and the other variables were secondary factors regulating
SOC density. Regarding soil conditions, silt, TND, and CEC showed increasingly important
effects along the soil depth.
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The correlation analysis results showed that the increase in precipitation in recent years
significantly promoted the accumulation of soil organic carbon density (SOCD) in the Zoige
wetland (Figure S7). To investigate the potential impacts of future climate change on SOCD
in the Zoige wetland, we simulated the changes in SOCD under two scenarios: 1.5 ◦C/2 ◦C
warming and +10%/+20% precipitation. The results showed that SOCD dynamics were
negatively correlated with warming, while increased precipitation may have a positive
effect on SOCD. Under the 2 ◦C temperature control target of the Paris Agreement, the
SOC pool of the Zoige wetland would decrease by 69.19 Tg C, with meadow soils, bog
soils, and peat soils at the boundary between Maqu County and Zoige County showing
weak carbon sinks, while frigid frozen soils and felty soils acted as strong carbon sources
(Figure 8). If the future warming is limited to 1.5 ◦C, the soil layers of 0–20 cm, 20–50 cm,
and 50–100 cm would release 2.17 Tg, 5.34 Tg, and 1.47 Tg C less than that under 2 ◦C
warming, respectively. Under a 10% increase in precipitation, the 0–20 cm, 20–50 cm,
and 50–100 cm soil layers accumulated an additional 0.90 Tg, 2.78 Tg, and 42.86 Tg C,
respectively. If precipitation was increased by 20%, the soil layers of 0–20 cm, 20–50 cm,
and 50–100 cm would increase by 7.11 Tg, 28.84 Tg, and 82.94 Tg carbon sinks, respectively.
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4. Discussion
4.1. Wetland Area Degradation and Management

In this study, we used remote sensing data to analyze the changes in the wetland
area of the Zoige wetland from 1985 to 2020. We found that the wetland area in the study
area showed a gradual degradation trend, with the most severe degradation occurring
in Hongyuan County. The reduction in wetland area has important ecological and so-
cioeconomic impacts. Wetlands provide important ecosystem services, including water
conservation, biodiversity conservation, and carbon sequestration [45]. Wetlands are im-
portant habitats for various plant and animal species, and the reduction in wetland area
can lead to the loss of ecosystem services and biodiversity [46]. In addition, the reduction
in wetland area may also have adverse impacts on local socioeconomic development and
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human wellbeing, as wetlands are important for locals to obtain water, grazing land, and
fuelwood resources [47]. The degradation of the Zoige alpine wetland has been mainly at-
tributed to unsustainable human activities, with the greatest threat being excessive drainage
and land use change [2,48]. The conversion of wetlands into croplands for agricultural
production, or grasslands for grazing, to meet the growing demands of the population and
economic development, has directly led to the destruction of wetland ecosystems [49]. In
addition, the continuous expansion of peat mining in the Zoige wetland since the 1950s
has directly caused the loss of wetland water, degradation of wetland vegetation, and
imbalance of wetland ecosystems, resulting in the gradual reduction of the Zoige wetland
area [2]. Protecting the Zoige wetland has become an important global task, requiring
the rational use of water resources, especially the reduction in water consumption for
agricultural production, and the control of excessive drainage. At the same time, it is
necessary to prevent illegal and excessive peat mining, take reclamation measures, promote
the restoration and regeneration of peatlands, strengthen wetland management, limit the
human use of wetlands, and avoid the excessive development and destruction of wetland
ecosystems.

4.2. Implications for SOC Management in the Zoige Wetlands

We estimated the soil organic carbon density (SOCD) of the Zoige wetland by integrat-
ing multiple research data. Our study showed that the SOCD of the Zoige wetland was
slightly higher than previous estimates and is within the acceptable range (Table S6). This
difference may be attributed to the lack of sufficient sampling points in previous studies of
the Zoige wetland [50]. The density of sampling points in the global or national datasets
in this region is extremely low, and the estimation of organic carbon is affected by the
sampling points in surrounding areas [51]. The SOCD in the surrounding areas is lower
than that of the Zoige wetland [14], which may have resulted in the underestimation of
organic carbon in previous studies. Our study analyzed the density of sampling points in
the World Soil Information Service (WoSIS) global database, and found that the density
of sampling points in China is relatively low compared to other regions, such as Europe,
North America, and eastern Australia (Figure S8). In China, there are fewer sampling points
in the western region, particularly for the Zoige wetland, indicating insufficient attention
to this area (WoSIS, 2019). The lack of sampling points in the Zoige wetland may be due to
its remote location, limited resources for soil sampling and analysis, and transportation
inconvenience [50]. Considering that the Zoige wetland is an important high-altitude
wetland ecosystem, we suggest that it should be given more attention, and more accurate
estimations of carbon storage and carbon balance should be conducted to provide reliable
scientific evidence for effective carbon reduction and management. Future research should
focus on supplementing the WoSIS database’s sampling points in the Zoige wetland and
other representative areas in China to improve the accuracy of global SOCD estimation,
which is essential for formulating effective carbon management strategies to mitigate cli-
mate change [52]. Furthermore, we found that the SOCD of the Zoige high-altitude wetland
was higher than that of the coastal wetland in China (Table S6), highlighting the importance
of the Zoige wetland in carbon sequestration and accumulation. It should therefore be
given more consideration in regional and global carbon budget assessments.

Due to its crucial role in soil fertility, global carbon cycling, and climate change
mitigation [53], the distribution and dynamics of SOC in profiles have been extensively
studied [18,22,23]. Our study found that the entire Zoige wetland acted as a carbon sink,
with climate being the most important factor, even though the impact of the climate on SOC
decreased with increasing soil depth (Figure 6). Previous studies have suggested that warm-
ing may result in soil CO2 emissions [54,55]. However, our research found that increased
precipitation and solar radiation offset the adverse effects of warming (Figures S7 and S9a),
leading to soil acting as a carbon sink over the past 35 years. Our study also emphasized
the importance of considering the role of deep soil in soil carbon sequestration practices,
as solely focusing on topsoil carbon sequestration strategies may underestimate the soil’s
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carbon sequestration capacity. Traditionally, SOC research has focused on the topsoil, as
most plant and animal residues accumulate there [22,23]. However, our study showed
that the distribution of SOC is not confined to surface soil, as previously believed, but can
accumulate in deeper soil layers over time [22]. As much as from 43.10% to 48.96% of SOC
in the Zoige wetland is distributed in the 50–100 cm soil layer, becoming a long-term sink
for atmospheric CO2, thus requiring an indiscriminate carbon management plan for the
entire soil profile. Furthermore, over the past 35 years, the proportion of organic carbon
stored in the subsoil has declined in the entire 1 m deep soil profile, with a significant
increase in SOC distribution in the 0–20 cm and 20–50 cm soil layers, indicating carbon
loss in the subsoil and carbon accumulation in the topsoil. The carbon loss observed in
the lower soil layer was mainly attributed to a temperature rise, which accelerates the
decomposition of SOC in the lower soil layer (Figures 7c and S9b). However, it should be
noted that the entire soil profile is still acting as a carbon sink, with carbon accumulation in
the topsoil exceeding carbon loss in the subsoil. This finding highlights the potential risk of
overlooking carbon loss in the subsoil and overestimating the soil profile’s carbon storage
capacity. Therefore, future research and carbon management practices need to pay more
attention to the dynamic changes in carbon in the subsoil.

In recent years, research on the decomposition of organic matter and its response and
feedback to the climate has tended to divide soil organic carbon (SOC) into particulate
organic carbon (POC) and mineral-associated organic carbon (MAOC) due to their signif-
icant differences in their physical and chemical properties, mean residence time in soils,
and responses to land use changes, plant litter inputs, global warming, CO2 fertilization,
and nitrogen deposition [56–58]. In the long term, the ability of soils to stabilize additional
organic carbon is limited; that is, SOC storage has an upper limit, and in many soils, the
capacity for organic carbon storage seems to be primarily related to soil organic matter with
mineral surfaces [59,60]. Soil carbon, through its chemical and physical associations with
minerals, restricts microbial access to decomposable substrates [57], and the turnover time
of mineral-associated organic carbon may be a 1000 times longer than that of particulate
organic carbon at the same depth [57]. A 5-year whole-soil warming experiment in Califor-
nia found that warming led to losses of subsoil carbon primarily from the decomposition
of unprotected particulate organic matter [61]. In the Zoige wetland, different degrees of
carbon loss were observed in the 50–100 cm soil layer, except for the bog soils, peat soils,
and gray-cinnamon soils, and whether this carbon loss comes from the decomposition
of particulate organic matter is unclear. Gray-cinnamon soils, peat soils, bog soils, and
meadow soils have shown the most obvious carbon sequestration in the surface soils of
the Zoige wetland over the past 35 years, but the proportion of mineral-associated organic
carbon and the threshold range of future organic carbon sequestration in these soils are still
unknown. Therefore, we suggest that future research in the Zoige wetland should focus
on understanding the dynamics of MAOC and POC and the mechanisms by which they
respond to environmental changes, which will help to deepen our understanding of carbon
cycling in wetland ecosystems and develop effective management strategies to maintain
their carbon sink function.

Over the past 35 years, the temperature and precipitation in the Zoige wetland have
shown an increasing trend (Figure S9), and this trend is expected to continue in the future.
Our results showed that changes in temperature and precipitation will lead to decreases
and increases in the SOCD in the three standard soil layers, respectively. Under future
climate change scenarios, the carbon sequestration capacity of the Zoige wetland will
depend on the relative magnitudes of these two factors. In addition, if future climate
warming is limited to 1.5 ◦C, it is expected that carbon emissions from the Zoige wetland
will be 8.97 Tg C less than warming by 2 ◦C, highlighting the importance of controlling
global warming. Frigid frozen soils and felty soils are considered to be the main sources
of SOC release under warming conditions, indicating that they need to be given more
attention in future studies. Our results provide valuable information for predicting the
response of the Zoige wetland to future climate change.
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4.3. Uncertainties and Limitations

Although we used diverse and representative datasets in this study, and the statistical
evaluation of the model validation results is reasonable and acceptable, there are still some
uncertainties and limitations in this study. One potential limitation is that the independent
variables of the model have different spatial resolutions [16]. We used multiple gridded
datasets to predict the distribution and dynamic changes in SOC, some of which were
extracted from global datasets. However, when extracting these variable values to points,
the values between adjacent sampling points may be identical, which may underestimate
the importance of variables. In addition, although the sampling point data used to build
the random forest model were representative and dispersed, covering the main soil types in
the Zoige wetland, we can still increase the number of sampling points to further enhance
the statistical significance [15]. Third, there was a large difference in the depth of soil in
the Zoige wetland, ranging from 3 cm to 147 cm (Figure S10a). Most of the soil layers in
the area are deeper than 1 m (Figure S10b), and even when the sampling depth reaches
100 cm, it may not truly represent the carbon storage potential of the Zoige wetland. Since
some profile sampling depths were less than 1 m, we used other existing profile data with
depths exceeding 1 m to predict the organic carbon content at a 1 m depth at these locations.
Although this method has been validated, it may still overestimate or underestimate the
carbon reserves of the Zoige wetland. Therefore, it is necessary to establish a high-resolution
independent variable dataset based on surface-measured or observed data and increase the
density of Zoige wetland full-profile sampling points for further research in the future on
the basis of this study

5. Conclusions

This study evaluated the changes in wetland area, SOC dynamics, and driving factors in
the Zoige alpine wetland from 1985 to 2020 by establishing a random forest model. The results
showed that the Zoige wetland has severely degraded in the past 35 years, with reductions of
378.71 km2 and 224.04 km2 in wetland area in the years 2020 and 2000, respectively, compared
with 1985. The SOC content in the Zoige wetland decreased with increasing soil depth, while
its SOCD showed the opposite trend. The increase in precipitation and solar radiation offset
the adverse effects of warming temperatures, resulting in organic carbon losses in the subsoil,
but the soil acted as a carbon sink due to the significant carbon sequestration in the 0–50 cm
soil layer over the past 35 years. The gray-cinnamon soils, cinnamon soils, and peat soils
had the highest carbon density, while the gray-cinnamon soils, bog soils, and peat soils had
the most significant carbon sequestration. The total soil organic carbon storage in the Zoige
alpine wetland was 2.03 Pg, 2.05 Pg, and 2.21 Pg in 1985, 2000, and 2020, respectively. The
0–20 cm layer, 20–50 cm layer, and 50–100 cm layer accounted for 20.32%, 32.74%, and 46.95%,
respectively. As time passed, the proportion of organic carbon in the topsoil increased. Climate
change was the most crucial category of the driving factors that controlled the organic carbon
storage in the entire Zoige wetland in the past 35 years, explaining 51.33% of SOC variability.
The primary control variables for the topsoil’s SOC were SR, Pre, and Tem; those for 20–50 cm
SOC were Tem, SR, and CO2, and those for 50–100 cm SOC were Tem, SR, and CEC. Under
the 1.5 ◦C and 2 ◦C temperature control targets, the SOC stock in the Zoige wetland would
decrease by 60.21 Tg C and 69.19 Tg C, respectively. Under the scenarios of a 10% and 20%
increase in rainfall, the SOC stock in the Zoige wetland would accumulate an additional
46.53 Tg C and 118.89 Tg C, respectively. The future carbon sequestration capacity of the Zoige
wetland will depend on the relative impact of these two factors. The information obtained in
this study is essential for understanding the changes in SOC and the driving mechanisms in
the Zoige wetland and will contribute to global efforts to mitigate climate change.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/land12101923/s1. Figure S1. Relationships between SOC content
in 0–20 cm layer and 20–50 cm layer; Figure S2. Relationships between SOC content in 20–50 cm layer
and 50–100 cm layer; Figure S3. Comparison between estimated and observed SOC at the training
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and testing phases in the three soil layers; Figure S4. Spatial distribution of SOC content in each soil
layer of Zoige wetland during 1985–2020; Figure S5. Spatial distribution of SOC density changes
across the Zoige wetland area during 1985–2020; Figure S6. Distribution of soil organic carbon stocks
in different soil layers in Zoige wetland during 1985–2020; Figure S7. Pearson correlations between
control variables and SOC density in Zoige wetland; Figure S8. Point density analysis of WOSIS
global sampling points and the distribution of WOSIS sampling points in China; Figure S9. Annual
precipitation and average annual temperature of the Zoige wetland from 1985 to 2020; Figure S10. Soil
layer thickness and difference with 1m deep soil in Zoige wetland; Table S1. Comparison of GSCC soil
types appearing in the manuscript with ST classifications; Table S2. Variables used in the modelling
of changes in soil carbon; Table S3. Descriptive statistics of SOCD and other Variables in our dataset;
Table S4. Soil organic carbon density of different soil types in Zoige wetland; Table S5. Soil organic
carbon density in each layer of different soil types in Zoige wetlands; Table S6. Proportion of soil
organic carbon allocated to different soil types during 1985 to 2020; Table S7. Synthesis of soil organic
carbon density in the three soil layers in Zoige wetland from this study and previous investigations.
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49. Junk, W.J.; An, S.; Finlayson, C.M.; Gopal, B.; Květ, J.; Mitchell, S.A.; Mitsch, W.J.; Robarts, R.D. Current State of Knowledge
Regarding the World’s Wetlands and Their Future under Global Climate Change: A Synthesis. Aquat. Sci. 2013, 75, 151–167.
[CrossRef]

50. Luan, J.; Cui, L.; Xiang, C.; Wu, J.; Song, H.; Ma, Q. Soil Carbon Stocks and Quality across Intact and Degraded Alpine Wetlands
in Zoige, East Qinghai-Tibet Plateau. Wetl. Ecol. Manag. 2014, 22, 427–438. [CrossRef]

51. Emadi, M.; Taghizadeh-Mehrjardi, R.; Cherati, A.; Danesh, M.; Mosavi, A.; Scholten, T. Predicting and Mapping of Soil Organic
Carbon Using Machine Learning Algorithms in Northern Iran. Remote Sens. 2020, 12, 2234. [CrossRef]

52. Scharlemann, J.P.; Tanner, E.V.; Hiederer, R.; Kapos, V. Global Soil Carbon: Understanding and Managing the Largest Terrestrial
Carbon Pool. Carbon Manag. 2014, 5, 81–91. [CrossRef]

53. Zhang, Y.; Li, P.; Liu, X.; Xiao, L.; Li, T.; Wang, D. The Response of Soil Organic Carbon to Climate and Soil Texture in China.
Front. Earth Sci. 2022, 16, 835–845. [CrossRef]

54. Zhou, Y.; Hagedorn, F.; Zhou, C.; Jiang, X.; Wang, X.; Li, M.-H. Experimental Warming of a Mountain Tundra Increases Soil CO2
Effluxes and Enhances CH4 and N2O Uptake at Changbai Mountain, China. Sci. Rep. 2016, 6, 21108. [CrossRef] [PubMed]

55. Liu, S.; Zheng, Y.; Ma, R.; Yu, K.; Han, Z.; Xiao, S.; Li, Z.; Wu, S.; Li, S.; Wang, J.; et al. Increased Soil Release of Greenhouse Gases
Shrinks Terrestrial Carbon Uptake Enhancement under Warming. Glob. Change Biol. 2020, 26, 4601–4613. [CrossRef]

56. Georgiou, K.; Jackson, R.B.; Vindušková, O.; Abramoff, R.Z.; Ahlström, A.; Feng, W.; Harden, J.W.; Pellegrini, A.F.A.; Polley, H.W.;
Soong, J.L.; et al. Global Stocks and Capacity of Mineral-Associated Soil Organic Carbon. Nat. Commun. 2022, 13, 3797. [CrossRef]
[PubMed]

57. Lavallee, J.M.; Soong, J.L.; Cotrufo, M.F. Conceptualizing Soil Organic Matter into Particulate and Mineral-associated Forms to
Address Global Change in the 21st Century. Glob. Change Biol. 2020, 26, 261–273. [CrossRef]

58. Whalen, E.D.; Grandy, A.S.; Sokol, N.W.; Keiluweit, M.; Ernakovich, J.; Smith, R.G.; Frey, S.D. Clarifying the Evidence for
Microbial- and Plant-derived Soil Organic Matter, and the Path toward a More Quantitative Understanding. Glob. Change Biol.
2022, 28, 7167–7185. [CrossRef] [PubMed]

59. Wiesmeier, M.; Hübner, R.; Spörlein, P.; Geuß, U.; Hangen, E.; Reischl, A.; Schilling, B.; Von Lützow, M.; Kögel-Knabner, I. Carbon
Sequestration Potential of Soils in Southeast Germany Derived from Stable Soil Organic Carbon Saturation. Glob. Change Biol.
2014, 20, 653–665. [CrossRef] [PubMed]

60. Wiesmeier, M.; Munro, S.; Barthold, F.; Steffens, M.; Schad, P.; Kögel-Knabner, I. Carbon Storage Capacity of Semi-Arid Grassland
Soils and Sequestration Potentials in Northern China. Glob. Change Biol. 2015, 21, 3836–3845. [CrossRef]

61. Soong, J.L.; Castanha, C.; Pries, C.E.H.; Ofiti, N.; Porras, R.C.; Riley, W.J.; Schmidt, M.W.I.; Torn, M.S. Five Years of Whole-Soil
Warming Led to Loss of Subsoil Carbon Stocks and Increased CO2 Efflux. Sci. Adv. 2021, 7, eabd1343. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.2134/jeq2016.03.0076
https://doi.org/10.1016/j.scitotenv.2022.153440
https://doi.org/10.1016/j.ecolind.2015.08.036
https://doi.org/10.1016/j.scitotenv.2017.02.146
https://www.ncbi.nlm.nih.gov/pubmed/28341467
https://doi.org/10.1007/s13157-020-01368-4
https://doi.org/10.1002/aqc.2709
https://doi.org/10.1007/s11273-017-9587-2
https://doi.org/10.3390/su11236581
https://doi.org/10.1007/s00027-012-0278-z
https://doi.org/10.1007/s11273-014-9344-8
https://doi.org/10.3390/rs12142234
https://doi.org/10.4155/cmt.13.77
https://doi.org/10.1007/s11707-021-0940-7
https://doi.org/10.1038/srep21108
https://www.ncbi.nlm.nih.gov/pubmed/26880107
https://doi.org/10.1111/gcb.15156
https://doi.org/10.1038/s41467-022-31540-9
https://www.ncbi.nlm.nih.gov/pubmed/35778395
https://doi.org/10.1111/gcb.14859
https://doi.org/10.1111/gcb.16413
https://www.ncbi.nlm.nih.gov/pubmed/36043234
https://doi.org/10.1111/gcb.12384
https://www.ncbi.nlm.nih.gov/pubmed/24038905
https://doi.org/10.1111/gcb.12957
https://doi.org/10.1126/sciadv.abd1343
https://www.ncbi.nlm.nih.gov/pubmed/34020943

	Introduction 
	Materials and Methods 
	Study Area 
	Data Source 
	Wetland Scope Extraction 
	Soil Organic Carbon Samples 
	Variables Data Sources 

	Model Development 
	Random Forest 
	Statistical Analysis 


	Results 
	Changes in the Wetland Area 
	Statistical Description of Variables 
	Spatiotemporal Characteristics of Soil Organic Carbon 
	Relative Importance of Variables 

	Discussion 
	Wetland Area Degradation and Management 
	Implications for SOC Management in the Zoige Wetlands 
	Uncertainties and Limitations 

	Conclusions 
	References

