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Abstract: Grasslands are key elements of the global agricultural system, covering around two-thirds
of all agricultural areas and playing an important role in biodiversity conservation, food security,
and balancing the carbon cycle. Climate change is a growing challenge for the agricultural sector
and may threaten grasslands. To address these challenges, it is vital to conduct in-depth climate
studies to understand the vulnerability of grasslands. In this study, machine learning was used to
build an advanced model able to evaluate the future impact of climate change on grassland vigour.
The objective was to identify the most vulnerable grassland areas, analyse the interaction between
climate and grassland performance, and outline management strategies against the detrimental
implications of climate change. A Random Forest (RF) regression was used to model the Normalised
Difference Vegetation Index (NDVI) using the Standardised Precipitation-Evapotranspiration Index
(SPEI). The model explained 76% of the NDVI variability. The foremost significant predictors of
grassland vigour are the SPEI with temporal lags of 1, 4, and 12 months. These findings suggest that
the vegetative status of grasslands exhibits high sensitivity to short-term drought while also being
influenced by the memory of past climatic events over longer periods. Future projections indicate an
overall reduction in grassland vigour, mostly in RCP8.5. The results indicate that negative effects will
be more pronounced in mountainous regions, which currently host the most vigorous grasslands.
Dry lowlands in the north should continue to have the lowest vigour in the future. A substantial
reduction in vigour is expected in autumn, with an effect on grassland phenology. The development
of grasslands in winter, favoured by increasing temperatures and precipitation, can advance the
harvesting of grassland (cutting) and the grazing of livestock. To ensure that vigour is maintained in
less favourable zones, adaptation measures will be needed, as well as more efficient management of
highlands to provide an adequate level of production.

Keywords: machine learning; random forest; standardised precipitation and evaporation index
(SPEI); normalised difference vegetation index (NDVI); climate change; grasslands vigour

1. Introduction

Over the last two decades, roughly two-thirds of agricultural land worldwide was
used for grasslands [1]. Currently, the global agricultural land area is 4.74 billion hectares,
of which 67% is used for permanent meadows and pastures, while 33% is for cropland.
China, Australia and the United States of America are the main countries, with about 30% of
the world’s permanent meadows and pasture areas [1]. Different types of grass and forage
terminologies are traditionally distinguished [2,3]. Grasslands can be understood as land
devoted to foraging production cutting, grazing/browsing, or used for other agricultural
activities, such as renewable energy production [3,4]. The flora of grasslands consists of
grasses or grass-like plants, legumes and other forbs, though woody species can also be
found in some ecosystems [5], such as in the Mediterranean Montado ecosystem [6].
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In the European Union, permanent pastures, which are a type of grassland, cover 35%
of the agricultural area [7]. Particularly notable are the grasslands in the Mediterranean
Basin (consisting of vast areas of Southern Europe, North Africa and the Middle East). The
Mediterranean Basin is a biodiversity hotspot, with many indigenous plant species found in
its vast grasslands, which are heavily influenced by long-term management techniques [8].
Grassland-based farming systems are crucial for the Mediterranean regions because they
meet the rising demand for animal products, providing smallholders with financial security
and producing high-value foodstuffs [5], in addition to several ecosystem services such as
wildfires prevention, soil erosion control or biodiversity preservation.

In Portugal, grasslands, typically formed by permanent pasture and spontaneous
herbaceous vegetation, have a key level of importance, covering approximately 22% of
mainland Portugal, showing an increasing trend in the last decades [9]. These areas provide
forage for domestic livestock production, generating products such as milk, meat, and
fibre [10,11]. Grasslands are also highly valuable regarding their multiple ecosystem
functions, with a significant impact on the global carbon cycle, as they have vast potential
for carbon sequestration through the fixation of atmospheric CO2 in plant biomass [12]. In
fact, grasslands seem more capable than forests themselves of maintaining carbon sinks [11],
especially in locations prone to drought and wildfires [13]. Grasslands can be important
drivers of biodiversity, providing valuable habitats for hundreds of species of plants and
animals. In addition, grasslands have an impact on ecological processes, ranging from
the landscape level (such as pollination and biological control of agricultural pests) to the
regional (such as water regulation and purification, erosion prevention, recreation, and
cultural values) and global levels (e.g., climate regulation) [10,14,15].

Grassland development depends heavily on climatic conditions, making it particularly
vulnerable to climate variability and change [11,16]. As reported by the Intergovernmental
Panel on Climate Change (IPCC), surface temperatures are projected to increase significantly
by the end of the 21st century [17]. The mean surface warming of the planet is expected to
exceed +1.8 ◦C (RCP4.5; moderate scenario) and may eventually exceed +3.7 ◦C (RCP8.5;
severe scenario) [17]. Furthermore, precipitation patterns are also expected to change
considerably, particularly in Southern Europe, where a significant decrease is projected.
Another important component of climate change, reported by [18], is the increase in
intra- and inter-annual variability. All climate scenarios point to negative effects on the
environment, particularly due to the increased frequency of occurrence of extreme weather
events, such as heatwaves and droughts [19].

Changes in the physical and chemical composition of plants can result from rising
global temperatures and, in particular, drought intensity [20]. Extreme drought can cause
tissue senescence, which significantly reduces the overall quality of the forage. Plant
maturation accelerates under mild heat stress, but the water content of plant tissues drops,
and the amount of water-soluble carbohydrates rises [18]. All these physiological effects
can impact the vigour of the grasslands, potentially affecting animal feed imports from
out of the farm and the financial stability of producers. Hence, it is of utmost importance
to monitor grassland health and intervene in a timely manner. Nonetheless, site-based
monitoring is difficult to implement, particularly in large areas, mainly due to the lack
of resources.

In recent years, remote sensing technologies have emerged to monitor plant devel-
opment. Particularly, the advancement of high spatial resolution sensors installed in
satellite platforms is becoming a reliable source of information for grassland monitoring [4].
Changes in grassland vigour can be measured using the Normalised Difference Vegetation
Index (NDVI) [6,21], which is greatly influenced by drought [22]. NDVI is also used to
assess grassland degradation [21], vegetation growth [23], the richness of grassland [24],
and pasture quality [6]. While there are other remote sensing indices also linked to vigour,
such as the GPP/NPP (Gross/Net Primary Production) or the LAI (Leaf Area Index), these
show strong correlations with the NDVI over grasslands [25,26].
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Several climatic indices have been developed to assess the extent and severity of dry-
ness [27]. The Standardised Precipitation and Evaporation Index (SPEI) is a water-balance
drought index that can be used to assess agricultural water availability for plants and
biomass production [28,29]. It is considered one of the most advanced drought indices,
partly because it takes into account the relationship between precipitation and evapotran-
spiration for several monthly timescales (lags). Previous studies have shown that there is a
strong relationship between the SPEI and NDVI [30], strengthening the connection between
vegetative vigour and drought. This relationship might be crucial to understanding the
impact of climate change on pasture vigour. In the literature, there are several works that
explore the possible future effects of climate change on pastures [31,32]. However, ap-
proaches that seek to relate NDVI and SPEI are scarce [33], particularly over a distant time
horizon. Therefore, our study aims to overcome this limitation by using future projections
of the SPEI to predict the NDVI over a grassland area. This will indeed enable assumptions
on future regional grassland vigour.

To help farmers manage forage supplies in the face of increasing drought conditions
and seasonal variability, it is vital to understand more about how climate change is affecting
grasslands (Soussana, Klumpp, and Ehrhardt 2014; Liu et al. 2017) [16,22], especially in re-
gions where the livestock sector plays an important socio-economic role. Early notification
of the probable negative impacts of climate change, particularly drought-related impacts,
on forage production would enable tactical management of grassland and/or livestock
decisions, such as the implementation of pasture rotations, adjustment of stocking density,
advanced notice of possible needs of earlier supplemental feeding, or acquisition of addi-
tional forage resources [28]. In the present study, we applied a machine learning approach
to spatiotemporally assess the impacts of future climatic conditions on the vegetative
vigour of grasslands in the Côa region, northeastern Portugal. The following questions are
addressed more precisely: which grassland areas are most susceptible to climate change?
How damaging are the effects of future climate change on grassland vigour? What are
the short and long-term management strategies that can possibly be proposed to reduce
climate change effects on grasslands?

2. Materials and Methods

2.1. Study Area

The study area corresponds to the Côa region (Figure 1a,b), which extends about
5.6 thousand km2 across twelve municipalities and covers the entire valley of the Côa River
and part of the Douro and Mondego rivers basins at elevations ranging from 95 m (Douro
River) to 1285 m (Guarda’s municipality mountain ranges) above mean sea level [34]. The
Côa region presents a Mediterranean-type climate, with annual mean temperatures of
10.8–16.4 ◦C and total annual precipitation of 473–1130 mm (Figure 1c,d). June, July and
August (Summer) are the warmest and driest months, with a mean temperature of over
22 ◦C and monthly precipitation of less than 14 mm. On the other hand, Autumn, Winter,
and early Spring (from October to April) correspond to the rainiest period (Figure 1e). The
southern region shows the highest values of annual precipitation and the lowest average
temperatures (higher-elevation area), while the northern region, near the Douro River, is
significantly warmer and drier.

2.2. Future Vigour Model

The study employs a methodology that integrates spatial reflectance indices and
climatic data to construct a vigour model. The model can be used to project the spatial vari-
ability of grassland vigour for the Côa region in the context of climate change. Specifically,
the machine learning regression model Random Forest (RF) [35] was fitted to the NDVI
using SPEI data as predictors. The following sections present a detailed description of the
model and the data used.
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precipitation and (d) mean annual temperature of the Côa region, determined from historical values 
for the period 2000–2021. (e) Gaussen ombrothermic diagram, with monthly precipitation totals (in 
mm, dry months in orange bars) and mean temperatures (in °C) for the period 2000–2021. 
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Figure 1. Study area presentation: (a) Location of the study area in the Côa Region, northeastern
Portugal. (b) Spatial distribution of the consolidated pasture polygons used in the temporal variability
analysis, with the representativeness of the pastures (in % of the land cover area) within each grid
box (10 × 10 km) and definition of the grids used in this study. Spatial patterns of (c) total annual
precipitation and (d) mean annual temperature of the Côa region, determined from historical values
for the period 2000–2021. (e) Gaussen ombrothermic diagram, with monthly precipitation totals (in
mm, dry months in orange bars) and mean temperatures (in ◦C) for the period 2000–2021.

2.2.1. Grassland Data

To assess the grassland location in the Côa region, the Portuguese COS (“Carta de Uso
e Ocupação do Solo”) land cover datasets referring to the years 2007, 2010, 2015, and 2018
were used [36]. Taking into account the COS classification, we considered as grasslands the
3.1.1 and 3.1.2 classes (e.g., COS2018), which correspond to permanent and spontaneous
grasslands, respectively. The COS dataset does not include information about species
distribution; however, it is known that a large number of autochthonous species can be
found herein (Table S1). [37] identified the most common species in this region, including
several leguminous species, such as Ornithopus compressus and Trifolium subterraneum,
are found herein. Additionally, Medicago arabica is highlighted for its resilience in drier
conditions. Among the grasses, Lolium multiflorum, Lolium rigidum, and Lolium perenne
(ryegrasses) are prevalent, along with Dactylis glomerata and Phalaris aquatica. Various
species from the genera Bromus, Vulpia, Poa, and Festuca are also significant in these areas,
with Poa pratensis particularly abundant in meadows, showcasing its persistence.

According to the metadata documentation of the COS, permanent grasslands corre-
spond to areas occupied for 5 years or longer, with essentially herbaceous vegetation, often
improved by fertilisation, cropping, seeding, and draining, while spontaneous grasslands
are those formed by herbaceous vegetation free of management operations, occupying at
least 25% of the surface on which they develop. Given that the COS datasets account for
multiple years (from 2007 to 2018), a preliminary spatiotemporal variability analysis of
the grasslands was performed to determine the areas for which the land use remained the
same during the entire period (overlap COS data), creating a consolidated dataset. This
enabled studying the trends in grassland vigour.
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2.2.2. NDVI Data

In the present study, to assess grassland vigour, NDVI was used. This index, developed
by [38], is expressed by the formula: (NIR − Red)/(NIR + Red), where NIR represents
the reflectance in the near-infrared spectrum and Red represents the reflectance in the
red spectrum. The NDVI was previously used in many studies as a proxy for grassland
vigour [6,21]. NDVI data from the MODIS/Terra database [34] were selected to obtain a
time series for the Côa Region. More specifically, data from the product MOD13Q1, v6.1,
tile H17V04, for the period from 2000 to 2021, were retrieved (23 images per year for a total
of 503 images; note that in 2000 the first 3 images are missing). The temporal resolution for
the dataset consists of 16-day composites (e.g., day 1, 17, . . ., 353). These composites are
produced from maximum daily observations in order to create a nearly cloud-free image.
Generally, this dataset contains two images in each month (note that two 16-day images
may result in more than a one-month timespan). MOD13Q1 v6.0 was used to complement
v6.1 in case of missing data. Monthly data were obtained by averaging NDVI timesteps
and attributed to each month of the year between 2000 and 2021 (263 months), and are
shown in Figure 2c. Following this procedure, the uncertainties in the dataset were reduced
(e.g., unusual values), and no pixel was left without an associated value. Subsequently,
a spatiotemporal analysis of the NDVI for each pasture location inside the Côa region
was carried out (Figure 1b). As each pasture can contain several NDVI pixels, the mean
NDVI value inside each pasture location was computed (Figure 2a) as per the procedure
presented in Section 2.2.4.

Land 2023, 12, x FOR PEER REVIEW 6 of 19 
 

 
Figure 2. Methodological approach: (a) Mean monthly NDVI value of the tile for each polygon of 
consolidated pasture. (b) Adjustment of the spatial resolution of the mean NDVI values for consol-
idated grasslands (250 metres to 10 × 10 km). (c) Temporal variability of the NDVI for the whole Côa 
region, with the minimum, mean, and maximum values plotted. (d) The vigour curve of consoli-
dated pasture in the Côa region. Figures a, b and d refer to the average NDVI value for all study 
periods (2000 to 2021). 

2.2.3. Climatic Data 
The SPEI, which was developed by [39], is computed from the difference between 

precipitation and potential evapotranspiration (PET). SPEI values are understood as the 
number of standard deviations from the mean conditions and can be positive (humid con-
ditions) or negative (dry conditions). The representation of SPEI values can be undertaken 
on different time scales SPEI-1, SPEI-2, …, SPEI-n. As an example, June SPEI-3 would cor-
respond to the number of standard deviations (+/−) from the mean for a 3-month period 
(lag), such as from April to June. This scalability enables the evaluation of the cumulative 
effects of local weather/climate for a range of time periods [28]. Thus, SPEI is considered 
to have the potential to express annual grassland productivity as sketched by [29], ex-
plaining more than 60% of pasture growth. 

The monthly precipitation and temperature values were extracted from two different 
climatic datasets to compute this index. The calculation was performed for the same pe-
riod as the historical series of the NDVI, i.e., 263 months starting from February 2000. 
However, the SPEI requires an additional backlog of data to calculate the first values (e.g., 
February SPEI-6 requires the previous 6 months). Hence, for 1999–2015, the Iberia01 da-
tabase [40] was used, which has a spatial resolution of 0.1° (~10 km). The Iberia01 is con-
sidered the most reliable climatic dataset for Portugal, though data are only available until 
2015. For this reason, for the period 2016–2020, the values were extracted from the E-OBS 
dataset [41], v.25.0e, with the same resolution [42]. Subsequently, the Iberia01 database, 

Figure 2. Methodological approach: (a) Mean monthly NDVI value of the tile for each polygon
of consolidated pasture. (b) Adjustment of the spatial resolution of the mean NDVI values for
consolidated grasslands (250 metres to 10 × 10 km). (c) Temporal variability of the NDVI for the
whole Côa region, with the minimum, mean, and maximum values plotted. (d) The vigour curve of
consolidated pasture in the Côa region. Figures (a,b,d) refer to the average NDVI value for all study
periods (2000 to 2021).
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2.2.3. Climatic Data

The SPEI, which was developed by [39], is computed from the difference between
precipitation and potential evapotranspiration (PET). SPEI values are understood as the
number of standard deviations from the mean conditions and can be positive (humid con-
ditions) or negative (dry conditions). The representation of SPEI values can be undertaken
on different time scales SPEI-1, SPEI-2, . . ., SPEI-n. As an example, June SPEI-3 would
correspond to the number of standard deviations (+/−) from the mean for a 3-month
period (lag), such as from April to June. This scalability enables the evaluation of the
cumulative effects of local weather/climate for a range of time periods [28]. Thus, SPEI
is considered to have the potential to express annual grassland productivity as sketched
by [29], explaining more than 60% of pasture growth.

The monthly precipitation and temperature values were extracted from two different
climatic datasets to compute this index. The calculation was performed for the same period
as the historical series of the NDVI, i.e., 263 months starting from February 2000. However,
the SPEI requires an additional backlog of data to calculate the first values (e.g., February
SPEI-6 requires the previous 6 months). Hence, for 1999–2015, the Iberia01 database [40]
was used, which has a spatial resolution of 0.1◦ (~10 km). The Iberia01 is considered the
most reliable climatic dataset for Portugal, though data are only available until 2015. For
this reason, for the period 2016–2020, the values were extracted from the E-OBS dataset [41],
v.25.0e, with the same resolution [42]. Subsequently, the Iberia01 database, which have
more realistic precipitation patterns [43], was used for a bias correction of the E-OBS
data based on the delta method [44]. To calculate the PET, the Hargreaves equation was
used [45], which is recognised by FAO as an alternative method to the Penman–Monteith
formulation [46] since the latter typically requires additional meteorological variables (e.g.,
radiation, wind speed, and humidity).

2.2.4. Data Integration

The present study used different datasets in different formats and spatial resolutions.
The grassland locations consisted of vector data at a minimum mapping unit of 1 ha. The
NDVI MODIS dataset is comprised of raster data at 250 m spatial resolution. Lastly, the
gridded climate data is defined at a 10 km spatial resolution (80 grid cells). The spatial
resolution of the abovementioned data was harmonised. Firstly, only the NDVI pixel
values inside each grassland polygon were averaged (Figure 2a). Subsequently, for the joint
assessment of NDVI grassland data and climate data, the mean NDVI grassland values
within each climate grid were averaged. This resulted in a 10 km grid spacing with the
mean value of the grassland NDVI. The original resolution of the pasture NDVI, which
was 250 metres, was thus adjusted to a 10 × 10 km grid (Figure 2b). To remove outliers
in the data (very small grassland polygons in areas dominated by other land cover types),
only grassland areas that correspond to a minimum threshold of 1% in 10 km (coarsest of
all dataset resolutions) were considered. Hence, some small border areas in the Côa region
were left out from this analysis (<100 hectares) (Figure 1b). Therefore, of the 80 cells with
consolidated pastures in the Côa region, only 58 grid cells were used. This procedure was
carried out for each month separately, considering the 58 grid cells along the historical
series. The information was first analysed to verify the temporal evolution of the data set
(Figure 2c) and the ability to describe the typical grassland cycle (Figure 2d), which for the
target region typically starts in October. The cool winter temperatures interrupt vegetation
growth until the temperature increases at the end of February, while pastures start to revive
in March. The higher spring temperatures and the moisture accumulated in the soil during
the winter will cause the typical Mediterranean spring herbage flush [10].

The value of SPEI-1 through SPEI-12 was computed for each of the 58 grid cells. In this
process, it was possible to identify periods when precipitation exceeded evapotranspiration
(Figure 3a) or when the scarcity of precipitation led to dryness conditions (Figure 3b). For
the study period, humid years (2001, 2003, 2007, 2010, 2011, 2013, 2014, 2016, and 2018)
and dry years (2000, 2002, 2004, 2005, 2006, 2008, 2009, 2012, 2015, 2017, 2019, 2020, and
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2021) were isolated (Figure 3c,d). The classification used to identify dry events was based
on [47], which states that values lower than zero generally indicate drought conditions,
but if they exceed the threshold of −1.5 or −2, droughts can then be classified as severe or
extreme, respectively.
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2.3. Data Analysis and Modelling

A joint analysis between the monthly SPEI-1 through SPEI-12 with historical NDVI
values was carried out to develop a model able to produce estimates of future NDVI-values
for the grasslands of the Côa region and, as a consequence, to obtain projections of grassland
vigour. As previously mentioned, a machine learning approach, Bootstrap Aggregation
(Bagging), was used. This method, also known as the Random Forest (RF) model, uses
an ensemble of decision trees for regression [35]. In this model, a random sample of data
in a training set is selected with replacement (bootstrapping). After several data samples
are generated, each tree is then trained independently (parallelly). The decisions of each
tree are then combined to make the final result, effectively dealing with the problem of
overfitting (e.g., good and bad models). For the RF model, 15,254 data points were used
(263 months × 58 grid cells), and a 10-fold cross-validation was performed. The predictors
(features) include monthly SPEI-1, SPEI-2, . . ., and SPEI-12 to predict the monthly NDVI
(e.g., NDVI in January is affected by SPEI-1 (SPEI in January), SPEI-2 (SPEI in December-
January), and so forth). Several hyperparameter combinations were tested to obtain the best
possible RF model (e.g., number of trees and depth), including automatic hyperparameter
optimisation (hyperparameter tuning using Bayesian optimisation). Finally, the most
important hyperparameter in our testing was the number of trees, which was set at 153
(further increasing this number did not significantly improve the model while requiring
much longer data processing time). The modelling approach was performed in two steps:
(i) a preliminary model including all SPEI features and (ii) a final model including only the
most important features defined in (i).

A preliminary model considered all the predictor variables and obtained R2 = 0.93. The
consistency of the information presented by the model was proven by the low correlation



Land 2023, 12, 1914 8 of 18

among predictors (Figure 4a), where it was possible to observe a low relationship between
the predictor variables of short (SPEI-1, SPEI-2, and SPEI-3) and a long period (SPEI-10,
SPEI-11, and SPE-12). The most important features were SPEI-1, SPEI-4, and SPEI-12
(Figure 4b). A new final model was produced using only these predictors, achieving a high
determination coefficient, explaining 76% of the NDVI variability.

Land 2023, 12, x FOR PEER REVIEW 9 of 19 
 

 
Figure 4. Predictor variables selected for Random Forests (RF). (a) Predictor association estimates. 
(b) Estimates of feature importance indicating the more relevant predictors for the RF model. 

2.4. Future Projections 
To assess climate change impacts on grassland variability, future climate projections 

were obtained based on the historical records (2000–2021) of precipitation and tempera-
ture and the EURO-CORDEX project [48]. Monthly time series bias-adjusted were ob-
tained using the delta method, under RCP4.5 and RCP8.5 (two anthropogenic radiative 
forcing scenarios), and for the long-term future period 2071–2100 (Table 1). The delta 
method has been used in many previous climate change studies [49,50] since it provides 
a straightforward and transparent approach to estimating climate change impacts, reduc-
ing the sensitivity to single-model biases since it is based on multi-model outputs, and is 
consistent with historical observations since the delta is applied to the observational da-
tasets. The 2071–2100 time period was selected to assess the strongest potential changes 
in climate. According to these climatic projections, in the Côa region, all seasons are ex-
pected to be warmer, with drier spring, summer, and autumn. On the other hand, more 
precipitation is projected for the winter period. For each scenario, the calculation of the 
SPEI-1, SPEI-4, and SPEI-12 was carried out and then used as predictor variables to obtain 
future NDVI values from the final model. 

Table 1. Reference values from a study by Jacob et al. (2014) for a high spatial resolution dataset 
projected for 2071–2100. These values were used in this study for fitting the values of monthly pre-
cipitation (%) and temperature (°C) deltas for the period 2000–2021, according to the season. 

Season RCP4.5delta RCP8.5delta 
Precipitation (%) 

Autumn −10 −20 
Winter 10 10 
Spring −10 −20 

Summer −20 −30 
Temperature (°C) 

Autumn 2.75 4.75 
Winter 1.25 3.25 
Spring 1.75 2.75 

Summer 2.75 5.25 
  

Figure 4. Predictor variables selected for Random Forests (RF). (a) Predictor association estimates.
(b) Estimates of feature importance indicating the more relevant predictors for the RF model.

2.4. Future Projections

To assess climate change impacts on grassland variability, future climate projections
were obtained based on the historical records (2000–2021) of precipitation and temperature
and the EURO-CORDEX project [48]. Monthly time series bias-adjusted were obtained
using the delta method, under RCP4.5 and RCP8.5 (two anthropogenic radiative forcing
scenarios), and for the long-term future period 2071–2100 (Table 1). The delta method has
been used in many previous climate change studies [49,50] since it provides a straight-
forward and transparent approach to estimating climate change impacts, reducing the
sensitivity to single-model biases since it is based on multi-model outputs, and is consistent
with historical observations since the delta is applied to the observational datasets. The
2071–2100 time period was selected to assess the strongest potential changes in climate.
According to these climatic projections, in the Côa region, all seasons are expected to be
warmer, with drier spring, summer, and autumn. On the other hand, more precipitation is
projected for the winter period. For each scenario, the calculation of the SPEI-1, SPEI-4, and
SPEI-12 was carried out and then used as predictor variables to obtain future NDVI values
from the final model.

Table 1. Reference values from a study by Jacob et al. (2014) for a high spatial resolution dataset
projected for 2071–2100. These values were used in this study for fitting the values of monthly
precipitation (%) and temperature (◦C) deltas for the period 2000–2021, according to the season.

Season RCP4.5delta RCP8.5delta

Precipitation (%)

Autumn −10 −20
Winter 10 10
Spring −10 −20

Summer −20 −30

Temperature (◦C)

Autumn 2.75 4.75
Winter 1.25 3.25
Spring 1.75 2.75

Summer 2.75 5.25
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3. Results

3.1. Recent-Past Grassland Vigour

The spatial distribution of grasslands for the recent past (2000–2021) is shown in
Figure 5a. Lower grassland vigour values were observed in the northern Côa, an area
with lower precipitation (Figure 1c), higher temperatures (Figure 1d), and lower elevations
(Figure 6). The most vigorous grasslands occur in mountainous regions at elevations above
~700 m (Figure 6), particularly in the municipalities of Sabugal, Guarda, and Celorico da
Beira. Areas of medium vigour are frequently found at intermediate elevations, between
600 and 700 m (Figure 6). Currently, the largest grassland areas (Figure 1b) are found in
regions associated with high and medium vigour classes (Figure 5a).
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the Côa region for the recent-past (2000–2021) and for two anthropogenic radiative forcing sce-
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RCP (−: negative, =: no change, +: positive). Ordinal values can be found in Supplementary
Figure S2).
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Figure 6. Boxplot diagram of grassland vigour classes, arranged by elevation, for the recent past
(2000–2021) and future (2071–2100) RCP4.5 and RCP8.5. The vigour classes (low, medium, and high)
were defined from the quantiles. The horizontal line within the boxes represents the median, and the
× refers to the mean.
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3.2. Future Changes in Grassland Vigour

Projections for the future (2071–2100) show similar spatial patterns to the recent
past period but with a noticeable decreasing trend in vigour. These projections show a
southward expansion of the lower vigour areas towards the central-eastern Côa. Medium
vigour areas are expected to expand, especially in the southwest or northwest, due to the
decrease of high vigour areas. Particularly, the Trancoso region (west) and Penamacor
(south), which in the recent past were considered high-vigour areas, are projected to shift
to the medium vigour class (Figure 5b,c). To the south of the Guarda municipality, the
reduction in vigour is projected to be noticeable, with stronger impacts in RCP8.5 (Figure 5c).
In fact, in the more severe scenario, the effects of climate change on grasslands will be
generally more visible (Figure S1), with a more pronounced reduction in future NDVI.
Nonetheless, the vigour classes (low, medium, and high) are projected to remain similar
under both future scenarios (not sufficient to change the vigour class), with the exception of
the areas south of Guarda (Figure 5b,c). The areas that are expected to still have high vigour
for pastures will be restricted to some parts of Guarda, Celorico da Beira, and some areas
north of Penamacor. Nonetheless, the strongest reductions in NDVI are indeed expected
for these areas (Figure S1), which also correspond to higher elevations. It should also be
noticed that in the current low vigour areas (north), a slight increase in NDVI levels is
expected (Figure S1), although also not resulting in a class shift (Figure 5b,c).

In both future scenarios, areas with low vigour grasslands are expected to remain in
this class (Figure S2). Conversely, expressive changes are projected in the grasslands defined
as medium vigour, changing to low vigour classes, in the order of 33% and 29% for RCP85
and RCP45, respectively (Figure S2). The greatest changes are expected for the high vigour
class, where for both RCPs, only 42% are projected to remain in the classes with the high
value, while the remaining should shift to the medium vigour class. Grasslands established
in the lowlands should remain the less vigorous, while in the highlands (Figure 6), the
highest vigour classes still prevail. Nonetheless, according to these projections, there should
be an increase in the lower vigour grasslands found at higher altitudes (Figure 6).

3.3. Seasonal Changes in Grassland Vigour

The vigour maps for each season, as shown in Figure 7, align with the growth cycle
of grasslands. Typically, the pasture cycle commences in autumn, followed by a rapid
increase in vigour until winter. It then reaches its peak mid-spring before decreasing until
the end of summer (senescence). During autumn, grasslands located south of the Côa in
the mountainous area display high vigour. RCP4.5 presents a similar pattern to historical
conditions, albeit with a reduction in vigour. However, for RCP8.5, the reduction in vigour
during autumn is more severe, particularly in the western regions, where the high class is
mostly absent. As a result, most grasslands in Côa are expected to have low vigour under
RCP8.5, except for small areas in the southeast (Penamacor). In winter, an increase in vigour
is anticipated in the southern and central areas, possibly due to increased precipitation
during this season and higher SPEI-1 values (Figure S3).

Spring presents a high vigour in all of the region, except in the north, where the vigour
is reduced. Although projections (RCP4.5 and RCP8.5) indicate a decrease in average vigour
values (Figure 7), there should be an expansion of grassland with intermediate vigour into
the currently less favoured northern region. The natural growth cycle of grasslands ends in
summer (growth rates near zero), with a reduction in vigour over almost the entire Côa
region (2000–2021). However, under future scenarios, the vigour levels should slightly
increase in the southern areas due to the effect of a higher SPEI-4 (Figure S3). Generally,
while in RCP4.5, climate change is expected to cause a reduction in vigour for all Côa region
to a high or low degree, the modifications would be even more drastic in RCP8.5, since in
addition to causing vigour reductions, climate change is expected to affect the grassland
cycle, with a direct effect on management practices.
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4. Discussion

4.1. NDVI vs. SPEI

With the proposed methodology, it was possible to establish a robust relationship
between SPEI, which estimates immediate and accumulated water availability, and the
vegetation index (NDVI) (Figure 2b,c). A highly robust machine-learning model was
then applied to estimate the non-linear spatiotemporal dynamics of grasslands under
two future scenarios and generate interpretations of the real need for adaptation or mitiga-
tion measures. It was shown that SPEI-1, SPEI-4, and SPEI-12 were able to explain at least
76% of the variation in NDVI. Although other variables (e.g., temperature, precipitation, el-
evation, and other SPEI timesteps) may also be used, using a reduced number of predictors
increases the signal-to-noise ratio, improving model robustness and avoiding overfitting.
Furthermore, the SPEI already implicitly incorporates temperature and precipitation in its
calculation. It is indeed considered one of the most robust drought indices, as it is obtained
by the combination of precipitation and evapotranspiration over a lag period [39].

The SPEI-1 has a shorter accumulation period (1 month), thus reflecting meteorological
drought and closely following the decline in soil water content [47,51]. It was the most
important predictor of the model (Figure 4b) and showed that either reducing or increasing
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soil moisture in a short period has a short-term response in grassland vigour, as already
observed by [52]. According to [28], the SPEIs of short periods, one month or fortnight,
are more suitable to provide the temporal resolution needed to improve the prediction
of grassland or aboveground forage mass. Moreover, shorter time scales show large
fluctuations and are more skilful in detecting more direct changes between wet and dry
conditions [22].

Our study also showed that other time scales/lags may also have an impact on vigour.
SPEI-4 contains the moisture memory of the previous months and reflects medium-term
soil moisture conditions, providing a seasonal estimate of precipitation. The ability of
seasonal medium-term SPEI values to explain annual grassland dry matter production has
already been reported [29]. With SPEI-4, the effect of seasons and agricultural drought was
also considered [51]. SPEI-12 provides annual drought conditions and is a good indicator of
reduced soil moisture load and long-term effects on pasture plant survival. It suggests that
water shortage or surplus in one year may affect soil moisture reserves in the subsequent
year, with a direct effect on grassland vigour [22]. On the other hand, water shortage or
surplus in one year can affect plant persistence and the future quality of the grassland. It is
noted, therefore, that grasslands are very reactive to immediate meteorological events but
also have long carry-over effects. Phenomena that occur over medium to long periods also
affect the spectral response of grasslands. For example, one winter with little rainfall can
affect grassland development in the following winter. The same can be said of droughts
in one year, which can affect the water reserves in the soil as well as the density of plants
covering the soil, with direct effects on the development of grasslands during the following
year. It should be stated that this does not mean that immediate drought (SPEI-2 or -3) is
less important for grasslands than the previous year’s conditions. It is shown that all SPEIs
are indeed relevant to NDVI, but their inclusion in the RF model may lead to redundancy
in features as the RF model may consider the possibility that SPEI-2 or SPEI-3 might
exhibit similar patterns to SPEI-1. Nonetheless, feature correlation may not always result in
redundancy [53]. In order to test the abovementioned hypothesis, the RF model was re-run
without SPEI-1 as input, showing that the model now selected SPEI-2 instead (Figure S4).
This indeed indicates that grassland vigour is strongly associated with short-term drought,
although adjacent month predictors may have redundant information for modelling.

Although the proposed methodology proved to be robust and was able to generate
reliable estimates of pasture vigour, some limitations should be reported. Our approach
did not explicitly consider extreme weather events, such as heatwaves, floods, snow,
or frost, which are expected to become more frequent in the upcoming decades [54],
nor even perturbations motivated by anthropic practices, such as fire hazards that are a
relevant factor for small and isolated areas [55], which, similar to climate extremes, could
cause a delay in the phenological cycle of pastures and influence the spatial distribution
pattern. Furthermore, future projections of vegetation growth under different climate
change scenarios may be greatly influenced by the CO2 fertilisation effect [56], which
was not considered in our modelling approach. This effect benefits plant growth by
enhancing photosynthesis and increasing water use efficiency. Nonetheless, studies also
show that this beneficial effect is indeed limited [57]. Perhaps one of the most important
limitations is linked to the different grassland species’ adaptation traits under future
climates. In the Côa region, many different species can be found (Table S1). As such,
climate change can exert varying impacts on different types of grasslands [58]. This
disparity arises not only from alterations in the phenological cycle but also from changes in
productivity [30]. Furthermore, climate change may lead to modifications in the dynamics
of grassland ecosystems, which can ultimately result in significant alterations, e.g., to the
floristic composition.

4.2. Impact of Climate Change on Grassland

The future increase in temperature and overall decrease in precipitation (Table 1) are
expected to lead to a generalised reduction in vigour, which could drive changes in the
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grassland ecosystem (Figure 5b,c). Our results show that mountainous regions should
maintain their status of higher grassland vigour, although these regions will start to show
lower vigour grasslands in the future [59]. There should be an overall reduction in grassland
NDVI in the southern areas and a small increase in NDVI in the areas located in the north
(Figure 5b,c), although not sufficient to shift to a higher vigour class. This indicates that the
future reduction of precipitation in spring, summer, and autumn will be more impacting
for the currently more humid areas, while the increase of precipitation in winter will be
more beneficial for the currently drier areas.

The overall warmer and drier conditions favour the homogenisation of the landscape
by xeric species, more resistant to heat than cold but of lower nutritional quality, especially
in the case of non-managed pastures [58]. The reduction in grassland species diversity
and composition are the factors that may help explain the decrease in vigour, as there is
a positive and dynamic relationship between NDVI and diversity, namely in warm, dry,
and antithesis periods [24]. Additionally, low diversity may increase exposed soil and
moss-covered patches. These changes may force farmers to provide an additional supply
of nutrients for animal feed to guarantee or maintain an adequate level of production,
increasing management costs [58,60]. Nevertheless, the search for forage resources is likely
to increase in mountain regions, with a potential increase in stocking density, which could
increase ecosystem pressure.

Climate change in the Côa region may also influence the phenological cycle of grass-
lands, with effects similar to what was reported by [61], especially for colder/mountainous
regions. In response to the increase in temperature, an increase in the length of the growing
season of the species is expected, corroborating the results in the literature [62]. A delay
in phenology is expected in autumn, which should extend into early winter. This may be
related to the fact that autumn temperature increases can critically reduce water availabil-
ity to plants, particularly in historically drier regions, with negative impacts on growth,
photosynthesis activity and heightened risk of plant degradation and mortality [18,63]. In
contrast, higher winter temperatures should favour photosynthetic growth and consump-
tion [18], with a reduction in chlorophyll degradation and the probability of exposure to
low temperatures [61].

For winter, an increase in precipitation in the Côa is also expected, which, in addition
to reducing the temporary effect of water stress [24], should have a boosting effect on
vigour [64], ultimately boosting pasture productivity. In our study, this is a twofold
effect, mainly in the immediate drought/NDVI (SPEI-1) and the long-term drought/NDVI
(SPEI-4). This helps to explain the higher NDVI in northern Côa. The peak in pasture
vigour is projected to be maintained in spring but will be accompanied by a reduction in the
highest values. With warming in spring, an advance in the onset of pasture flowering is also
expected [59]. In practice, such conditions should favour mowing and grazing activities,
which should happen earlier [18] and last until early summer. With the combined effect
of reduced precipitation and higher temperatures, further degradation of grasslands in
summer could be expected [22], particularly in the Côa mountainous regions. It should be
noted that although drought conditions can reduce pasture yields, quality does not always
decrease [65].

4.3. Potential Adaptation Measures for Grasslands

Some agricultural practices may be implemented to try to reduce the negative effects
mentioned above. Changes in grazing periods and cutting regimes (e.g., early cuts) may
dampen the negative effects of climate change on forage quality [18]. The type of grazing
regime (continuous or seasonal), grazing pressure (light or heavy), and grazing season
have different effects on seed bank density, with heavy grazing being unfavourable [66].
Decreasing the duration of the animal grazing sessions during the daytime and/or imple-
menting (or increasing) night feeding sessions can be an interesting strategy to reduce the
effects of moderate heat stress [18]. Additionally, controlling the stocking rate of livestock
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may be able to reduce pressure on the grassland seed bank and control the consumption of
plant biomass [21].

Management actions that promote increased genetic diversity are feasible options since
genetic diversity allows organisms to continue adapting and evolving to new circumstances
within a few generations [67]. The increase in the use of germplasm material with summer
dormancy [5] is considered one of the main adaptive strategies of perennial [68] and annual
grasslands [69], which allows survival through the prolonged and severe summer drought,
regardless of the soil water reserve [68]. The species with higher water efficiency is indeed
relevant for the future sustainable production of pasture, particularly in drylands, where
reduced rainfall can limit vigour [64].

Irrigation in grasslands is also a possible intervention, although not recommended
due to water scarcity. Irrigation can mitigate the effects of insufficient soil moisture,
which, combined with fertilisation, may be able to promote the development of cultivated
grasslands with large amounts of biomass and root accumulation in a short period [70].
Nonetheless, irrigation may be difficult to implement due to water competition (e.g., human
needs and other food crops) and economic factors.

In summary, several adaptation strategies may potentially reduce the adverse effects
of warming and drying projected for grasslands in the Côa region. Strategies such as the
selection of varieties/species more adapted to climate change, combinations/mixtures of
grassland species, changes in grazing periods, cutting regimes, grazing pressure, stocking
rate, irrigation, and fertilisation are potential adaptation measures for these climate change-
threatened grasslands.

5. Conclusions

In the present study, the developed RF model demonstrated a significant explanatory
power, accounting for 76% of the variability in the NDVI. The primary drivers of grassland
vigour were identified as the SPEI with temporal lags of 1, 4, and 12 months, highlighting
the sensitivity of grasslands to short-term drought conditions, as well as long-term drought
effects. Future projections point to a widespread reduction in grassland vigour, particularly
under the RCP8.5 climate scenario. Mountainous regions, currently hosting the most vig-
orous grasslands, are expected to experience more pronounced negative effects, though
dry lowlands in the north are anticipated to maintain their lowest vigour levels. Seasonal
changes, notably a decrease in vigour during autumn, may impact grassland phenology.
The results suggest that increasing temperatures and precipitation in winter may promote
grassland development, which could have implications for grassland harvesting and live-
stock grazing timing. To safeguard vigour in less favourable zones and adapt to changing
conditions, proactive adaptation measures and more efficient highland management will
be essential to maintain adequate levels of grassland production. This research underscores
the urgency of addressing climate change’s potential impact on grasslands and offers
valuable insights into the vulnerability of these ecosystems.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/land12101914/s1, Table S1. Autochthonous plants found
in the grasslands of the Côa Region. Data retrieved from the portal Flora.On (https://flora-on.pt
(accessed on 4 August 2023). Figure S1. Grassland NDVI values in the Côa region for the recent
past (2000–2021) and differences for two anthropogenic radiative forcing scenarios for the long-term
future period (2071–2100): present (2000–2021) (a), RCP 4.5 and (b) and RCP 8.5 (c), obtained from the
mean of NDVI-values. The elevation is also represented; Figure S2. Changes in grassland vigour class
from the recent past (2000–2021) to the future period (2071–2100) for RCP4.5 and RCP8.5. The values
are percentage representations of the number of pixels that changed or remained in the same vigour
class; Figure S3. The graphs correspond to the sum of the future difference (RCP4.5 and RCP8.5, for
the period 2071–2100) of the monthly values of SPEI-1, SPEI-4 and SPEI-12 relative to the current
values (2000–2021). The representations were made from data obtained for two distinct regions. The
left-side figures (40.1 S and −7.3 E) represent the generalized reduction of SPEI, and the right-side
ones (41.2 S and −7.0 E) show a projected increase in specific months; Figure S4. Estimates of feature
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importance, indicating the more relevant predictors for the RF model: (a) with all SPEIs, (b) after
removing SPEI-1.
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