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Abstract: The empirical Revised Universal Soil Loss Equation (RUSLE) has been adapted to geo-
graphical information system (GIS) frameworks to study the spatial variability of soil erosion across
landscapes and has also been used to estimate reservoir sedimentation. The literature presents
contradictory results about the efficacy of using RUSLE in a GIS context for quantifying reservoir
sedimentation, requiring further evaluation and validation of its estimates relative to measured
reservoir sedimentation. Our primary objective was to determine if these contradictory results may
be a function of the RUSLE’s inability to account for sediments derived from gullies, stream channels,
or stream banks; the temporal variability of some of RUSLE’s empirically based factors such as the
land cover/land management (C-) factor; and in some model renditions, the choice of value for the
sediment delivery ratio (SDR). The usefulness of adjusting these estimates using a regional represen-
tative value of gully/stream bank sediment contributions was also assessed. High-spatial horizontal
resolution (2 m) digital elevation models (DEMs) for 12 watersheds were used together with C-factor
data for five representative years in a GIS-based RUSLE model that incorporates SDR within a sedi-
ment routing routine to study the impacts of choice of C-factor and SDR on reservoir sedimentation
estimates. Choice of image date for developing C-factors was found to impact reservoir estimates. We
also found that the value of SDR for some of the study watersheds would have to be unrealistically
small to produce sedimentation estimates comparable to measured values. Estimates of reservoir
sedimentation were comparable to measured data for 5 of the 12 watersheds, when the regionally
based adjustment for gully/stream bank contributions was applied. However, differences remained
large for the remaining seven watersheds. Statistical analysis revealed that certain combinations of
geomorphic, pedologic, or topographic variables could be used to predict the degree of sediment
underestimation with a significant and high level of correlation (0.72 < R2 ≤ 0.99; p-value < 0.05).
Our findings indicate that the level of agreement between GIS-based RUSLE estimates of reservoir
sedimentation and measured values is a function of watershed characteristics; for example, the
area-weighted soil erodibility (K-) factor of the soils within the watershed and stream channels,
the stream entrenchment ratio and bank full depth, the percentage of the stream corridor having
slopes ≥ 21◦, and the width of the stream flood way as a percentage of the watershed area. Within the
context of GIS, these metrics are easily obtained from digital elevation models and publicly available
soils data and may be useful in prioritizing reservoirs’ assessments for function and safety.

Keywords: geographical information system (GIS); erosion; channel instability; sediment delivery
ratio (SDR)

1. Introduction

During the 1930s, severe drought and poor conservation practices in Oklahoma and
the Southern Great Plains resulted in decreased vegetative cover, which combined with
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subsequent periods of intense rainfall caused increased erosion and flooding [1]. Because
of these natural disasters, the U.S. Congress passed the Flood Control Act of 1944 (PL-534)
and the Watershed Protection and Flood Prevention Act of 1954 (PL-566) to minimize soil
erosion and to prevent flooding [2,3]. As a result of these Acts, the Washita River Basin
(WRB) in Oklahoma was 1 of 11 pilot watershed projects selected for the construction
of flood control reservoirs. Through the PL-534 and PL-566 projects, the United States
Department of Agriculture (USDA) Natural Resources Conservation Service in Oklahoma
provided technical and financial assistance for the construction of 2107 flood control dams
(~20% of the national total) [1]. Forty-five of these dams were built in the Little Washita
River Watershed (LWREW, located in the WRB) between 1969 and 1982 [4].

Bennett et al. [5] projected that by 2020 about 50% of the USDA Natural Resources
Conservation Service (NRCS) reservoirs would be near the end of their projected 50-year
service life due to sedimentation. Reduction in reservoir sediment trapping can lead to
reduced usable pool depth and flood storage capacity and decreased future sediment
storage, projected lifespan, and agricultural productivity [6]. For these reasons, these
reservoirs need to be evaluated for rehabilitation or decommissioning [7].

Due to aging of these NRCS structures, Section 313 of Public Law 106–472 [8] provided
authorization to conduct an evaluation of the reservoirs for possible extension of service
life of the structures, for conformance to applicable safety and performance standards,
or for decommissioning. A common first step in the assessment for rehabilitation is to
survey the amount of sediment in the reservoir [6]. Often, such assessments require labor
intensive and costly measures to conduct, for example, acoustic profiling and sediment
coring, which would become more prohibitive if trying to assess sedimentation for many
reservoirs. Modeling is a good choice for conducting preliminary assessments, especially in
the context of prioritizing watersheds for follow-up investigations. However, process-based
models such as Water Erosion Prediction Project (WEPP) [9] and European Soil Erosion
Model (EUROSEM) [10] often require data that may not be available or are difficult to
acquire [11]; thus, empirical models such as the Revised Universal Soil Loss Equation
(RUSLE) [12] are often used. RUSLE is an improvement upon its USLE predecessor [13], an
empirical equation developed from >10,000 plot-years of soil erosion and runoff data [13]
and originally intended for field-based applications. The RUSLE requires five inputs to
calculate soil loss: a rainfall and runoff factor (R), a soil erodibility factor (K), a slope
length and steepness factor (LS), a land cover and management factor (C), and a support
practice factor (P). Due to increased computing power over the last several decades and the
development of geographical information systems (GIS), RUSLE has been increasingly used
for spatial analysis of soil erosion for landscapes and watersheds of various sizes [14–16].

The review of the literature indicates that many GIS-based RUSLE soil erosion studies
focused on temporal erosion trends and the assessment of relative changes in sediment
production [17] and for targeting erosion “hot spots” within watersheds [18]. There are
a limited number of RUSLE-based studies that have been conducted wherein the spatial
distribution of plant, soil, land management, rainfall, and topographic variables were used
to estimate reservoir sedimentation for comparison against measured reservoir sediment
accumulation [19–22]. However, the literature presents contradictory results for the effi-
cacy of using RUSLE in a GIS context for quantifying reservoir sedimentation. Boomer
et al. [19] applied the USLE and RUSLE2 (second generation of RUSLE) to 78 small sub-
watersheds within the Chesapeake Bay watershed and reported that the USLE family of
models exceeded measured annual average sediment delivery by more than 100%. Mo-
ges et al. [20] reported that GIS-based RUSLE estimates were ~1.3, and 1.7 times larger
than those measured for the Selamko and Shina watersheds, respectively, in the Ethiopian
Blue Nile basin. Kaffas et al. [12] also used a spatially distributed version of RUSLE to
estimate reservoir sedimentation for the Rio di Pusteria reservoir in the Italian Alps. In
that study, the researchers used two different methods to calculate the RUSLE R-factor, i.e.,
one representing the 5 yr study period, and the second representing the long-term average
conditions. Kaffas et al. [21] also adjusted the initial RUSLE estimates via a sediment
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delivery ratio (SDR) and found that estimated reservoir sedimentation was within 3.1% and
−23.2%, depending upon R-factor method used, and was within 12.5% of the measured
value if the SDR adjustment was used. Bufalini et al. [22] compared bathymetric sediment
measurements of a reservoir in central Italy, and estimated via a GIS-based RUSLE. In
their study, Bufalini et al. [22] calculated the P-factor in three separate ways, which had
a profound effect on the RUSLE sediment estimates. These researchers concluded that a
GIS-based RUSLE approach could be used to reasonably estimate reservoir sedimentation
if the RUSLE parameters were properly calibrated.

Multiple authors have noted that the main weakness of the RUSLE model is that it
does not account for gully erosion, stream bank instabilities, and channel contributions to
the sediment load [15,19–21,23–25]. Simon and Rinaldi [26] showed that stream bank ero-
sion accounted for 64 to 90% of the total sediment load for four streams in the Southeastern
U.S. Wilson et al. [27] showed, using ratios of 7Be to 210Pb, that eroded surface soils in the
Fort Cobb Reservoir watershed (located in Southwestern Oklahoma) only accounted for
46% of suspended sediments in streams following a runoff event. Simon and Klimetz [28]
noted that ~60% of the stream channels in the LWREW—our study area—are unstable and
contribute a considerable amount of sediment to downstream reservoirs. Other weaknesses
of the RUSLE approach were outlined by Benavidez et al. [29] and included choice of
spatial resolution of the digital elevation models (DEMs) used in the study (which affects
the calculation of the LS factor), granularity and scale of land cover characteristics, and
choice of values for the RUSLE factors. These authors added that another limitation of
the RUSLE approach is the lack of validation data to verify the model’s output. Therefore,
there is a need for further evaluation and validation of the GIS-based RUSLE approach to
estimate reservoir sedimentation, specifically regarding the impact of temporally variable
land cover data sets and the impact of channel and stream bank contributions to reser-
voir sedimentation. It may be possible to improve the usefulness of a GIS-based RUSLE
approach through evaluation of linkages between measured reservoir sedimentation and
easily obtainable geomorphic, pedologic, and topographic metrics.

Our objectives are as follows: (1) quantify the impact of temporally variable C-factors
on the estimation of long-term average reservoir sedimentation, (2) determine if a regionally
based adjustment, suggested by the results of Wilson et al. [27], can be used as a first-order
correction to account for sediment contributions from gullies, stream channels, and stream
banks, and (3) examine linkages between estimated reservoir sedimentation and watershed,
stream, stream corridor, and stream bank variables acquired from high-spatial horizontal
resolution (2 m) digital elevation models (DEMs), satellite-based land cover data sets, and
publicly available soils data.

2. Material and Methods
2.1. Study Sites
2.1.1. General Description

The study was conducted on 12 watersheds and their accompanying reservoirs located
in the LWREW, in Southwestern Oklahoma, USA [1] (Figure 1). The LWREW is ~610 km2 in
size and is characterized by gently to moderately rolling topography with a maximum relief
of 490 m [4]. The soils in the central section of the LWREW are sandy in texture, whereas silty
loam and loamy soils are found in the western and eastern sections. The 1991–2020 normal
annual precipitation was ~807 mm, with about 27 and 20% of the annual total precipitation
occurring in the months of May–June and September–October, respectively. The annual
average daily temperature is 15.6 ◦C, with annual maximum and minimum air temperatures
occurring in July (27.9 ◦C) and January (3.2 ◦C), respectively [30].

The reservoirs evaluated in this study were impounded between 1969 and 1982
(Table 1) and are further described by Moriasi et al. [1]. The watershed drainage areas,
reservoir surface areas, and principal land uses [4] are provided in Table 1. The dominant
land cover within each watershed is grassland, which varies between watersheds, ranging
from 44 to 80%. In four of the twelve watersheds, 21 to 44% of their areas are tree/shrub
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lands, and in another four, 15 to 43% of their areas are cropped areas. These subdominant
land cover categories (Table 1) were used in the statistical analysis to identify possible
differences in reservoir sedimentation due to land cover factors.

Moriasi et al. [1] conducted a bathymetric survey of the twelve reservoirs during
14–25 May 2012 using a multifrequency acoustic profiling system. The details of this survey
and the device used to collect the data are provided by Moriasi et al. [1]. The impoundment
period (representing the time from impoundment to the survey date) varied from 29.6 yr
(Reservoir 20) to 42.6 yr (Reservoir 42) (Table 1). The measured reservoir sediment volumes
ranged from 24,155 to 439,581 m3 (Table 1).
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2.1.2. Watershed and Stream Geomorphic and Topographic Variables

In addition to the data required to run the RUSLE model, several variables were
identified or developed (Figure 2) and measured to assist in interpreting differences
between measured and estimated reservoir sedimentation. These variables include
percentage of watershed area having slopes ≥ 21◦ (%Wslope ≥ 21), watershed basin relief
(Wrlf), watershed valley length (Wvl), stream slope (Sslope), stream thalweg length (Sthal),
and stream sinuosity (Ssn).

Watershed slope images were created within the Idrisi TerrSet 2020 (Clarke Labs,
Clarke University, Clarke, MA, USA) GIS software, and the pixel-based values were down-
loaded for statistical evaluation. The %Wslope ≥ 21 was developed based on the findings
of [1], which indicated that the land area with slopes ≥ 21◦ was a useful metric to quan-
tify topographic effects on reservoir sedimentation. Slope images for each watershed
are shown in Supplemental Figures S1–S12. Basin relief was calculated as the difference
between the highest and lowest (outlet) elevations in the watershed. Stream thalwegs
were digitized from each watershed’s digital elevation model (DEM), and their lengths
were recorded. Watershed valley length was determined as the straight-line distance run-
ning parallel with the stream from the top to the watershed outlet. Stream sinuosity was
determined as the ratio of Sthal:Wvl. Interpretation of the sinuosity values is provided
in Supplemental Table S1. At the watershed scale, the pedologic information consists of
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that required by the RUSLE model, namely, the spatially distributed K-factors (described
below and shown in Supplemental Figures S1–S12). The K-factor data was also used to
calculate a single area-weighted K-factor (WK) for each watershed and to quantify the
percentage of each watershed area having low, medium, and high K-factor soils (WLK,
WMK, and WHK).
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2.1.3. Stream Corridor Variables

Using TerrSet, each watershed’s DEM was displayed on a monitor from which the
thalweg of the main stream and its visible (on the DEM) tributaries were manually digitized.
From the resulting thalweg images, a 100 m corridor (50 m either side of the thalwegs)
was generated using the BUFFER module. The stream corridor images were then used to
extract and quantify the actual corridor area and percentage of the corridor area having
slopes ≥ 21◦ (Corslope≥21 (m2) and %Corslope≥21

◦, respectively). The density of Corslope≥21
◦

was quantified as a ratio compared to Wvl (Corslope≥21:Wvl (m2 m−1). Visual inspection
of the watershed slope maps indicated that many streams had substantial areas within
their corridors having high slope values; thus, these three variables may act as proxies for
contributions of sediment from gullies and unstable stream banks. The stream corridor
images were also used to determine the percentage of corridor area having low, moderate,
or high K-factor soils (%CorLK, %CorMK, and %CorHK).
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Table 1. Watershed/reservoir identification number (ID), reservoir construction completion date,
watershed area draining into the reservoir (WA), percentage of major land uses with each watershed,
the subdominant land use group to which each watershed was assigned, bathymetric survey date,
reservoir impoundment period from time of completed construction to the bathymetric survey
date, and measured sediment volume from completion date of reservoir construction to date of the
bathymetric survey. Data obtained from Moriasi et al. [1] and Allen and Naney [4].

% Watershed Area under
Land Cover Type Bathymetric Information

Watershed/
Reservoir

ID

* Date Construction
Completed
(dd/mm/yr)

WA
(km2) Crop Grass Tree/Shrub

Subdominant
Land Cover

ID
Survey Date Impoundment

Period (yr)
Sediment
Volume

(m3)

11 6 November 1973 4.9 10 73 15 Grass 24/05/2012 39.0 36,991
14 14 April 1978 10.8 5 75 16 Grass 15/05/2012 34.1 146,856
20 27 October 1982 6.7 2 60 33 Tree/Shrub 22/05/2012 29.6 115,906
21 DD May 1970 2.8 3 80 11 Grass 22/05/2012 42.1 37,485
22 8 April 1977 2.9 15 69 13 Grass 18/05/2012 35.1 96,917
23 27 July 1971 2.5 34 59 2 Crop 17/05/2012 40.8 24,155
24 8 November 1976 7.0 43 46 6 Crop 17/05/2012 35.5 72,256
26 DD December 1971 18.0 42 50 2 Crop 16/05/2012 40.4 439,581
31 14 September 1978 19.2 14 60 21 Crop 23/05/2012 33.7 308,015
39 26 June 1978 6.3 1 56 35 Tree/Shrub 24/05/2012 33.9 69,174
41 DD October 1969 2.0 2 44 44 Tree/Shrub 14/05/2012 42.5 36,868
42 DD October 1969 1.9 4 66 24 Tree/Shrub 25/05/2012 42.6 27,867

* DD indicates that the day of year was not reported.

2.1.4. Within-Channel Variables

The watershed slope images were used to visually identify sections of each stream
channel that were similar in terms of their general bank steepness. Using the GIS software,
one or more transects were drawn perpendicular to the thalweg of the main stream and
of sufficient length to include the stream’s banks and floodplains. From these transects,
stream channel geomorphic variables were measured and included channel cross-sectional
area (CA), channel depth (CD), and channel width (CW). For V- and rectangular-shaped
cross-sections, CA was based on CD and CW and computed as the area of either a triangle
or a rectangle. For more complicated shapes, the cross-section was gridded from which the
area was determined from the number of grid elements of known area. The ratio CW:CD
was also calculated, which is related to the physical processes governing the distribution of
energy and resultant sediment transport. Other within-channel (IC) geomorphic variables
were selected from [31]’s stream classification metrics, as described by USDA NRCS [32],
and from metrics used in the Bank Stability and Toe Erosion model (BSTEM) [33]. Metrics
from Rogsen [31] include the bank full depth (BFD), bank full width (BFW), BFW:BFD, and
entrenchment ratio (ER). The BFD is the depth at which the most effective movement of
sediments occurs (typically streamflow at a 1.5 yr return interval) and is determined from
the bank full discharge in gaged streams. The BFD is the most critical variable that needs to
be determined correctly as it is used to calculate the BFW and ER. In ungagged streams,
regional curves that relate watershed area to BFD can be used if the regional curve is
representative of local conditions. If the BFD cannot be determined either from stream gage
data or from an appropriate regional curve, it should be determined directly in the field
and may be based on the presence of point bars, aggraded material in the channel, changes
in bank slope, or indications of bank scour. However, such field investigations were not
practical for this study. Therefore, we used surrogate indicators for the “apparent” BFD that
included the presence of aggraded sediments in the streambed, changes in bank slope, or
scour marks (undercuts in the bank) as visually detected in the stream cross-section profiles
derived from the 2 m DEMs. The ER is defined as the ratio of the flood-prone width (the
width of the channel at 2xBFD) to the BFW and is a measure of the “connectedness” between
the stream channel and its floodplain (FP). Entrenched streams are not well connected
to their FPs; thus, sediments derived from stream banks and channels are more quickly
and efficiently moved directly to the receiving reservoirs. Less entrenched streams have
a higher likelihood of overtopping their banks where sediments derived from all sources
may be deposited on the FP, thereby increasing their residence time within the watershed



Land 2023, 12, 1913 7 of 27

before ultimately being deposited in the reservoir. The selected BSTEM variables include
the bank angle (BA) and bank height (BH), which were also determined from the channel
cross-sectional measurements. The BA was determined as the angle from a line parallel
with the BFD elevation to the top of the bank. The BH was determined by the difference in
elevation between the BFD and the top of the bank. Bank height ratio (BHR), a measure
of channel incision [34], was determined as BH/BFD, where the BH value of the lowest
of the two banks was used. Interpretation of numerical values of BA, BH, BHR, and ER
are provided in Supplemental Tables S2–S4. We also determined the stream floodway area
(FWA) as a percentage of the WA from FWA_%WA = CW × Sthal/WA × 100, which may
be considered another measure of the connectedness between the stream channel and its
FP. If two or more transects were acquired for a given stream segment, then the average
of the respective variables within that segment was calculated. Variables in each segment
were then weighted by the length of that segment relative to the sum of the lengths of all
stream segments. The sum of the respective weighted individual variables was then used
to represent the entire stream length.

Within-channel (IC) soil variables included the area-weighted percent sand and silt
(ICSa and ICSi, respectively) fractions, plasticity index (ICPI), the percent of stream length
with low, medium, and high K-factor soils (%ICLK, %ICMK, and %ICHK, respectively),
and an area-weighted K-factor (ICK). The ICPI, a measure of soil erodibility, is the water
content needed to change the soil from a semi-solid state (which is resistant to flow) to a
liquid state where the soil moves freely. These soil-related variables were obtained from
the USDA-NRCS Web Soil Survey [35] and were directly acquired from the website’s data
inquiry tools by manually digitizing a polygon surrounding the stream which was drawn
as closely as possible to the top of the stream banks. The value of the above variables within
the resultant soil mapping units and the percentage surface area of a given mapping unit
within the polygon was then retrieved as tabular data from which area-weighted values of
the variables were calculated.

2.2. GIS-Based RUSLE/SEDIMENTATION
2.2.1. RUSLE Model Description

The RUSLE is written as follows:

A = Rx Kx LSx Cx P (1)

where A is the calculated soil loss per unit area in units for K (metric ton × ha × hr)/(ha ×
MJ × mm). The R-factor accounts for the effects of raindrop impact and the amount and
rate of runoff likely to be associated with rain [12]. The K and LS factors are developed with
reference to a soil loss rate determined from a unit plot 22.13 m in length, continuously in
clean-tilled fallow conditions, and having a 9% slope [12]. The C-factor is a ratio of soil
loss from an area with a specified cover and management to that from an identical area
under tilled continuous fallow conditions [12], and the P-factor is the ratio of soil loss with
a support (conservation) practice like terracing to that with straight-row farming up and
down the slope [12].

2.2.2. GIS-Based RUSLE Module

We used the RUSLE and SEDIMENTATION modules within the TerrSet GIS software
to estimate reservoir sedimentation. Figure 3 is a schematic of the TerrSet GIS-based
implementation of RUSLE. The GIS-based RUSLE requires spatially distributed data for
inputs to Equation [1], and a DEM. A 2 m horizontal resolution DEM was derived for each
watershed from airborne LiDaR image of the study area acquired with the USDA-NRCS.
The regional image was downloaded from the USDA-NRCS Geospatial Data Gateway [36]
from which each watershed was delineated and clipped. The RUSLE module uses the DEM
to calculate the spatially distributed LS factors. The K-factor images for the watersheds
were downloaded from the USDA Web Soil Survey website [35], clipped and resampled to
match their respective DEM image characteristics. The R-factor image for each watershed
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was created in TerrSet by first developing a “blank” image having the same file attributes
(rows, columns, upper left and lower right image coordinates, map projection, etc.) as the
watershed’s DEM. Initial pixels values for the R-factor image were set equal to 0. Using
the OVERLAY module in the mathematical operations tool, the 1981 C-factor image was
“added” to the newly created R-factor image, whose pixels values outside the watershed
boundary remained 0. Pixel values within the watershed boundary were reclassified to
a value of 225, which is the value for our study area based on the isoerodent map in
Renard et al. [12]. The P-factor image for each watershed was created in the same way,
except that the pixel values within the watershed boundary were set to a value of 1, as this
is the recommended value when the support practice(s) used is/are unknown.

Within the GIS-based RUSLE, the software partitions the landscape into homogeneous
patches based on user-supplied values for slope and aspect threshold. The maximum
slope length parameter represents the distance that water can flow, in sheet form, before
becoming concentrated, whereas the smallest-patch-size-allowed parameter allows patches
below the specified value to be merged into larger patches. In our implementation of the
model, we specified a slope threshold of 3%, an aspect threshold of 45◦, a maximum slope
length of 121.92 m, and the smallest patch size allowed of 40,468.6 m2.

The SEDIMENTATION module uses the patch ID number and patch total soil loss
images derived using RUSLE together with the watershed DEM and a sediment delivery
ratio (SDR) to simulate and quantify net soil movement between patches. The SDR is
applied at the patch level and the amount of soil loss between the higher and lower patch
is proportional to the length of the common boundary between them. Patch level values
are then summed to produce a net soil loss or deposition for the study unit. This value is
multiplied by the reservoir study impoundment period to produce an estimate of reservoir
sedimentation. Supplemental Figures S1–S12 show the slope, K-factor, RUSLE total soil
loss by patch, and net soil loss from the SEDIMENTATION module of each watershed as
used in the GIS-based analysis for 1981.
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2.2.3. GIS-Based RUSLE Inputs

For this study, we selected five dates (1981, 1985, 1989, 1994, and 1997) of land cover
data previously developed for the study area [37] to estimate the long-term reservoir
sediment accumulation. These dates were selected based primarily on the availability of
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land cover images for each of the study watersheds. Additionally, weather records for
the LWREW indicated that rainfall varied from 90 to 120% of normal over the 1981–1997
period, which is representative of the area. Supplemental Table S5 provides a summary of
the satellite sensors, the horizontal spatial resolution of the images, and the classification
methods used to generate the land cover data sets. Additional details regarding the
development of the land cover data sets are provided by Starks et al. [37]. The findings
in [37] indicated that the LWREW is largely composed of grasslands (~65%) with ~16 and
13% of crops and tree/shrub, respectively. However, annual variations in these cover
categories were observed in the study. The original land cover designations for these
images were reclassified into either crop, grass, or tree/shrub categories. The dominant
crop in this region is conventionally tilled winter wheat that is generally used as a forage
for grazing cattle. We used a C-factor of 0.37 to represent this condition as suggested by the
USDA-NRCS for this region of Oklahoma [38]. The C-factors for the grass and tree/shrub
conditions were derived from the tabular data presented in Wischmeier and Smith [13].
The grasslands in the study area are highly variable in terms of vegetation type (native
grasses vs. improved pastures), density of plants, and grazing pressure (lightly to heavily
grazed). For grass lands, an average C-factor of 0.16 was used to represent the range of
vegetative canopy cover types (grass, grass-like, and short brush), having at least 20% of
the cover in contact with the soil surface. For the tree/shrub conditions, an average C-factor
of 0.28 was used, which represented areas having appreciable brush, bushes, and trees with
an average drop fall height of ~2 m, and with about 75% of the ground surface covered by
the canopy. As noted above, the RUSLE support practice (P-) factor was set to 1, and the
rainfall/runoff (R-factor) was set to 225. The P- and R-factors remained fixed over each
year of analysis and were identical for each watershed. The slope length (L) and steepness
(S) (combined into the LS) factors also remained unchanged for a given watershed over
time. The LS values are calculated within the GIS model and are not provided herein.

2.2.4. SDR Models

The SDR is the ratio of sediment yield (SY) to total soil erosion (SE), where SY is
the portion of SE that reaches the stream and transported via waterways to the reservoir.
Measured values of SY and SE are not generally available for most small watersheds but can
be estimated from similar watersheds where measured values are available. For this study,
the sediment volumes, given in Table 2, are the SY measurements (over the impoundment
period of interest), but no direct measurements of SE are available. One could use the
RUSLE estimates of SE together with the measured SY values to arrive at SDR. However,
we could not use this approach since we would be using RUSLE influenced SDR to evaluate
RUSLE itself. Thus, an independent method of estimating SDR was needed.

The SDR can be estimated from models that relate to watershed characteristics such
as WA, WVL, and watershed relief, or one could use SDRs generated from similar (in
size, topographic characteristics, land cover, etc.) watersheds. Garbrecht [39] used the
equation of Maner [40] to calculate the SDR for four watersheds within the nearby Fort
Cobb Reservoir watershed and obtained values ranging from 0.0728 to 0.1145 (mean value
of 0.1). Although these watersheds are in the same region as the ones used in this study,
their areas are one to two orders of magnitude larger; thus, the mean SDR value for these
four watersheds may not be representative of our study watersheds. The Maner [40]
equation is as follows:

Log(SDR%) = 2.94259 − 0.82362 × Log
(

Wvl
Wrl f

)
(2)

Equation (2) was applied to the study watersheds and the results reported in Table 2.
We also computed the SDR from the models of USDA [41] (Equation (3)), Boyce [42]
(Equation (4)), and Vanoni [43] (Equation (5)), all of which are related to WA.

SDR = 0.5656 × WA
−0.11 (3)
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SDR = 0.3750 × WA
−0.2382 (4)

SDR = 0.4724 × WA
−0.125 (5)

where WA is in km2. The results of these equations are also provided in Table 2.

Table 2. Sediment delivery ratio (SDR) values for each watershed calculated using Equations (2)–(5).

SDR Models
Watershed ID Equation (2) Equation (3) Equation (4) Equation (5)

11 0.254 0.474 0.257 0.387
14 0.260 0.435 0.213 0.351
20 0.248 0.458 0.238 0.372
21 0.372 0.504 0.293 0.415
22 0.364 0.503 0.291 0.414
23 0.268 0.511 0.302 0.421
24 0.229 0.456 0.236 0.37
26 0.103 0.411 0.188 0.329
31 0.179 0.408 0.186 0.327
39 0.255 0.461 0.242 0.375
41 0.321 0.524 0.318 0.433
42 0.395 0.527 0.322 0.436

As observed from Table 2, the four models produced a wide range of values for a given
watershed. The GIS-based RUSLE model (for all watersheds and dates) was run for each
SDR model, and the resulting sedimentation estimates (NDRes; see Equation (6) below) were
compared. Example images of RUSLE total annual soil loss by patch and SEDIMENTATION
net annual soil loss by patch are provided in Supplemental Figures S1–S12. Although
Equation (2) resulted in the smallest mean NDRes value (Table 3), it also had the largest
standard deviation. Based on the findings provided in Table 3, SDR values computed
via Equation (3) were chosen, as they produced the smallest standard deviation between
estimated and measured reservoir sedimentation (Table 3).

Table 3. Descriptive statistics (n-size = 12 watersheds × 5 yr/watershed, mean, standard deviation,
coefficient of variation (CV), and minimum and maximum values) of the normalized difference
between GIS-based RULSE estimated and measured reservoir sedimentation (NDRes; see Equation (6))
using the SDR calculated from Equations (2)–(5).

NDRes (%)

SDR n-Size Mean * Std. Dev. CV Min Max

Equation (2) 60 −40.2 ab 104.9 261.1 −96.9 548.2
Equation (3) 60 −61.9 b 66.6 107.6 −97.8 332.8
Equation (4) 60 −45.6 ab 94.6 207.5 −96.9 518.7
Equation (5) 60 −54.9 ab 78.3 142.5 −97.4 412.6

* Means not connected by the same letter are significantly different (α = 0.05).

2.3. Normalized GIS-Based RUSLE Reservoir Sedimentation Estimates

Average annual soil loss was determined for each watershed for each of the five years.
The annual soil losses were multiplied by the respective reservoir’s impoundment period
(Table 2) and sediment bulk density [1] to estimate reservoir sedimentation for comparison
against measured values (Table 2). The resulting estimated sedimentation values were
normalized (NDRes) with reference to the measured sedimentation data acquired from the
bathymetric survey for the respective reservoir according to the following:

NDRes =
Estimated Sedimentation − Measured Sedimentation

Measured Sedimentation
× 100, (6)
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where positive values of NDRes indicate percentage overestimation relative to the measured
values and negative values indicate percen underestimatation.

2.4. Stream Bank Sediment Contributions
2.4.1. First-Order Adjustment

Ref. [27] showed, for a stream near our study area, that ~54% of the suspended
sediment in stream flow was due to stream bank sources. Assuming that this finding is
applicable to other streams near the study region, the measured reservoir sediment values
were decreased by 54% before comparing them against GIS-based RULSE estimates.

2.4.2. Statistical Linkages between NDRes and Watershed, Stream, Stream Corridor, and
Within-Channel Variables

In contrast to the regional adjustment approach in Section 2.4.1, we developed water-
shed, stream, stream corridor, and within-channel variables (described below) as possible
indicators of sediment contributions from gullies, stream banks, or stream channels.

2.5. Statistical Analysis

The various data types (RUSLE inputs, watershed, stream, stream corridor, within-
channel, and NDRes) were analyzed in JMP 17 Pro (SAS Institute, Cary, NC, USA) to produce
basic descriptive statistics and to evaluate differences between estimated and measured
sedimentation as a function of year of land cover (C-factor) acquisition, subdominant land
cover, and other variables, and for identifying variables that may be predictive of the
discrepancy between measured and modeled reservoir sedimentation. All non-normal data
were transformed before analysis.

3. Results and Discussion
3.1. Variability in RUSLE C- and K-Factors
3.1.1. C-Factors (Land Cover)

Satellite data from five dates were used to quantify land area within a given watershed
in either crops, grass, tree/shrub, or fallow. It was expected that small changes in land
cover area between years would occur, but the actual magnitude of these changes and
their impacts on the estimates of reservoir sediment accumulation were unknown. An
example of temporal variability of land cover within Watershed 24 is provided in Table 4
where it is observed that watershed area associated with trees/shrubs increased from
~6% in 1981 to ~9% in 1989 but occupied ~4% of the watershed area in 1994 and 1997. The
largest temporal changes occurred in the cropland and grassland subdominant land cover
groups. This is not uncommon in areas where some agricultural producers may shift from
grazing livestock to planting alfalfa, cereal grains, or other crops, or conversely, where some
cropland may be converted back to grassland, possibly to take advantage of changing cattle
markets or to participate in conservation programs. An example of such a large temporal
change in the crop and grass groups is observed in 1989, whereas in the years prior to this,
cropland accounted for 41 to 47% of the watershed area. However, that percentage was
greatly reduced in 1989 when cropland accounted for ~18% of the watershed area. Fallow
ground was observed in 1981 and 1985, but the percentage of watershed areas was less
than 1%. Large temporal changes between cropland, grassland, and tree/shrub lands are
observed for other watersheds in this study (Figure 4 and Supplemental Table S6). Fallow
ground was < 6.3% in all watersheds but averaged ~0.7% across all watersheds and satellite
land cover dates (Supplemental Table S6).

The C-factor values are directly linked to the cover type; thus, Table 4 (and
Supplemental Table S6) can also be interpreted as the total watershed area associ-
ated with a given C-factor. The largest C-factor (1) is associated with fallow ground,
which occupies a small area in Watershed 24 (Table 4). However, the cropped area
(C-factor = 0.37) ranged from 18 to 47%. Thus, it could be expected that soil erosion
was highest in 1989, depending upon timing, amount, and rates of rainfall during that
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year, all other things being equal. The C-factor associated with the tree/shrub category
(C-factor = 0.28) occupied from ~4 to ~9% of the watershed area, depending on year,
whereas the C-factor associated with the grass category (C-factor = 0.16) varied from
~48% to ~75% of the watershed’s total area. Watershed C-factor images for each of the
five dates are provided in Supplemental Figures S13–S24.

Table 4. Decimal percentage of total watershed area, by year, under either crop, grass, tree/shrub, or
fallow ground, for Watershed 24.

Image Year

Cover Type 1981 1985 1989 1994 1997

Crop 0.471 0.414 0.179 0.394 0.445
Fallow -- 0.002 0.005 -- --
Grass 0.488 0.544 0.752 0.594 0.537

Tree/Shrub 0.064 0.064 0.088 0.035 0.042
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3.1.2. K-Factors

The soil erodibility (K-) factors are different in value, distribution, and number for
each watershed but remained static for a given watershed regardless of the year of analysis
(Table 5, Supplemental Figures S1–S12). Zero (0) values indicate no soil erodibility and
correspond to percentage of water surface in each watershed. Such values could also
indicate impervious surfaces, but surfaces of this type were not apparent in the K-factor
data. It is readily observed from Table 5 that Watersheds 22, 23, 24, 26, and 31 have ≥ 55% of
their areas in soils with K-factors ≥ 0.37 (moderate to highly erosive soils). Watershed
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11 has ~31% of its area in these moderate to highly erosive soils, whereas the remaining
watersheds have ≤ 14%. Watershed area-weighted K-factors ranged from 0.16 (Watershed
14) to ≥ 0.30 for Watersheds 22, 23, 24, 26, and 31.

Table 5. Decimal percentage of watershed area in water and a given K-factor shown with respect to
watershed ID (WS ID). An area-weighted K-factor (WK) is also shown for each watershed.

K-Factors as a Decimal% of Watershed Area

WS ID
0

(Water
Area)

0.02 0.1 0.15 0.2 0.24 0.28 0.32 0.37 0.43 0.49 WK

Low Erosivity Moderate Erosivity High
11 0.0089 0.155 0 0.233 0.288 0 0 0.008 0.077 0.116 0.115 0.23
14 0.125 0.014 0 0.242 0.619 0 0 0 0 0 0 0.16
20 0.012 0.02 0.104 0.214 0.353 0 0.156 0 0.052 0.077 0.012 0.22
21 0.008 0.064 0.131 0.2 0.314 0 0.203 0 0.059 0 0.021 0.20
22 0.04 0 0.044 0 0.098 0 0.061 0 0.417 0.182 0.158 0.35
23 0.028 0 0.0001 0.015 0.078 0 0.205 0 0.493 0.137 0.044 0.34
24 0.022 0 0 0 0.011 0.011 0.154 0 0.599 0.113 0.089 0.36
26 0.028 0 0 0 0.0005 0.001 0 0 0.743 0 0.228 0.39
31 0.027 0.001 0.01 0.002 0.093 0.088 0.222 0 0.394 0.02 0.143 0.33
39 0.022 0.032 0 0.035 0.653 0.113 0.145 0 0 0 0 0.20
41 0.025 0 0 0.333 0.642 0 0 0 0 0 0 0.18
42 0.029 0 0 0.013 0.91 0 0 0 0.024 0.007 0.017 0.20

3.2. Initial Reservoir Sedimentation Analysis

All NDRes were pooled over satellite land cover date within and across the subdomi-
nant watershed landcover categories and summary statistics calculated (Table 6). From this
analysis, it was observed that for all watersheds combined, the GIS-based RUSLE model un-
derestimated accumulated reservoir sediment by ~62%, on average. However, there was a
considerable difference between maximum and minimum NDRes. At the subdominant land
cover category level, the Crop watershed group exhibited the largest variability in NDRes,
ranging from an overestimation of ~333% to an underestimation of ~98% (CV = 339%).
The Grass and Tree/Shrub groups exhibited smaller ranges (CVs = 64.7 and 13.6%, respec-
tively), with average NDRes values of ~−72 and −83%, respectively.

Table 6. Summary statistics of NDRes by watershed subdominant land cover group and for all
watersheds combined.

Watershed Land Cover Group

Statistic Crop Grass Tree/Shrub All

Maximum (%) 332.8 8.9 −56.1 332.8
Minimum (%) −97.5 −93.4 −97.8 −97.8

Mean (%) −31.4 −71.7 −82.9 −62.0
Std. Dev. (%) 106.5 27.0 12.2 66.6

N-size 20 20 20 60

Further analysis indicated that the annual estimates of reservoir sedimentation were
not normally distributed. These data were subsequently normalized (NDResT) using a John-
son SU transformation [44]. After the transformations, the data were subjected to ANOVA
and Student’s t-test to further investigate any statistical differences in the subsequent esti-
mates of NDRes and NDResT as a function of land cover date used to determine the C-factors,
and to investigate differences in NDRes within and across watershed subdominant land
cover group, and across individual watersheds.

3.3. Effects of Land Cover (C-factor) Date on Sedimentation Estimates
3.3.1. Date Effects Pooled over All Watersheds

ANOVA of the NDResT data indicated that the various satellite dates did not produce
statistically significantly different estimates of sedimentation (p = 0.6352). Student’s t-test
further corroborated the ANOVA results (Table 7). In practical terms, however, if the 1985
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C-factors were used to estimate the long-term reservoir sedimentation, this would produce
an average underestimation of reservoir sedimentation of ~42%, while the 1994 land cover
data would have produced an average underestimation of ~79%

3.3.2. Date Effects within Watershed Subdominant Land Cover Group

ANOVA of the NDResT data indicated no statistically significant effects of year of
land cover date within either the Crop or Grass subdominant land cover categories
(p = 0.4482 and 0.68901, respectively). Student’s t-test further corroborated the ANOVA re-
sults (Table 7). However, the ANOVA for the Tree/Shrub group of watersheds did indicate
that at least one of the land cover dates produced estimates of NDResT that were statistically
different from estimates generated from one or more of the other dates. According to the
t-test, the C-factors generated from the 1985 land cover data were statistically distinct from
that generated using the 1989 land cover data.

In practical terms, estimated reservoir sedimentation within the reservoirs assigned
to the Crop category of watersheds ranged from an overestimation of ~27% in 1985 to
an underestimation of ~76% in 1981. For reservoirs within the Grass group, all years
were associated with underestimates of measured reservoir sedimentation, ranging from
−81% (1985) to −58% (1997). Similarly, all model simulations of reservoir sedimentation in
the Tree/Shrub category of watersheds underestimated measured values, ranging from
−91% (1989) to −71% (1985).

Table 7. Least square means * of NDResT as a function of land cover/C-factor date within the
subdominant landcover groups.

Date All Crop Grass Tree/Shrub

1981 0.438 0.510 0.481 0.323 ab

1985 0.545 0.618 0.422 0.593 a

1989 0.499 0.843 0.462 0.193 b

1994 0.454 0.565 0.401 0.395 ab

1997 0.595 0.738 0.667 0.369 ab

* NDResT means not connected by the same letter are significantly different (α = 0.05).

3.4. Comparison of Averaged Estimated and Measured Reservoir Sedimentation

Although not statistically significant, given the large practical differences between
estimated and measured reservoir sedimentation, the analyses reported below are based
on the GIS-based RUSLE simulations for all years and watersheds.

3.4.1. Between Subdominant Land Cover Groups

The ANOVA of NDResT, pooled over date within watershed subdominant land cover
groups (Table 8), indicated that at least one watershed land cover group represented a
different population (p = 0.004). Figure 3 indicates that the corresponding NDRes values
are more variable over time for Crop watersheds than those for the Grass and Tree/Shrub
watersheds. Although the NDResT for the Grass and Tree/Shrub groups are statistically
similar, the Tree/Shrub group’s standard deviation is about half of that of the Grass
watershed group. On average, the estimated reservoir sedimentation from the Crop,
Grass, and Tree/Shrub watersheds underestimated measured values by 31, 71, and 83%,
respectively (Figure 5).
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Table 8. Results of Student’s t-test on NDResT, pooled over date within watershed subdominant land
cover group.

Watershed Land Cover * NDResT Least Square Mean

Crop 0.655 a

Grass 0.489 b

Tree/shrub 0.374 b

* Means not connected by the same letter are significantly different (α = 0.05).
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3.4.2. Between Reservoirs within Subdominant Land Cover Group

ANOVA of average watershed NDResT within the Crop and Grass subdominant land
cover groups indicated that at least one watershed within each group produced a NDResT
that represented a different population when compared to other watersheds within the
group (p = 0.03 and 0.01, respectively). The ANOVA for the Tree/Shrub group indicated
that the watershed NDResT estimates were all drawn from the same population (p = 0.4442).
Student’s t-test (Table 9) indicated that, in the Crop watershed group, the NDResT for
Watershed 31 was statistically different from the remaining watersheds within the group.
The Grass group watersheds exhibited more statistical differences among themselves
than those observed for the other two subdominant land cover watershed groups. In
the Grass group, it was observed that Watershed 11 generated NDResT values that were
statistically different from those for Watersheds 21 and 14, whereas Watershed 14 values
were statistically dissimilar to Watersheds 11 and 22.
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Table 9. Results of Student’s t-test on watershed least square means of NDResT within watershed
landcover group.

Crop Grass Tree/Shrub

Watershed ID NDResT * Watershed ID NDResT Watershed ID NDResT

24 0.809 a 11 0.726 a 41 0.476
23 0.743 a 22 0.589 ab 39 0.417
26 0.681 a 21 0.370 bc 42 0.383
31 0.387 b 14 0.269 c 20 0.222

* NDResT means not connected by the same letter are significantly different (α = 0.05).

The actual NDRes values for the Crop group of watersheds indicate that reservoir
sedimentation estimates ranged from an underestimation of ~83% (Watershed 31) to an
overestimation of ~24% (Watershed 23). All model simulations underestimated reservoir
sedimentation for all watersheds within the Grass group and ranged from ~−50% (Water-
shed 11) to ~−89% (Watershed 14). Model simulations for the Tree/Shrub watersheds un-
derestimated measured values for all watersheds and ranged from ~−77% (Watershed 41)
to ~−89% (Watershed 20).

3.4.3. Across All Watersheds

The ANOVA indicated that NDResT of at least one watershed represented a different
population (p = 0.0004). Results of the Student’s t-test are provided in Table 10, where
values shown in the table are the same as those provided in Table 9 but are ranked with
respect to each other.

Table 10. Results of Student’s t-test performed on the least square means of NDResT pooled over year
of satellite land cover/C-factor dates within watershed.

Watershed/Reservoir ID Watershed Subdominant Land Cover Group * NDResT

24 Crop 0.809 a

23 Crop 0.743 ab

11 Grass 0.726 ab

26 Crop 0.681 abc

22 Grass 0.589 abcd

41 Tree/shrub 0.476 bcde

39 Tree/shrub 0.417 cde

31 Crop 0.387 de

42 Tree/shrub 0.383 de

21 Grass 0.370 de

14 Grass 0.269 e

20 Tree/shrub 0.222 e

* NDResT means not connected by the same letter are significantly different (α = 0.05).

Watershed 23 was the only 1 of the 12 watersheds that produced a positive mean
NDRes value (Figure 6). However, this watershed exhibited the most variable results
(Figure 6), followed closely by Watershed 24. The high variability in these two watersheds
(both members of the Crop subdominant land cover group) is due to a single comparatively
high NDRes value. For Watershed 23, a NDRes of over 300% occurred in 1985, whereas a
value of nearly 200% for Watershed 24 occurred in 1989. Removal of these two data points
brings the mean NDRes values to −53.4% for Watershed 23, and to −56.0% for Watershed
24 (Table 11). Although the prior Crop watershed mean NDRes was negative (Table 6), it
became more negative (−64.4%; calculated from the values provided in Table 11) with the
removal of these two data points, bringing the subdominant land cover group of reservoir’s
NDRes average in closer agreement with that of the Grass and Tree/Shrub group.
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Figure 6. Plot of mean normalized difference (solid circle) between estimated and measured reservoir
sediment accumulation by watershed. Error bars indicating one standard deviation above and below
the mean value are also shown.

If the NDRes values generated from the 1985 and 1989 dates for Watersheds 23 and 24,
respectively, are outliers, then reanalysis of the data set indicates that the overall average
underestimation of reservoir sedimentation is 72.6% ± 14.8%, and that the watershed mean
NDRes values range from −50% (Watershed 11) to −89.2% (Watershed 14) (Table 11). From
inspection of the NDResT values and their statistical similarity designations, two broad
groups emerge and are as follows: Group 1 (all connected by the letter “a”) consisting of
Watersheds 11, 22, 23, 24, and 26, and Group 2 (all connected by the letter “e”) consisting
of Watersheds 14, 20, 21, 31, 39, 41, and 42 (Table 12). The NDRes mean for Group 1
is −56.8 ± 5.4%, and the Group 2 mean is −84.0 ± 4.3%. The Group NDRes means are
statistically different at the α = 0.05 level.

3.5. Stream Bank Contributions—First-Order Adjustment

The results of this adjustment (NDRes_adj) are provided in the right-most column
of Table 11, where it is observed that the discrepancy between the estimated and mea-
sured values of reservoir sedimentation for Reservoirs 11, 22, 23, 24, and 26 was under
20% (absolute), averaging −6.0 ± 11.8%. However, the NDRes_adj for the remaining seven
watersheds ranged from −49.0% (Reservoir 41) to −76.3% (Reservoir 20). It was observed
that NDRes_adj for Reservoir 41 was more statistically like Group 2 (ending statistical sim-
ilarity designator = e) than Group 1 (ending statistical similarity designator = d). The
mean NDRes for Group 2 is −65.1 ± 9.3%. The difference between the two groups after
adjusting for stream bank contributions suggested that a regionally based adjustment for
gully or stream bank sediment contributions would not be sufficient to account for RUSLE’s
weakness in this area. Thus, further analysis was needed to identify watershed, stream,
stream corridor, or within-channel characteristics that may be used as proxies to account
for sediment contributions derived from gullies, stream channels, or stream banks.
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Table 11. Results of Student’s t-test performed on the NDResT pooled over year excluding
two “outlier” land cover/C-factor dates and their associated mean NDRes and the NDRes adjusted
for first-order contribution of steam bank/channel sedimentation (NDRes_adj) for each watershed.

Watershed/Reservoir
ID

Watershed Land
Cover Group * NDResT

NDRes
Mean

(%)

NDRes_adj
Mean

(%)

24 Crop 0.763 a −56.0 −4.3 abc

11 Grass 0.726 b −50.0 8.7 a

26 Crop 0.681 ab −61.6 −16.6 abcd

23 Crop 0.679 abc −53.4 1.4 ab

22 Grass 0.589 abcd −62.8 −19.2 abcd

41 Tree/shrub 0.476 abcde −76.5 −49.0 bcde

39 Tree/shrub 0.417 bcde −82.3 −61.5 cde

31 Crop 0.387 cde −82.7 −62.5 cde

42 Tree/shrub 0.383 cde −83.8 −64.8 de

21 Grass 0.370 de −84.6 −66.6 de

14 Grass 0.269 e −88.9 −75.9 e

20 Tree/shrub 0.222 e −89.1 −76.3 e

* NDResT least square means followed by different letters are significantly different (α = 0.05) (the data used to
derive the NDRes values provided in Table 11 are used in the analyses reported in subsequent sections).

3.6. Watershed, Stream, Stream Corridor, and Within-Channel Variables
3.6.1. Watershed and Stream Variables

Generally, the watersheds are of moderate-to-low relief with an average basin relief
of ~51 m and range from a high of ~78 m (Watershed 31) to a low of 38 m (Watershed 21)
(Supplemental Table S7). The %Wslope≥21 varied from a low of 0.3% (Watersheds 39 and
41) to a high of 9.7% (Watershed 22), averaging ~2.3 ± 2.7% across all watersheds. The
Wvl averaged 4135 m across all watersheds but is quite variable ranging from 1761 m
(Watershed 21) to 11,002 m (Watershed 26). Similarly, Sthal varied from 13,196 m (Watershed
31) to 1844 m (Watershed 21), averaging 4939 ± 3406 m. The Sslope were gentle for all
watersheds, averaging 0.013 ± 0.005 m m−1, while Ssn values indicated that five of the
streams are essentially straight (Ssn < 1.05), while the remaining seven streams have low
sinuosity (1.06 > Ssn ≤ 3.0).

Watershed topographic and general stream characteristics are presented in Table 12
where it is observed that the two groups are statistically similar in terms of WA, Wrlf,
%Wslope≥21, Sthal, Sslope, and Ssn. However, the two groups statistically differ in percent
of watershed area in %WLK,%WMK, and %WHK. Watersheds in Group 2 have, on
average, ~74% of their areas in %WLK with about 72% of these soils having a value ≤ 0.2
(Table 5). Watersheds in Group 1 have ~66% of their areas in %WMK, with ~47% of these
soils having a value ≥ 0.37 (Table 5). Additionally, Group 1 watersheds have another
13% of their areas in high K-factors soils, indicating that Group 1 watersheds have more
erosive soils than those observed in the Group 2 watersheds.

3.6.2. Stream Corridor Variables

The%Corslope≥21 ranged over two orders of magnitude from 0.6% (Watershed 39) to
9.7% (Watershed 42) and to 36.8% (Watershed 21) (Supplemental Table S8). The%Corslope≥21 for
Watersheds 21, 23, and 31 averaged 28.5 ± 12.7%, and it averaged 5.5 ± 3.3% over the remaining
watersheds. The Corslope ≥21:WVL varied from 1.8 m2m−1 (Watershed 41) to 36.8 m2m−1 (Wa-
tershed 22), averaging 9.5 m2m−1 over the 12 study sites (Supplemental Table S8). The %CorLK,
%CorMK, and %CorHK variables averaged 47.6, 48.4, and 4.0%, respectively, over the study sites.
However, considerable variability was observed between sites for all three K-factor categories.
For example, the corridors in Watersheds 14 and 41 had 100% of their areas in low K-factor
soils, whereas Watersheds 24 and 26 had 5.8 and 0.3%, respectively (Supplemental Table S8).
Moderate K-factor soils occupied ≥ 70% of corridor areas in Watersheds 21, 22, 23, 24, 26, and
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31. High K-factor soils were not present in the corridors of Watersheds 11, 14, 21, 39, and 41 and
accounted for ≤5% in Watersheds 22, 23, 31, and 42. Watershed 26 had the largest corridor area
in high K-factor soils at ~26%.

Table 12. Comparison of Group 1 and 2 least square means of watershed area (WA), watershed basin
relief (Wrlf), percent of watershed area with slopes ≥ 21◦ (%Wslope>21), percentage of watershed area
in low, moderate, or high K-factor soils (%WLK, %WMK, and %WHK), stream thalweg length (Sthal),
stream slope (Sslope), and stream sinuosity (Ssn).

Watershed Variables * Stream Variables

Broad
Group ID

WA
(km2)

Wrlf
(m) %Wslope≥21 Wvl %WLK %WMK %WHK WK

Sthal
(m)

Sslope
(m m−1) Ssn

1 7.1 51.0 1.7 5101 19 b 66 a 13 a 0.33 a 6078 0.011 1.21
2 7.1 51.5 1.0 3753 74 a 19 b 3 b 0.21 b 4124 0.015 1.09

* Means not connected by the same letter are significantly different (α = 0.05).

Low K-factor soils in the 100 m stream corridor (%CorLK) are statistically and signif-
icantly more prominent in the Group 2 watersheds (~67%) than in Group 1 watersheds
(~20%) (Table 13). Conversely, ~80% of the Group 1 corridor is in moderate-to-high K-factor
soils. The %Corslope≥21 is statistically similar between groups, but in practical terms, the
Group 2 watersheds have twice their corridor areas occupied by slopes ≥ 21◦ as com-
pared to the Group 1 watersheds. Interestingly, however, Corslope>21:Wvl is statistically
and practically higher in Group 1 corridors containing about three times more area with
slopes > 21◦ per m of Wvl. This variable may be an indicator of bank instabilities and/or de-
velopment of gullies along the main channel of the stream and its tributaries, and therefore,
they are potential sources of sediments for which the GIS-based RUSLE cannot account.

Table 13. Comparison of Group 1 and 2 100 m stream corridor least square means of low, moderate,
and high K-factor soils (%CorLK, %CorMK, and %CorHK, respectively), slopes ≥ 21◦ (%Corslope>21),
and ratio of corridor slope area > 21◦ (Corslope>21) to watershed valley length (Corslope>21:Wvl).

Soil K-Factor * Topographic *

Group ID %CorLK %CorMK %CorHK %Corslope>21
Corslope>21:Wvl

(m2 m−1)

1 19.8 b 71.9 a 8.3 a 7.7 15.4 a

2 67.4 a 31.6 b 1.0 b 13.8 5.2 b

* Means not connected by the same letter are significantly different (α = 0.05).

3.6.3. Within-Channel Variables

The BFD varied from 0.22 m (Watershed 42) to 1.29 m (Watershed 31), averaging
0.6 m over all 12 study sites (Supplemental Table S9). On average, the BFW was about
40 times the BFD but varied from ~13 (Watershed 23) to ~99 (Watershed 11) times larger
than the BFD (see BFW:BFD in Supplemental Table S9). The BAs were found to be low
for all streams as they were generally ≤ 20◦ (Supplemental Table S9). Average BH was
2.4 m, which is categorized as very high (Supplemental Tables S3 and S7), but varied from
0.65 (Watershed 11) to 4.14 m (Watershed 22). Of the 12 study sites, BH was ≥2.1 m (very
high, Supplemental Table S3) for all but Watersheds 14, 39, 41, and 42. The BHR averaged
4.5, which is classified as highly unstable (Supplemental Tables S2 and S9). The BHR value
for all sites indicated that all stream banks were unstable (Supplemental Tables S2 and S9).
The ER for all streams indicated that they were slightly to moderately entrenched as ER
was generally ≥ 1.4 (Supplemental Tables S4 and S9), with an overall average of 3.5. On
average, CD was 2.9 m, CW was ~38 m, and CA was ~80 m2. However, CD, CW, and CA
varied considerably (Supplemental Table S9).

The two groups are statistically similar with regard to CD, CW, CW:CD, and CA
(Table 14). However, the stream channels are, on average, about 1.2 m deeper in Group 1
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than those in Group 2. This difference in CD accounts for the rather large disparity, although
not statistically significant, between the CW:CD values, i.e., for Group 1, the mean stream
CW is ~18 times the CD, whereas the CW for Group 2 is ~36 times the CD. The CA of the
Group 1 streams is ~1.5 times larger than that of Group 2. Except for BHR, the stream bank
variables are not statistically different between the two groups. Although not statistically
different, the ER values indicate that Group 1 streams are moderately entrenched, whereas
Group 2 streams are slightly entrenched (Table 15 and Supplemental Table S4). For Group 1,
the ER suggests that the streams are somewhat disconnected from their floodplains; thus,
sediments derived from various sources are likely to stay within the streams and be more
efficiently moved to the receiving reservoir. Conversely, the streams in Group 2 are more
connected to their floodplains; thus, sediments derived from various sources could be
re-deposited within the floodplain increasing their residence time within the watershed
before ultimately being deposited into the receiving reservoir. The BA values are classified
as low (Supplemental Table S3) for both groups and are not statistically different. The
BH values are also not statistically different between the two groups; however, BH for
the Group 1 streams is classified as “extreme”, while it is classified as “high” for Group 2
steams (Supplemental Table S3). The Group BHR values are statistically different, and both
values indicate highly unstable banks (Supplemental Table S1)—but more so for streams in
Group 1. The BA, BH, and BHR data indicate that the banks and channels in Group 1 likely
contribute more sediments to their streams than do the stream banks in Group 2. Group
means of FWA_%WA were not statistically different, but values ranged from a low value of
1.56 (WS 14) to 5.71 (WS 23) (Supplemental Table S9).

Table 14. Stream segment-weighted least square means of within-channel and stream bank variables
of bank full depth (BFD), bank full width (BFW), ratio of BFW to BFD (BFW:BFD), bank angle
(BA), bank height (BH,), bank height ratio (BHR), entrenchment ratio (ER), stream channel depth
(CD), stream channel width (CW), ratio of channel width to channel depth (CW:CD), channel cross-
sectional area (CA), and stream horizontal surface area as a percentage of watershed area (SA_%WA)
for each group.

Within-Channel Variables *
Group

ID
BFD
(m)

BFW
(m) BFW:BFD BA

(deg)
BH
(m) BHR ER CD

(m)
CW
(m)

CW:
CD

CA
(m2)

FWA_
%WA

1 0.65 15.3 43.2 17.9 3.0 5.8 a 2.1 3.6 36.1 18.0 91.3 3.7
2 0.57 15.6 38.8 12.7 2.0 3.5 b 4.5 2.4 38.8 36.0 70.0 2.7

* Means followed by different letters are significantly different (α = 0.05).

Except for Watershed 26, ICSa ≥ 41% (Supplemental Table S10), averaging 51.8 ± 13.8% over
all sites. The ICSi varied from 18% (Watershed 41) to 56% (Watershed 26). Low K-factor soils
dominate in the streambed and stream banks of Watersheds 11, 14, 20, 39, 41, and 42, but moderate
K-factor soils make up > 55% of the area in the remaining study sites. In fact, moderate K-factor
soils make up > 91% of the streambed and stream bank soils in Watersheds 22, 24, and 26. High
K-factor soils make up < 0.5% of the soils in Watersheds 20, 22, and 31 with the remaining
sites having no high K-factor soils present. The plasticity index (ICPI) varied from a low of
4.6 (Watershed 41) to a high of 17.3 (Watershed 26) (Supplemental Table S10).

In terms of the within-channel soils variables, the Group 1 soils have a larger silt (ICSi)
and smaller sand fractions (ICSa) than soils in Group 2 (Table 15). Correspondingly, the
within-channel soils for Group 1 have K-factors that are predominantly (~78%) moderate
in value, whereas the Group 2 stream channel and stream bank soils are predominantly
(~74%) low in value. High K-factor soils accounted for < 1% of the soils in both groups,
with no statistical differences between the groups. On average, the stream channel and
stream bank soils in Group 1 soils have statistically larger K-factors (0.33) than those in
Group 2 (0.23) and are, therefore, more erosive. The %ICPI of the stream channel and stream
bank soils is not statistically different between groups, although the value for Group 1 is
~1.4 times larger than that of Group 2.
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Table 15. Least square means of within-channel (IC)-weighted soil K-factor (ICK), sand (ICSa), and silt
(ICSi) fractions, percentages of low, moderate, and high K-factor soils (%ICLK,%ICMK, and %ICHK),
and weighted average plasticity index (ICPI) for each group’s stream channels and stream banks.

Group ID ICK * ICSa ICSi %ICLK %ICMK %ICHK ICPI

1 0.33 a 40.8 b 37.2 a 21.6 b 78.2 a 0.14 10.9
2 0.23 b 59.6 a 23.1 b 73.9 a 25.1 b 0.09 7.6

* Means followed by different letters are significantly different (α = 0.05).

3.7. Sediment Delivery Ratios (SDRs)

Setting the SDR to one forces the SEDIMENTATION module to route all RUSLE-
simulated soil erosion through the watershed to the receiving reservoir, thereby providing
a maximum sedimentation estimate. Comparison of GIS-based RUSLE simulations where
SDR = 1 (all years, all watersheds) revealed that average watershed sedimentation overesti-
mated measured values from ~1200% (Watershed 14) to ~22,000% (Watershed 23). Because
the SEDIMENTATION module applies the SDR to each patch and because the amount of
soil moving from one patch to the next is proportional to length of the common boundary
between the two patches, sediment movement and delivery to the reservoir are reduced
beyond a simple multiplication of the SDR and the RUSLE estimate of overland soil erosion.
Thus, it is fortuitous that the combination of the first-order adjustment and the SDRs used
in the GIS-based RUSLE simulations for the Group 1 watersheds worked as well as they did.
However, this combination did not work as well for the Group 2 watersheds. The persistent
and large underestimation of measured reservoir sedimentation in Group 2 watersheds
after the first-order adjustment implies that the SDRs used for these watersheds are too
high (i.e., too much sediment is allowed to pass through the watershed to the reservoir),
or that the assumed amount of sediment generated from channels, banks, and gullies is
too large. We have no information for our region than that provided by Wilson et al. [29]
regarding sediments derived from channel, bank, and gully sources. Therefore, the impact
of lowering the SDR to 0.1 for the Group 2 watersheds based on the study of Garbrecht [39]
was investigated, while at the same time maintaining the first-order adjustment for stream
channel, stream bank, and gully sediment contributions. This value for the SDR was
helpful in some instances, but the underestimation remained large for some watersheds
(Supplemental Table S11). Watershed 31 improved from a large underestimation to a mod-
erate underestimation, and Watersheds 41 and 42 changed from a large underestimation
of measured reservoir sedimentation to moderate overestimations (24.3 and 18.7%, re-
spectively, Supplemental Table S11), implying that an SDR value between 0.1 and that
calculated from Equation (3) could improve agreement between estimated and measured
sedimentation, but without measurements of actual soil erosion, selection of the appropri-
ate SDR would be subjective. Large underestimations were persistent for Watersheds 14,
20, 21, and 39. These findings suggest that an unrealistically small SDR would be needed to
bring estimated and measured reservoir sedimentation into closer agreement.

3.8. Watershed, Stream, Stream Corridor, and Within-Channel Variables as Predictors of NDRes

We developed a series of prediction equations using stepwise regression relating the
variables to NDRes but limited the number of variables to five to minimize over-fitting
the equations. The best models are shown in Table 16 (alternative models are provided
in Supplemental Table S12). The best one-variable model used accounted for ~44% of the
variability of NDRes using LNWSK. The equation indicates that as the overall watershed
soil erosivity increased, NDRes became less negative. Refs. [19,20] noted that RUSLE
erosion estimates were >100% in some instances. Assuming the RUSLE overestimates soil
erosion, the equation implies that the dominance of highly erosive soils in a watershed
may compensate, to some degree, the RUSLE bias or “baseline” effect when trying to
estimate reservoir sedimentation. However, the amount of overestimation is unknown
for our watersheds. The one-variable model cannot account for well over one-half of
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the variation of NDRes, thereby limiting the usefulness of this model. The two-variable
model accounted for ~72% (adjusted R2) of the variability in NDRES using SHASHER and
FWA_%WA. As ER increases (i.e., stream entrenchment decreases), underestimation of
measured reservoir sedimentation increases. Less entrenched streams are better connected
to their floodplains [31] providing an increased opportunity for the redeposition of sediment
(from all sources), thereby impeding and delaying sediment delivery to the receiving
reservoir. This, in combination with the assumed RUSLE overprediction of soil erosion,
may account for the increased discrepancy between the GIS-based RUSLE estimates of
reservoir sedimentation and observed data. The FWA_%WA variable somewhat mitigates
the effects of the ER variable because, as it increases, the NDRes value becomes less negative.
This may be due to probable increased generation of sediments by larger FWAs (i.e., larger
wetted perimeter) as compared to those that are smaller. The three-variable model included
LNBFD, FWA_%WA, and ICK and accounted for ~82% of the variability in NDRes. The role
of FWA_%WA is the same as that described for the two-variable model, and the role of ICK
is like that described for WSK in the one-variable model; however, the relationship between
ICK and NDRes is stronger than that of WSK and NDReS. As the BFD increases, the NDRes
becomes increasingly negative. Larger BFDs indicate that more stream bank area is exposed
to erosive processes, thereby contributing more sediment to the receiving reservoirs and for
which the RUSLE model cannot account [19]. The four-variable model accounts for ~95% of
the variation in NDRes and includes the previously discussed WSK and ER variables as well
as the log-normal versions of Wvl and Corslope≥21:Wvl. Regarding Wvl, it is noted that as the
value of this variable increases so does the degree of underestimation of measured reservoir
sedimentation. This variable may be related to an increasing probability of sediment
contributions from gullies, stream channels, and stream banks as the watershed valley
length increases. The Corslope≥21:Wvl behaves similarly to Wvl, but is a better indicator of
likely gully and stream bank sources of sediment within the 100 m corridor of the stream
not accounted for by the RUSLE model. The five-variable model accounts for ~98% of the
variability of NDRes and includes one variable not discussed heretofore—the WA. From the
regression model, it can be noted that as WA increases, the underestimation of measured
sedimentation decreases. This variable is likely related to the SDRs used in the GIS-based
RUSLE/SEDIMENTATION simulations of the respective watersheds. As noted earlier,
the SDR is based on WA and has been formulated on the general observation that as WA
increases, sediment delivery to the receiving reservoirs decreases.

Table 16. Root mean square error (RMSE), multiple coefficient of determination (R2), and adjusted
R2 for the best 1- to 5-variable linear regression models. Non-normally distributed values were
transformed using either a log-normal (LN) or sineh-arcsineh (SHASH) transformation and are
indicated as a superscripted prefix to the affected variable. The regression equations and their
p-values are also shown.

# Model
Variables Variables Used RMSE

(%) R2 Adjusted R2 p-Value

1 LNWSK 11.7 0.436 --- 0.0194
NDRes = (117.3 × LNWSK) − 103.6

2 SHASHER, FWA_%WA 7.8 0.775 0.724 0.0012
NDRes = (−31.0 × SHASHER) + (7.1 × FWA_%WA) − 79.4

3 LNBFD, FWA_%WA,%ICK 6.2 0.871 0.822 0.0006
NDRes = (243.7 × %ICK) + (7.0 × FWA_%WA) − (30.7 × LNBFD) − 145.7

4 LNWK,
LNWvl, LNCorslope≥21:Wvl, SHASHER 3.4 0.967 0.948 <0.0001

NDRes = (62.5 × LNWK) − (64.8 × SHASHER) − (82.2 × LNCorslope≥21:Wvl) − (46.2) − 8.8
5 LNWA, LNWSK, LNWvl, LNCorslope≥21:Wvl, SHASHER 1.9 0.991 0.984 <0.0001

NDRes = (41.1 × LNWA) + (86.5 × LNWK) - (107.7 × LNWvl) − (124.1 × LNCorslope≥21:Wvl) − (91.1 × SHASHER)
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4. Conclusions

Three objectives guided this research study. Objective 1 sought to evaluate the impact
of temporal variations of the RUSLE C-factor on the estimation of reservoir sedimentation.
To this end, we used land cover maps to determine C-factors of five dates for 12 watersheds
located in the Little Washita River Experimental Watershed. Evaluation of the GIS-based
RUSLE simulations indicated that there were no statistical differences in the sedimentation
estimates when all watersheds were pooled over all dates. Yet, there were large practical
differences between some years. There were also no statistical differences in estimates
of reservoir sedimentation within the Crop and Grass subdominant land cover groups;
however, there were statistical differences between the 1985 and 1989 dates within the
Tree/Shrub group. For reservoir sedimentation studies, it is advisable to run simulations
for several different years to capture the impact of temporally variable C-factors to better
account for variations in overland sediment contributions to reservoir sedimentation.

It has been noted that a primary weakness of RUSLE is its inability to account for
sediments derived from gully, stream channel, and stream bank sources. In Objective 2 we
conducted a first-order (regionally based) adjustment to compensate for these sources by
reducing the measured reservoir sediment. This adjustment resulted in closer agreement
between estimated and measured sedimentation for all 12 watersheds, but better agreement
occurred for five watersheds where the difference between GIS-based RULSE estimated
and measured sedimentation averaged −6.0 ± 11.8%. Although the agreement between
estimated and measured reservoir sedimentation improved somewhat for the remaining
seven watersheds, average underestimation was still large (−65.1 ± 9.3%). Thus, it is ap-
parent that a regionally based adjustment will not likely be adequate to bring RUSLE-based
estimated of reservoir sedimentation in line with measured data. It was also shown that
unrealistic SDRs would be required to bring model simulations of reservoir sedimentation
into agreement with measured data, under the conditions specified in this study.

Analyses of the linkage between watershed, stream, stream corridor, and within-
channel variables (objective 3) showed strong relationships between selected geomorphic,
pedologic, and topographic variables and the degree to which measured reservoir sedimen-
tation was underpredicted using the GIS-based RUSLE model. The parameter values for
the linear regression models developed in this study are not likely applicable to conditions
vastly different from those presented herein. However, it is anticipated that the variables
used in the regression equations may be sufficient to characterize the impact of these
watershed, stream, and within-channel characteristics on reservoir sedimentation or to
group watersheds into classes representing a probable difference between simulated and
measured reservoir sedimentation. Such an approach could be used to prioritize reservoirs
for evaluation of structure life and safety standards.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/land12101913/s1, Table S1: Sinuosity (Ssn) values and their
interpretation; Table S2: Bank height ratio (BHR) values with accompanying stability assignment;
Table S3: Bank height (BH) and Bank Angle (BA) values with accompanying category assignment;
Table S4: Entrenchment ratio (ER) and Bank Full width:Bank Full Depth ratio (BFW:BFD) values
with accompanying category assignment; Table S5: Year, satellite sensor, horizontal spatial resolution,
and classification schemes used to develop land cover/C-factor data; Table S6: Mean, maximum,
minimum, and standard deviation as decimal percents of watershed area in either Crop, Fallow, Grass,
or Tree/Shrub; Table S7: Watershed basin relief (Wrlf), percentage of watershed having slopes ≥ 21o

(%Wslope≥), watershed valley length (Wvl), stream thalweg length (Sthal), stream slope (Sslope),
and stream sinuosity (Ssn) for each watershed; Table S8: Percentage of 100-m stream buffer area
having slopes ≥ 21o (%Corslope ≥ 21), ratio of %Corslope ≥ 21o to Wvl (Corslope ≥ 21:WVL), and
percentage of buffer area with low, moderate, or high K-f actor soils (%CorLK, %CorMK, %CorHK)
for each watershed; Table S9: Within-channel, stream segment weighted values of bank full depth
(BFD), bank full width (BFW), ratio of BFW to BFD (BFW:BFD), entrenchment ratio (ER), bank angle
(BA), bank height ratio (BHR), channel depth (CD), channel width (CW), ratio of CW to CD (CW:CD),
channel cross-sectional area (CA), and horizontal stream surface area as a percentage of watershed
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drainage area (FWA_%WA) for each watershed; Table S10: Within-channel, stream segment weighted
values of weighted soil sand and silt fractions (ICSa and ICSi, respectively), percent of streambed
and streambank soils that have low, moderate, or high K-factors (%ICLK, %ICMK, and %ICHK), a
weighted K-factor value ICK, and the plasticity index (ICPI) for each watershed; Table S11: Normal-
ized difference of estimated reservoir sedimentation with first-order adjustment for stream channel,
stream bank, and gully contributions of sediment (NDRes_adj) from GIS-based RUSLE model simu-
lations using the USDA [41] and Garbrecht [39] sediment delivery ratios (SDR) for each watershed
(ID) in Group 2; Table S12: Root mean square error (RMSE), multiple coefficient of determination
(R2), and adjusted R2 for alternative linear regression models; Figures S1 through S12: GIS images of
(a) slope (deg), (b) K-factor [(metric ton*ha*hr)/(ha*MJ*mm)], (c) RUSLE total annual soil loss for
each patch (metric tons yr-1), and (d) SEDIMENTATION net annual soil loss for each patch (metric
tons yr-1) for watersheds 11, 14, 20, 21, 22, 23, 24, 26, 31, 39, 41, and 42, respectively; Figures S13
through S24: C-factor images for watersheds 11, 1, 20, 21, 22, 23, 24, 26, 31, 39, 41, and 42, respectively.
References [45–47] are cited in the supplementary materials.
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Abbreviations

Acronym Meaning
%CorHK Percentage of the 100 m stream corridor area having high K-factor soils
%CorLK Percentage of the 100 m stream corridor area having low K-factor soils
%CorMK Percentage of the 100 m stream corridor area having moderate K-factor soils
%Corslope≥21 Percentage of the 100 m stream corridor area having slopes ≥ 21◦

%ICHK Weighted percentage of high K-factor soils composing the stream bank and channel
%ICLK Weighted percentage of low K-factor soils composing the stream bank and channel
%ICMK Weighted percentage of moderate K-factor soils composing the stream bank and channel
%ICWK Weighted average K-factor of the stream bank and stream channel soils
%Wslope>21 Percentage of the WA having slopes ≥ 21◦

ANOVA Analysis of Variance
BA Bank angle (deg)
BFD Bank full depth (m)
BFW Bank full width (m)
BFW:BFD Ratio of BFW to BFD
BH Bank height (m)
BHR Bank height ratio
BSTEM Bank Stability and Toe Erosion Model
CA Stream channel area (m2)
CD Stream channel depth (m)
CW Stream channel width (m)
CW:CD Ratio of CW to CD
Corslope≥21 Actual area of the 100 m stream corridor having slopes ≥ 21◦ (m2)
Corslope≥21:Wvl Area within the 100 m stream corridor having slopes ≥ 21◦ per m of Wvl (m2 m−1)
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DEM Digital elevation model
ER Entrenchment ratio
EUROSEM European Soil Erosion Model
FP Flood plain
FWA Flood way area
GIS Geographical information system
IC Within-channel
ICPI Weighted average plasticity index of the stream bank and stream channel soils
ICSa Weighted average sand fraction of the stream bank and stream channel soils
ICSi Weighted average silt fraction of the stream bank and stream channel soils
LWREW Little Washita River Experimental Watershed
NDRes Normalized difference between estimated and measured sedimentation
NDRes_adj NDRes adjusted to account for stream channel/bank sediment contributions
NDResT Johnson Su transformation of NDRes
RMSE Root mean square error
RUSLE Revised Universal Soil Loss Equation
RUSLE2 RUSLE version 2
SDR Sediment delivery ratio
SE Total soil erosion
SY Sediment yield
Sslope Stream slope (m m−1)
Ssn Stream sinuosity
Sthal Stream thalweg length (m)
USLE Universal soil loss equation
USDA-NRCS United States Department of Agriculture-Natural Resources Conservation Service
WEPP Water Erosion Prediction Project
WRB Washita River Basin
WA Watershed drainage area (km2)
WHK Percentage of watershed drainage area in high K-factor soils
WLK Percentage of watershed drainage area in low K-factor soils
WK Area-weighted watershed K-factor
WMK Percentage of watershed drainage area in moderate K-factor soils
Wrlf Watershed relief (m)
Wvl Watershed valley length (m)

References
1. Moriasi, D.N.; Steiner, J.L.; Duke, S.E.; Starks, P.J.; Verser, A.J. Reservoir sedimentation rates in the Little Washita River

experimental watershed: Measurement and controlling factors. J. Amer. Water Resour. Assoc. 2018, 54, 1011–1023. [CrossRef]
2. Hanson, G.J.; Caldwell, L.; Lobrecht, M.; McCook, D.; Hunt, S.L.; Temple, D. A look at the engineering challenges of the USDA

Small Watershed Program. Centennial Edition Trans. ASABE 2007, 50, 1677–1682. [CrossRef]
3. Hunt, S.L.; Hanson, G.L.; Temple, D.M.; Caldwell, L. The importance of the USDA Small Watershed Program to the rural United

States. Water Resour. IMPACT 2011, 13, 9–11.
4. Allen, P.B.; Naney, J.W. Hydrology of the Little Washita River Watershed, Oklahoma; United States Department of Agriculture,

Agricultural Research Service: Washington, DC, USA, 1991; ARS-90.
5. Bennett, S.J.; Dunbar, J.A.; Rhoton, F.E.; Allen, P.M.; Bigham, J.M.; Davidson, G.R.; Wren, D.G. Assessing sedimentation issues

within aging flood-control reservoirs. Rev. Engin. Geol. 2013, 21, 25–44.
6. Ketchem, A.J.; Mathew, P.E.; Lyons, P.E.; Evans, R. Reservoir Sediment Impacts on the Rehabilitation of NRCS-Assisted Flood

Control Dams in Virginia; ASABE Paper No. 1900198; American Society of Agricultural and Biological Engineers: St. Joseph,
MI, USA, 2019; 3p.

7. Zhang, X.C.J.; Zhang, G.H.; Wei, X.; Guan, Y.H. Evaluation of cesium-137 conversion models and parameter sensitivity for erosion
estimation. J. Environ. Qual. 2015, 44, 789–802. [CrossRef]

8. The Small Watershed Rehabilitation Amendments of 2000. Available online: https://www.congress.gov/bill/106th-congress/
house-bill/728 (accessed on 7 August 2023).

9. Laflen, J.M.; Elliot, W.J.; Flanagan, D.C.; Meyer, C.R.; Nearing, M.A. WEPP-predicting water erosion using a process-based model.
J. Soil Water Conserv. 1997, 52, 96–102.

10. Morgan, R.P.C.; Quinton, J.N.; Smith, R.E.; Govers, G.; Poesen, J.W.A.; Auerswald, K.; Chisci, G.; Torri, D.; Styczen, M.E.
The European Soil Erosion Model (EUROSEM): A dynamic approach for predicting sediment transport from fields and small
catchments. Earth Surf. Proc. Landforms J. Brit. Geomorph. Group 1998, 23, 527–544. [CrossRef]

https://doi.org/10.1111/1752-1688.12658
https://doi.org/10.13031/2013.23959
https://doi.org/10.2134/jeq2014.09.0371
https://www.congress.gov/bill/106th-congress/house-bill/728
https://www.congress.gov/bill/106th-congress/house-bill/728
https://doi.org/10.1002/(SICI)1096-9837(199806)23:6%3C527::AID-ESP868%3E3.0.CO;2-5


Land 2023, 12, 1913 26 of 27

11. Kinnell, P.I. Sediment delivery ratios: A misaligned approach to determining sediment delivery from hillslopes. Hydrolog. Proc.
2004, 18, 3191–3194. [CrossRef]

12. Renard, K.G.; Foster, G.R.; Weesies, G.A.; McCool, D.K.; Yoder, D.C. Predicting Soil Erosion by Water: A Guide to Conservation
Planning with the Revised Soil Loss Equation (RUSLE); Agriculture Handbook No. 703; United States Department of Agriculture:
Washington, DC, USA, 1997; 404p.

13. Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses—A Guide to Conservation Planning; U.S. Department of Agriculture,
Handbook No. 537; United States Department of Agriculture: Washington, DC, USA, 1978.

14. Shi, Z.H.; Cai, C.F.; Ding, S.W.; Wang, T.W.; Chow, T.L. Soil conservation planning at the small watershed level using RUSLE with
GIS: A case study in the Three Gorges area of China. Catena 2004, 55, 33–48. [CrossRef]

15. Chen, H.; El Garouani, A.; Lewis, L.A. Modelling soil erosion and deposition within a Mediterranean mountainous environment
utilizing remote sensing and GIS–Wadi Tlata, Morocco. Geograph. Helvet. 2008, 63, 36–47. [CrossRef]

16. Anees, M.T.; Abdullah, K.; Nawawi, M.N.M.; Norulaini, N.A.N.; Syakir, M.I.; Omar, A.K.M. Soil erosion analysis by RUSLE and
sediment yield models using remote sensing and GIS in Kelantan state, Peninsular Malaysia. Soil Res. 2018, 56, 356–372. [CrossRef]

17. Kumar, A.; Devi, M.; Deshmukh, B. Integrated Remote Sensing and Geographic Information System Based RUSLE Modelling for
Estimation of Soil Loss in Western Himalaya, India. Water Resour. Manag. 2014, 28, 3307–3317. [CrossRef]

18. Kouli, M.; Soupios, P.; Vallianatos, F. Soil erosion prediction using the Revised Universal Soil Loss Equation (RUSLE) in a GIS
framework, Chania, Northwestern Crete, Greece. Environ. Geol. 2009, 57, 483–497. [CrossRef]

19. Boomer, K.B.; Weller, D.E.; Jordan, T.E. Empirical models based on the Universal Soil Loss Equation fail to predict sediment
discharges from Chesapeake catchments. J. Environ. Qual. 2008, 37, 79–89. [CrossRef]

20. Moges, M.M.; Abay, D.; Engidayehu, H. Investigating reservoir sedimentation and its implications to watershed sediment yield:
The case of two small dams in data-scarce upper Blue Nile basin, Ethiopia. Lakes and Reser. 2018, 23, 217–229. [CrossRef]

21. Kaffas, K.; Pisinaras, V.; Al Sayah, M.J.; Santopietro, S.; Righetti, M. A USLE-based model with modified LS-factor combined with
sediment delivery module for Alpine basins. Catena 2021, 207, 105655. [CrossRef]

22. Bufalini, M.; Materazzi, M.; Martinello, C.; Rotigliano, E.; Pambianchi, G.; Tromboni, M.; Paniccia, M. Soil erosion and deposition
rate inside an artificial reservoir in central Italy: Bathymetry versus RUSLE and morphometry. Land 2022, 11, 1924. [CrossRef]

23. Trimble, S.W. Contribution of stream channel erosion to sediment yield from an urbanizing watershed. Science 1997,
278, 1442–1444. [CrossRef]

24. Prosser, I.P.; Rutherford, I.D.; Olley, J.M.; Young, W.J.; Wallbrink, P.J.; Moran, C.J. Large-scale patterns of erosion and sediment
transport in river networks, with examples from Australia. Mar. Freshw. Res. 2001, 52, 81–99. [CrossRef]

25. Basher, L.; Douglas, G.; Elliott, S.; Hughes, A.; Jones, H.; McIvor, I.; Page, M.; Rosser, B.; Tait, A. Impacts of Climate Change on
Erosion and Erosion Control Methods–A Critical Review. Final Report MPI Technical Paper No: 2012/45, 2012. Available online:
https://www.mpi.govt.nz/document-vault/4074 (accessed on 8 March 2023).

26. Simon, A.; Rinaldi, M. Disturbance, stream incision, and channel evolution: The roles of excess transport capacity and boundary
materials in controlling channel response. Geomorphology 2006, 79, 361–383. [CrossRef]

27. Wilson, C.G.; Kuhnle, R.A.; Bosch, D.D.; Steiner, J.L.; Starks, P.J.; Tomer, M.D.; Wilson, G.V. Quantifying relative contributions
from sediment sources in Conservation Effects Assessment Project watersheds. J. Soil Water Conser. 2008, 63, 523–532. [CrossRef]

28. Simon, A.; Klimetz, L. Relative magnitudes and sources of sediment in benchmark watersheds of the Conservation Effects
Assessment Project. J. Soil Water Conser. 2008, 63, 504–522. [CrossRef]

29. Benavidez, R.; Jackson, B.; Maxell, D.; Norton, K. A review of the (Revised) Universal Soil Loss Equation ((R)USLE): With a view
to increasing it global applicability and improving soil loss estimates. Hydrol. Earth Sys. Sci. 2018, 22, 6059–6086. [CrossRef]

30. Oklahoma Climatological Survey. Available online: http://climate.ok.gov/index.php/climate/climate_normals_by_county/
local_data (accessed on 7 August 2023).

31. Rosgen, D.L. A classification of natural rivers. Catena 1994, 22, 169–199. [CrossRef]
32. United States Department of Agriculture. Site Assessment and Investigation. Part 654 Stream Restoration Design, Chapter 3,

National Engineering Handbook; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2007. Available online:
https://directives.sc.egov.usda.gov/viewerFS.aspx?hid=21433 (accessed on 31 March 2023).

33. United States Department of Agriculture-Agricultural Research Service, Watershed Physical Processes Research: Oxford, MS.
Available online: https://www.ars.usda.gov/Research/docs.htm?docid=5044 (accessed on 30 March 2023).

34. Rosgen, D.L. A practical method of computing streambank erosion rate. In Proceedings of the Seventh Interagency Sedimentation
Conference, Reno, NV, USA, 25–29 March 2001; Volume 2, pp. 9–15.

35. United States Department of Agriculture-Natural Resources Conservation Service. Web Soil Survey. Available online:
https://websoilsurvey.sc.egov.usda.gov/app/ (accessed on 22 September 2023).

36. United States Department of Agriculture-Natural Resources Research Serivice. Geospatial Data Gateway. Available online:
https://gdg.sc.egov.usda.gov/ (accessed on 22 September 2023).

37. Starks, P.J.; Steiner, J.L.; Stern, A.J. Upper Washita River experimental watersheds: Land cover data sets (1974–2007) for
two southwestern Oklahoma agricultural watersheds. J. Environ. Qual. 2014, 43, 310–1318. [CrossRef]

38. United States Department of Agriculture-Natural Resources Conservation Service. Available online: https://efotg.sc.egov.usda.
gov/references/Agency/OK/RUSLE_Chap4_C_Factors.pdf (accessed on 23 March 2023).

https://doi.org/10.1002/hyp.5738
https://doi.org/10.1016/S0341-8162(03)00088-2
https://doi.org/10.5194/gh-63-36-2008
https://doi.org/10.1071/SR17193
https://doi.org/10.1007/s11269-014-0680-5
https://doi.org/10.1007/s00254-008-1318-9
https://doi.org/10.2134/jeq2007.0094
https://doi.org/10.1111/lre.12234
https://doi.org/10.1016/j.catena.2021.105655
https://doi.org/10.3390/land11111924
https://doi.org/10.1126/science.278.5342.1442
https://doi.org/10.1071/MF00033
https://www.mpi.govt.nz/document-vault/4074
https://doi.org/10.1016/j.geomorph.2006.06.037
https://doi.org/10.2489/jswc.63.6.523
https://doi.org/10.2489/jswc.63.6.504
https://doi.org/10.5194/hess-22-6059-2018
http://climate.ok.gov/index.php/climate/climate_normals_by_county/local_data
http://climate.ok.gov/index.php/climate/climate_normals_by_county/local_data
https://doi.org/10.1016/0341-8162(94)90001-9
https://directives.sc.egov.usda.gov/viewerFS.aspx?hid=21433
https://www.ars.usda.gov/Research/docs.htm?docid=5044
https://websoilsurvey.sc.egov.usda.gov/app/
https://gdg.sc.egov.usda.gov/
https://doi.org/10.2134/jeq2013.07.0292
https://efotg.sc.egov.usda.gov/references/Agency/OK/RUSLE_Chap4_C_Factors.pdf
https://efotg.sc.egov.usda.gov/references/Agency/OK/RUSLE_Chap4_C_Factors.pdf


Land 2023, 12, 1913 27 of 27

39. Garbrecht, J.D. Effects of climate variations and soil conservation on sedimentation of a west-central Oklahoma reservoir.
J. Hydrol. Eng. 2011, 16, 899–906. [CrossRef]

40. Maner, S.B. Factors affecting sediment delivery ratios in the Red Hills physiographic area. Trans. Amer. Geophys. Union 1958,
39, 669–675. [CrossRef]

41. United States Department of Agriculture. Sediment sources, yields, and delivery ratios. In National Engineering Handbook; Section
3; Sedimentation; United States Department of Agriculture: Washington, DC, USA, 1972.

42. Boyce, R.C. Sediment routing with sediment delivery ratios. In Present and Pospective Technology for Predicting Sediment Yields and
Sources; Publication ARS-S-40; United States Department of Agriculture: Washington, DC, USA, 1975; pp. 61–65.

43. Vanoni, V.A. Sedimentation Engineering; American Society of Civil Engineers: Reston, VA, USA, 2006.
44. Johnson, N.L. Systems of frequency curves generated by methods of translation. Biometrika 1949, 36, 149–176. [CrossRef]
45. Schumm, A.A. Patterns of alluvial rivers. Ann. Rev. Earth and Planet. Sci. 1985, 13, 5–27. [CrossRef]
46. New Mexico State University. Available online: https://jornada.nmsu.edu/files/geomorp_terms.pdf (accessed on 24 April 2023).
47. United States Department of Agriculture. Rosgen Stream Classification Technique Supplemental Materials. Technical

Supplement 3, Part 654, National Engineering Handbook. Available online: https://directives.sc.egov.usda.gov/rollupviewer.
aspx?hid=17092 (accessed on 25 April 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1061/(ASCE)HE.1943-5584.0000377
https://doi.org/10.1029/TR039i004p00669
https://doi.org/10.1093/biomet/36.1-2.149
https://doi.org/10.1146/annurev.ea.13.050185.000253
https://jornada.nmsu.edu/files/geomorp_terms.pdf
https://directives.sc.egov.usda.gov/rollupviewer.aspx?hid=17092
https://directives.sc.egov.usda.gov/rollupviewer.aspx?hid=17092

	Introduction 
	Material and Methods 
	Study Sites 
	General Description 
	Watershed and Stream Geomorphic and Topographic Variables 
	Stream Corridor Variables 
	Within-Channel Variables 

	GIS-Based RUSLE/SEDIMENTATION 
	RUSLE Model Description 
	GIS-Based RUSLE Module 
	GIS-Based RUSLE Inputs 
	SDR Models 

	Normalized GIS-Based RUSLE Reservoir Sedimentation Estimates 
	Stream Bank Sediment Contributions 
	First-Order Adjustment 
	Statistical Linkages between NDRes and Watershed, Stream, Stream Corridor, and Within-Channel Variables 

	Statistical Analysis 

	Results and Discussion 
	Variability in RUSLE C- and K-Factors 
	C-Factors (Land Cover) 
	K-Factors 

	Initial Reservoir Sedimentation Analysis 
	Effects of Land Cover (C-factor) Date on Sedimentation Estimates 
	Date Effects Pooled over All Watersheds 
	Date Effects within Watershed Subdominant Land Cover Group 

	Comparison of Averaged Estimated and Measured Reservoir Sedimentation 
	Between Subdominant Land Cover Groups 
	Between Reservoirs within Subdominant Land Cover Group 
	Across All Watersheds 

	Stream Bank Contributions—First-Order Adjustment 
	Watershed, Stream, Stream Corridor, and Within-Channel Variables 
	Watershed and Stream Variables 
	Stream Corridor Variables 
	Within-Channel Variables 

	Sediment Delivery Ratios (SDRs) 
	Watershed, Stream, Stream Corridor, and Within-Channel Variables as Predictors of NDRes 

	Conclusions 
	References

