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Abstract: The Hanjiang River Basin (HJRB) encompasses the Danjiangkou Reservoir, a critical water
source for the South-to-North Water Transfer project, the world’s largest such endeavor. Recent
studies have highlighted that increased vegetation growth in the HJRB has led to reduced water
availability in the region. To investigate the seasonal dynamics and spatial patterns of vegetation and
their association with the local climate, we employed Gross Primary Productivity (GPP), a pivotal
component of terrestrial carbon-water cycling, derived from the MODIS MOD17A2HGF dataset at a
500 m resolution. We combined this dataset with station meteorological data and the Standardized
Precipitation Evapotranspiration Index (SPEI) to explore the complex relationship between vegetation
productivity, climate fluctuations, and hydrothermal changes in the HJRB from 2000 to 2020. Our
findings reveal that the rising trend in vegetation productivity in the HJRB is primarily attributable
to climate warming. Different types of vegetation in the upstream and downstream areas exhibit
varying water requirements. While the region has not experienced prolonged widespread drought
conditions thanks to its excellent water conservation capabilities, there remains a certain level of
drought risk in the downstream area as the climate continues to warm. Moreover, variables such
as wind speed and sunshine duration significantly impact the hydrothermal conditions within the
river basin, consequently influencing vegetation productivity. This study elucidates the mechanisms
through which climate change affects vegetation productivity in the HJRB. Despite afforestation
efforts in the upstream region and climate warming leading to increased greening, there may be
implications for the water retention function of the HJRB. This understanding is crucial for water
resource management and ecosystem sustainability in the HJRB.

Keywords: gross primary productivity; climate change; spatiotemporal characteristics

1. Introduction

Vegetation plays a crucial role in Earth’s ecosystems, affecting carbon and water
cycles, soil conservation, biodiversity maintenance, climate regulation, air purification,
and food supply [1–4]. Previous research has indicated that vegetation is influenced by
various factors including climate change, water resources, natural disasters, and land
use changes [5–8]. Against the backdrop of global warming, frequent extreme climate
events, and rapid urbanization, monitoring vegetation dynamics and quantifying vegeta-
tion growth responses to climate change have become focal points of global and regional
research, contributing significantly to understanding land vegetation ecosystem growth
mechanisms and climate change adaptation [9,10].

The IPCC has pointed out the increasingly complex nature of climate change risks,
with multiple disasters converging and impacting various systems simultaneously [11].
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Moreover, under global warming conditions, El Niño events might become more frequent
and intense, while La Niña events could become more prolonged and severe, resulting in
a rise in extreme climate events [12,13]. In recent years, remote sensing technology has
facilitated large-scale, long-term monitoring of land vegetation dynamics, utilizing various
vegetation indices such as NDVI, EVI, LAI, and FVC to characterize surface vegetation
growth [14]. Gross Primary Productivity (GPP), the total amount of photosynthetic or-
ganic matter fixed by plants in photosynthesis per unit area or volume, plays a pivotal
role in ecosystem energy flow, material circulation, and carbon cycling [15]. Measuring
and monitoring GPP can offer insights into solar energy utilization efficiency, changes in
plant productivity, ecosystem productivity, and carbon cycling [16]. Therefore, GPP is a
crucial indicator in studies related to ecosystem ecology, global carbon cycling, and climate
change [17–19].

Since the 20th century, factors such as population growth, economic development,
and urbanization have led to large-scale agricultural cultivation, deforestation, and en-
vironmental pollution, causing degradation and disruption of vegetation ecosystems in
various regions [20–22]. However, in recent decades, numerous environmental protection
and ecological restoration measures have been implemented, contributing to the recovery
of degraded vegetation ecosystems [23–25]. As a result, ecological restoration projects have
been widely undertaken, leading to an increase in forest area and a noticeable improvement
in vegetation cover [26–28]. Nonetheless, the characteristics and dominant mechanisms of
vegetation changes vary across different regions [28–31]. Previous research has highlighted
temperature and precipitation as the most important climatic factors affecting vegetation
growth variations [7,29,32]. Nevertheless, apart from temperature and precipitation, other
climate factors also impact vegetation growth and distribution [31,33], such as solar ra-
diation conditions influencing photosynthesis and wind speed and humidity affecting
evaporation [34,35]. Although vegetation in most regions around the world is experiencing
an upward trend, research has indicated that, against the backdrop of rising temperatures,
water availability has become a significant limiting factor for vegetation growth [5,28].
Additionally, numerous studies have suggested that vegetation greening can influence
regional water resources [36–38].

The Hanjiang River Basin (HJRB), located in central China, serves as the core water
source for the Danjiangkou Reservoir, which is a crucial component of the South-to-North
Water Diversion Project, the largest water diversion project in the world. Thanks to global
warming and ecological engineering, the HJRB has undergone significant greening over
the past few decades [39–41]. Research on the vegetation in the HJRB has indicated that
precipitation and temperature are the primary climatic factors affecting NDVI changes.
However, other climate factors such as wind speed, sunshine duration, and potential evapo-
transpiration, which directly or indirectly influence regional water and thermal conditions,
and consequently impact vegetation growth and distribution, have been overlooked [35].
Recent studies have pointed out that vegetation greening has affected the availability of
water resources in the HJRB [38]. Given that GPP influences water resources supply, water
cycling, and water source conservation [15], it is imperative to investigate the mechanisms
behind changes in vegetation productivity exacerbated by climate change. Moreover, due
to the influence of monsoon climate, there are significant differences in precipitation, tem-
perature, and various climate indicators between different seasons. Therefore, to gain an
in-depth understanding of the impact of climate change on ecosystems, it is crucial to study
the seasonal variations in vegetation and how vegetation productivity responds to these
seasonal climate changes [42–45]. This provides essential references for devising climate
change adaptation strategies and ecological conservation.

Numerous studies have delved into the relationship between vegetation and its in-
fluencing factors [7,29,46,47], with several specifically addressing vegetation dynamics in
the HJRB [39–41]. However, research focusing on the seasonal characteristics of vegetation
dynamics while considering multiple climate factors and drought conditions remains rela-
tively scarce. We selected the HJRB as our study area due to its unique water conservation
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function. Moreover, the pronounced differences between the upstream and downstream
regions of the HJRB, characterized by diverse vegetation and vertical zones, ensure the
representativeness of our study and offer insights for other similar water conservation areas.
Thus, this study analyzes the spatiotemporal characteristics and response mechanisms
of GPP in the HJRB from 2000 to 2020. The main objectives of this study are as follows:
(1) to evaluate the seasonal vegetation productivity in the HJRB; (2) to explore the response
mechanisms of GPP to climate factors; (3) to quantify the contributions of climate change to
GPP variations in the HJRB. This research reveals the trends in GPP changes at the regional
level on both interannual and seasonal scales, along with the response mechanisms to
climate change. It holds significant importance for preserving the ecological environment
of the HJRB and other similar areas.

2. Materials and Methods
2.1. Study Area

The Hanjiang River, with a total length of 1567 km, flows through the provinces of
Shaanxi and Hubei in China and covers a total basin area of approximately 15.9 × 104 km2,
making it one of the largest tributaries of the Yangtze River (Figures 1 and 2). The HJRB
experiences a subtropical monsoon climate, characterized by abundant and diverse water
resources. The annual precipitation varies from 700 mm to 1100 mm, with 70–80% occurring
during the rainy season from May to September [38]. The upper reaches of the Hanjiang
span the provinces of Qinghai, Gansu, Sichuan, and Shaanxi, featuring mountainous and
hilly terrains, narrow valleys, rugged gorges, and intricate river networks. The down-
stream main stem flows predominantly through Hubei Province, forming a floodplain
with interconnected rivers and lakes, fostering rich water resources and diverse wetland
ecosystems. Furthermore, the downstream region is the core area of the Hanjiang Economic
Belt, encompassing vital transportation hubs and densely populated zones, thus holding
significant influence over the socio-economic development of central China.
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Figure 2. Distribution of LULC in the HJRB (Converted Land represents areas where changes in
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2.2. Data Sources
2.2.1. GPP

The GPP data used in this study were sourced from the MODIS MOD17A2HGF
version 6 product (https://lpdaac.usgs.gov/products/mod17a2hgfv006/, accessed on
6 October 2022). This product is based on the concept of radiation use efficiency and
calculates 8-day composite values of GPP. The temporal coverage spans from 2000 to 2020,
with a spatial resolution of 500 m. The data underwent preprocessing steps including
projection, cropping, and data format conversion to obtain monthly GPP data for the HJRB
in this study.

2.2.2. Meteorological Data

The meteorological data utilized in this study were obtained from the National Me-
teorological Science Data Center (http://data.cma.cn/, accessed on 3 December 2022).
The dataset includes precipitation (Pre), temperature (Tem), sunshine hours (SSD), and
wind speed (WS), spanning from 2000 to 2020. Monthly values of climate factors were
obtained through data aggregation and calculation. Potential evapotranspiration (PET)
was computed using the Penman-Monteith method [48,49]. Furthermore, we used the
Standardized Precipitation Evapotranspiration Index (SPEI), which characterizes drought
at multiple scales, with SPEI1, SPEI3, and SPEI12 representing drought severity at monthly,
seasonal, and annual scales in the study area, respectively. To ensure data consistency,
the spatial resolution of each climate factor was interpolated to match the same spatial
resolution as GPP using ANUSPLINE [50].

2.2.3. Land Use and Land Cover (LULC)

The LULC data employed in this study were derived from MODIS MCD12Q1 (https:
//lpdaac.usgs.gov/products/mcd12q1v006/, accessed on 12 October 2022). This dataset
has a spatial resolution of 500 m and covers the period from 2001 to 2020. The International
Geosphere-Biosphere Programme (IGBT) classification data from MCD12Q1 were utilized
in this study (Figure 2 and Table 1).

https://lpdaac.usgs.gov/products/mod17a2hgfv006/
http://data.cma.cn/
https://lpdaac.usgs.gov/products/mcd12q1v006/
https://lpdaac.usgs.gov/products/mcd12q1v006/
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Table 1. IGBP classifications along with their abbreviations (only includes LULC types in the HJRB).

Name ID Name ID

Deciduous Needleleaf Forests DNF Grasslands GRA
Deciduous Broadleaf Forests DBF Permanent Wetlands PWL
Evergreen Broadleaf Forests ENF Croplands CRO

Mixed Forests MF Urban and Built-up Lands URB
Open Shrublands OSH Cropland/Natural Vegetation Mosaics CVM
Woody savannas WSA Barren Sparse Vegetation BSV

Savannas SAV Water Bodies WAT

2.3. Methods

Figure 3 shows the processing flowchart of the data used in this study, along with the
methodology employed and the workflow of the analysis results.
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2.3.1. Theil-Sen Trend Analysis

The Theil-Sen trend analysis was applied pixel-wise to analyze the trend of GPP in the
study area during 2000 to 2020. It is a non-parametric statistical approach that estimates
the trend in an entire time series by calculating the median of the slopes between all pairs
of points [51]. One advantage of this method is that it does not require the sample to follow
a specific distribution and is not affected by outliers [52,53]. The formula is as follows:

β = Median
( xj − xi

j− i

)
, ∀j > i (1)

where β represents the GPP variation trend, i and j represent the time index, xj and xi
denote the GPP values at times i and j, respectively. The Mann-Kendall test is employed to
assess the significance of trends [54].

2.3.2. Partial Correlation Analysis

We employed partial correlation analysis to elucidate the relationship between each
climate variable and variations in GPP. Partial correlation analysis can eliminate the effects
of covariates and focus solely on the correlation between the two variables of interest [55].
Specifically, pixel-wise partial correlation analysis was conducted to assess the response
mechanism and intrinsic connections of GPP to climate variables in the HJRB from 2000
to 2020.

Rxy·z =
rxy − rxzryz√

(1− r2
xz)−

(
1− r2

yz

) (2)
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where Rxy·z represents the partial correlation coefficient between x and y, z represents
control variables; rxy represents the correlation coefficient between x and y; rxz represents
the correlation coefficient between x and z; ryz represents the correlation coefficient between
y and z. The significance of partial correlation is determined through t-tests.

2.3.3. Relative Contribution Identification

We applied the SHapley Additive exPlanations approach (SHAP) to further explore
the relative contribution of each climate factor. SHAP, inspired by Shapley values and based
on game theory, can explain the magnitude of influence of each feature in machine learning
models [56]. The SHAP approach was applied to assess the relative contribution of climate
factors under different vegetation types in a linear regression model. This approach ensures
equitable treatment of all features’ contributions and mitigates the influence of variable
order. It is commonly used for explaining various machine learning models [57,58].

3. Results
3.1. Vegetation Productivity Characteristics in the HJRB from 2000 to 2020

Figure 4a depicts the spatial distribution of GPP in the HJRB. The 21-year average of
GPP shows the upstream was higher compared to the downstream, and both the southern
and northern sides of the basin were higher compared to the valley within the basin. The
trend of GPP in the HJRB from 2000 to 2020 is illustrated in Figure 4b, the overall distribution
of GPP trends shows higher values in the valley within the HJRB, while the downstream
areas exhibit a generally lower trend. Approximately 97.87% of the region demonstrates an
increasing trend, with 44.62% of the area exhibiting a significant increasing trend.
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During the period from 2000 to 2020, the average GPP in the HJRB was 1095.61 gCm−2yr−1,
showing a fluctuating upward trend of 12.44 gCm−2yr−1. Figure 5 illustrates the temporal
variations in GPP across various vegetation types. In the case of forests, including DBF, MF,
and WSA, GPP is significantly higher compared to other vegetation types. The average GPP
of DBF in the HJRB during 2000 to 2020 was 1266.97 gCm−2yr−1, higher than the other veg-
etation types. Grassland had the lowest mean GPP with an average of 804.97 gCm−2yr−1.
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Furthermore, we conducted an analysis of multi-year averages of GPP and climate
factors to investigate the seasonality of vegetation productivity in the HJRB, as illustrated in
Figure 6. GPP in the HJRB attains its peak in August, with consistently higher values in the
upstream region. However, from January to April, downstream GPP slightly exceeds that
of the upstream. A noticeable deceleration in the growth of downstream GPP is observed
from April to June, while a similar deceleration occurs in the upstream region in June.
The seasonal trends of GPP generally align with those of climate factors (Tem, Pre, PET,
SSD), rising in conjunction with these factors. Unlike GPP, the peak values of climate
factors are recorded in July. WS displays prominent seasonality, steadily increasing from
September to October, reaching its zenith in March to April of the subsequent year, and
then gradually decreasing. Conversely, the SPEI drought index does not exhibit strong
seasonality. In summary, the primary climatic distinction between the upstream and
downstream regions in the HJRB can be attributed to temperature fluctuations associated
with changes in elevation.

3.2. Response of Vegetation Productivity to Climate Factors

To investigate the impact of climate factors on vegetation productivity in the HJRB
over the study period, we initially conducted partial correlation analysis to examine the
relationship between multi-year averages of GPP for various vegetation types and climate
factors in the HJRB (Figure 7). The findings revealed that GPP in different vegetation
types within the HJRB was primarily influenced by Tem and PET. Pre exhibited a strong
correlation mainly in the upstream regions, while WS and SSD showed negative correlations
in both upstream and downstream areas. Drought had a relatively minor impact on GPP in
the HJRB. GPP demonstrated a negative correlation with SPEI1 and a positive correlation
with SPEI3 and SPEI12, with SPEI3 exerting the most significant overall influence among
the SPEIs.
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Figure 6. Seasonal variations in the multi-year average of GPP and climate factors in the HJRB:
(a) GPP, (b) Tem, (c) Pre, (d) PET, (e) SSD, (f) WS, (g) SPEI1, (h) SPEI3, (i) SPEI12. Shaded areas
represent standard deviations, with red and blue indicating the upstream and downstream of HJRB,
respectively.

Additionally, we performed spatial partial correlation analyses between GPP and
climate factors (Figure 8). Our findings reveal spatial variations in the influence of climate
variables on vegetation productivity in the HJRB. Within the HJRB, 99.40% of the area
displays a positive correlation with Tem, with 90.68% of this region exhibiting statistically
significant positive correlations. Similarly, PET, SPEI3, and Pre demonstrate positive corre-
lations in over 80% of the HJRB (90.34%, 94.50%, and 85.68%, respectively), with 46.42%,
56.20%, and 33.46% of these areas showing statistically significant positive correlations.
In contrast, only 70.99% of the region displays a positive correlation with SPEI12, and
just 7.41% of this area exhibits statistically significant positive correlations. GPP exhibits
negative correlations with SPEI1, WS, and SSD in 77.44%, 69.44%, and 67.18% of the area,
respectively, with statistically significant areas accounting for 9.67%, 17.18%, and 32.35%,
respectively. In summary, the correlations between SSD, SPEI1, and SPEI12 with GPP are
not statistically significant (significant areas <15%), while Tem, SPEI3, and PET display
significant correlations (significant areas of 90.69%, 56.22%, and 44.92%, respectively). Pre
and WS exhibit strong correlations only in specific regions.
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To investigate how vegetation productivity responds to climate factors, we analyzed
the temporal patterns of mean vegetation productivity in the HJRB from 2000 to 2020 in
relation to changes in climate variables (Figure 9). Our study reveals distinct response
patterns of GPP to various climate factors. Specifically, as Pre, Tem, PET, and WS increase,
GPP gradually rises, indicating a positive influence. However, once it reaches its peak, GPP
begins to exhibit a gradual decline. In contrast, SSD, initially showing a negative impact,
stabilizes over time. In terms of the SPEI, we observed similar increasing effects on GPP
for both SPEI3 and SPEI12. It is worth noting that GPP remains at lower levels when both
SPEI3 and SPEI12 are low.
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3.3. Contribution of Climate Factors to Vegetation Productivity

We quantified the relative contribution of each climate factor to different vegetation
types in their linear models using SHAP (Figure 10). The analysis results indicate that
Tem and PET have significant impacts on GPP variations in the HJRB. Consistent with the
partial correlation analysis, the contribution of Pre to GPP variations is significantly higher
in the upstream compared to the downstream. Tem contributes over 40% to DBF, MF, and
WSA in the upstream (44.65%, 45.05%, and 42.53% respectively) and over 40% to DBF and
MF in the downstream (47.23% and 40.55% respectively). PET contributes over 40% to
SAV in the upstream (42.27%) and to SAV, GRA, and CRO in the downstream (43.67%,
40.74%, and 56.30%, respectively), while it is close to 40% in WSA and CVM (39.99% and
38.57%, respectively). Notably, Pre only contributes over 10% in GRA in the upstream
(11.86%). The contribution of SPEIs is limited in all vegetation types. Comparatively, SPEI1
and SPEI3 have higher contribution rates than SPEI12, indicating that vegetation produc-
tivity in the HJRB is more sensitive to short-term drought conditions. The contribution
rates of SSD and WS show minor differences between upstream and downstream. WS
contributes significantly (>5%) in forest (DBF and MF) and just over 5% in GRA among
other vegetation types. SSD contributes between 5 and 10% in all vegetation types with
minimal differences.
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4. Discussion
4.1. Seasonal Pattern of Vegetation Productivity in the HJRB

From 2000 to 2020, the GPP in the HJRB displayed a significant increase, consistent
with previous research on NDVI in the same region [39–41]. The spatial distribution of
GPP in the HJRB revealed higher values upstream than downstream, with elevated values
in the northern and southern regions compared to the valley. However, the patterns of GPP
growth did not follow the same distribution; significant growth areas were concentrated
near the valley, the middle reaches close to the Danjiangkou Reservoir, and in the down-
stream mountainous regions, including certain farmland areas. Located in a subtropical
monsoon region with average annual temperatures above 0 ◦C, the HJRB experiences
pronounced annual temperature fluctuations. Precipitation concentrates between June and
September, resulting in distinct seasonal variations. The seasonal trend of GPP primarily
depends on climate factors such as temperature, precipitation, PET, and SSD. In contrast to
climate factors, GPP reaches its peak in August, while most climate factors peak in July,
indicating a lag in the response of GPP to climate factors. Furthermore, a slowdown in the
growth trends of GPP is observed in both the upstream and downstream regions of the
HJRB in June and from April to June. This slowdown is mainly attributed to winter cultiva-
tion practices in the upstream Hanzhong Plain, HJRB Valley, and downstream Jianghan
Plain and Nanyang Basin, where winter crops like rice and wheat are harvested. The down-
stream area, characterized by extensive cropland, exhibits more significant and prolonged
slowdown trends compared to the upstream. Despite significant variations in seasonal
precipitation within the HJRB, the overall seasonal drought conditions remain relatively
stable. As the temporal scale increases, the seasonal variation of the SPEI index in the HJRB
becomes more stable, with the average SPEI12 remaining steady around 0 throughout the
year. This indicates that despite the evident temperature rise over the past 21 years, the
long-term hydrometeorological conditions in the HJRB have remained relatively stable.
SPEI1 and SPEI3 are lower in February to May compared to other months, suggesting a
lack of spring precipitation that affects vegetation growth.
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4.2. Response Mechanisms of Vegetation Productivity to Climate Change in the HJRB

In the context of global warming, the HJRB also experienced a warming trend, par-
ticularly in the central part of the basin (Figure 11). Despite this warming trend, there
was no significant increase in Pre in the HJRB. In fact, the northeastern part of the down-
stream basin, specifically the Nanyang Basin, experienced a significant decrease in Pre,
exacerbating the region’s aridity. As a result, the increased Tem and SSD led to a signif-
icant increase in PET near the Nanyang Basin. However, despite the gradual growth of
GPP in the downstream Nanyang Basin, it still exhibited a significant upward trend. We
hypothesize that this is mainly attributable to the continuous enhancement in agricultural
productivity in the downstream over the past centuries, along with extensive irrigation
in the region, which compensated for the regional aridity. Consequently, a significant
negative correlation was observed between Pre and GPP in the Nanyang Basin (Figure 8).
Regarding the impact of drought on GPP in the HJRB, a previous study indicated that
the basin experienced relatively severe droughts in 2001–2002, 2006–2008, and 2012–2014.
During our study period (2000–2020), reduced GPP was observed in 2001, 2011, 2014, 2017,
and 2019 (Figure 5), suggesting that drought primarily influenced short to medium-term
GPP variations in the HJRB. In the long term, the water conservation functions of the
upstream forests and the Danjiangkou Reservoir in the middle reaches ensured a stable
water supply for the HJRB. Furthermore, the study observed that despite significant differ-
ences in seasonal precipitation within the HJRB, the seasonal drought conditions remained
relatively stable. As the temporal scale increased, the seasonal variation of the SPEI in the
HJRB became more stable, with SPEI12 remaining around 0 throughout the year (Figure 6).
This indicates that despite the evident temperature rise in the study period, the regional
long-term hydrometeorological conditions in the HJRB have remained relatively stable.
SPEI1 and SPEI3 were lower from February to May compared to other months, suggesting
a lack of spring precipitation affecting vegetation growth. Additionally, the study indicated
that the mISDI in the downstream and upstream valleys of the HJRB exhibited a significant
downward trend [59]. This aligns with our trend analysis of SPEIs, illustrating that, in
the context of continuous warming temperatures, there is a significant drought risk in the
downstream HJRB, particularly during the relatively dry spring season. This also explains
why croplands in the upstream HJRB have a significant correlation with precipitation,
while in the downstream, the correlation is not significant, indicating that downstream
croplands rely more on irrigation than precipitation.

Among the various climate factors, WS and SSD significantly influence variations in
GPP in the HJRB. A study focusing on the global vegetation response to WS variations
suggests that decreased WS in water-limited areas can reduce vegetation transpiration rates,
thus limiting vegetation growth [60]. Conversely, in wind-resistant forest areas, increased
WS can enhance material exchange and promote vegetation growth. Similar patterns were
observed in the HJRB. In the mid-high altitude forest areas of the basin, the decline in
WS reduced regional vegetation transpiration rates, impacting material exchange in these
areas. Furthermore, a trend of increasing WS from October to the following March was
observed in the HJRB, while WS continued to decrease during the summer when vegetation
activity is at its peak. This undoubtedly affected regional vegetation material exchange,
resulting in a significant overall negative correlation primarily observed in forested areas.
The region’s SSD experienced a considerable decrease, which would impact solar radiation
and consequently affect vegetation photosynthesis. Typically, a positive correlation is
expected when assessing the impact of SSD and Pre on vegetation [31,33]. However, within
the HJRB, a widespread negative correlation has been observed. We speculate that this
is primarily due to significant reductions in SSD and Pre in specific regions of the HJRB,
despite an overall substantial increase in GPP. Additionally, vegetation response to climate
factors may have a certain lag [33,46,47], and neglecting this lag may result in some bias.
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After quantifying the contributions of climate factors to GPP changes using SHAP,
we found that the contributions of Tem and PET were significantly higher than those
of other climate factors. Moreover, PET dominated vegetation land cover types with
weaker water storage capacity, such as CRO and SAV, while Tem played a predominant
role in land cover types with stronger water storage capacity, such as DBF and MF. The
warming trend undoubtedly led to an increase in PET in the HJRB. However, actual
evapotranspiration depends on regional water availability. We speculate that in these
land cover types where vegetation has a high demand for water but weak water storage
capacity, they can obtain sufficient water supply under the premise of overall warming. This
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phenomenon is more pronounced in agricultural fields relying on artificial irrigation and
also affects the mid-high altitude forests relying mainly on natural precipitation. Therefore,
although climate warming governs vegetation productivity changes in the HJRB, it is
simultaneously constrained by regional water availability [5].

4.3. Land Use Change Patterns in the HJRB

We conducted an analysis of the land use changes in the HJRB over the past 20 years
(Figure 12). The results revealed a 19.52% increase in DBF in the HJRB from 2001 to
2010, and a subsequent 6.01% increase from 2010 to 2020. This growth can be primarily
attributed to large-scale afforestation efforts in the upper reaches of the HJRB, leading to
a notable increase in forest density. In particular, the conversion of WSA to DBF resulted
in a significant enhancement of GPP in specific upper reaches [39]. Additionally, the
cultivated land in the HJRB demonstrated a shift from an increase to a decrease. The
area of cultivated land expanded by a total of 5.86% between 2001 and 2010, but saw a
decrease of 6.84% in the following decade. This decrease was mainly concentrated in
the forest-agriculture transitional zones in the middle and upper reaches of the basin.
Consistent with urbanization trends, urban land in the HJRB continuously expanded over
the past two decades, marking a 17.49% increase between 2001 and 2020. These areas
are primarily located around established urban zones, contributing to significant GPP
degradation around major urban clusters in the basin. This aligns with previous research
findings [39,41].
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4.4. Limitations

The impact of climate on vegetation productivity is highly complex, involving lag
effects of climate factors, extreme climate events, regional changes in water resources, and
carbon dioxide concentration. All of these factors exert direct or indirect influences on
vegetation growth processes [6,61–63]. In addition, human activities also contribute to
vegetation dynamics through various factors, such as population and livestock increases,
urban expansion, afforestation, and reforestation [7,64]. Therefore, it is necessary to fur-
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ther investigate the dynamic changes of GPP and its influencing factors. Although the
SHAP analysis was applied to a multivariate linear model, an increasing body of research
highlights the strong nonlinear characteristics in vegetation and climate changes. Thus,
linear-based estimations inevitably run the risk of overestimating or underestimating the
significance of factors. The application of nonlinear models can better capture the rela-
tionship between vegetation and climate changes. Furthermore, an accumulating effect of
climate is increasingly recognized as a pivotal factor in the influence of climate on vege-
tation [6,46,65,66]. Consequently, future studies should comprehensively consider other
environmental factors that impact vegetation dynamics, deeply explore the physiological
and phenological features of GPP in the HJRB, and establish physical models to describe
the processes by which driving factors affect it.

5. Conclusions

In this study, we investigated the response mechanisms of vegetation productivity to
climate change in the HJRB using GPP data and meteorological station datasets, including
SPEI, spanning from 2000 to 2020. The vegetation productivity in HJRB exhibited obvious
spatial heterogeneity, with pronounced vegetation activity concentrated in the upstream
region. Over the past 21 years, most areas of the HJRB have shown an increasing trend
in vegetation productivity, with the highest increases observed in the middle reaches.
Vegetation productivity was primarily influenced by Tem, while the water use in the
upper and lower reaches was dominated by precipitation and irrigation, respectively.
Additionally, the varying contributions of PET in different vegetation types revealed
distinct water requirements. Furthermore, land use changes in the HJRB reflected trends
such as afforestation, reforestation, and urban expansion. This study highlights that water
availability to some extent influences the greening trend of vegetation in the HJRB. Despite
the abundant water resources in the HJRB, there remains a certain level of drought risk
in the context of ongoing warming. Future research employing more refined carbon-
water coupling models can quantitatively assess the relationship between water yield and
vegetation greening in the context of climate warming, providing valuable guidance for
water resource conservation and ecosystem management in the HJRB region.
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