
Citation: Matarira, D.; Mutanga, O.;

Naidu, M.; Vizzari, M. Object-Based

Informal Settlement Mapping in

Google Earth Engine Using the

Integration of Sentinel-1, Sentinel-2,

and PlanetScope Satellite Data. Land

2023, 12, 99. https://doi.org/

10.3390/land12010099

Academic Editors: Tomasz Noszczyk

and Abreham Berta Aneseyee

Received: 23 November 2022

Revised: 24 December 2022

Accepted: 25 December 2022

Published: 28 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

land

Article

Object-Based Informal Settlement Mapping in Google Earth
Engine Using the Integration of Sentinel-1, Sentinel-2, and
PlanetScope Satellite Data
Dadirai Matarira 1, Onisimo Mutanga 2 , Maheshvari Naidu 3 and Marco Vizzari 4,*

1 School of Agriculture, Earth and Environmental Science, University of KwaZulu-Natal, P/Bag X01,
Scottsville, Pietermaritzburg 3209, South Africa

2 Department of Geography, University of KwaZulu-Natal, P/Bag X01, Scottsville,
Pietermaritzburg 3209, South Africa

3 Department of Humanities, School of Social Sciences, University of KwaZulu-Natal,
Durban 4041, South Africa

4 Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy
* Correspondence: marco.vizzari@unipg.it; Tel.: +39-075-585-6059

Abstract: Mapping informal settlements’ diverse morphological patterns remains intricate due to
the unavailability and huge costs of high-resolution data, as well as the spatial heterogeneity of
urban environments. The accessibility to high-spatial-resolution PlanetScope imagery, coupled
with the convenience of simple non-iterative clustering (SNIC) algorithm within the Google Earth
Engine (GEE), presents the potential for Geographic Object-Based Image Analysis (GEOBIA) to
map the spatial morphology of deprivation pockets in a complex built-up environment of Durban.
Such advances in multi-sensor satellite image inventories on GEE also afford the possibility to
integrate data from sensors with different spectral characteristics and spatial resolutions for effective
abstraction of informal settlement diversity. The main objective is to exploit Sentinel-1 radar data,
Sentinel-2 and PlanetScope optical data fusion for more accurate and precise localization of informal
settlements using GEOBIA, within GEE. The findings reveal that the Random Forests classification
model achieved informal settlement identification accuracy of 87% (F-score) and overall accuracy
of 96%. An assessment of agreement between observed informal settlement extents and ground
truth dimensions was conducted through regression analysis, yielding root mean square log error
(RMSLE) = 0.69 and mean absolute percent error (MAPE) = 0.28. The results demonstrate reliability of
the classification model in capturing variability of spatial characteristics of informal settlements. The
research findings confirm efficacy of combined advantages of GEOBIA within GEE, and integrated
datasets for more precise capturing of characteristic morphologic informal settlement features. The
outcomes suggest a shift from standard static conventional approaches towards more dynamic,
on-demand informal settlement mapping through cloud computing, a powerful analysis platform
that simplifies access to and the processing of voluminous data. The study has important implications
for identifying the most effective ways to map informal settlements in a complex urban landscape,
thus providing a benchmark for other regions with significant landscape heterogeneity.

Keywords: Google Earth Engine; simple non-iterative clustering; object-based image analysis;
informal settlements; texture features; mapping

1. Introduction

Unprecedented processes of urbanization, especially in countries of the global south,
result in highly dynamic urban patterns, characterized by dominance of informal urban de-
velopment [1]. Being inexorably a reflection of the “urbanization of poverty” [2], informal
settlements are characterized by dense housing, made up of sub-standard, heterogeneous
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construction materials, which, when coupled with their characteristic location on flood-
vulnerable areas, exacerbate residents’ risk and vulnerability to natural hazards such as
flood events [3]. With this type of housing playing host to approximately one billion
dwellers globally [4], the United Nations has prioritized informal settlement improvements
in the 2030 Sustainable Development Goals [5,6]. However, despite these stipulated targets,
informal settlements continue to grow [6]. Ameliorating the conditions of deprivation in in-
formal settlements requires up-to-date base maps with comprehensive information on their
spatial locations and dimensions [3], which is mostly inconsistent, generalized or simply
non-existent [7]. Given the dynamic nature of these deprived areas [8], there is an exigency
for techniques that can provide rapid and reliable information on their morphological
layouts. To this end, Belenok et al. [9] have noted a need for the constant improvement
of methods that assess the current state of cities’ anthropogenic landscapes in view of
potential environmental urbanization consequences. In light of this, the understanding
of informal settlements’ levels of marginalization, as they relate to natural hazards and
climate change risk, requires precise and comprehensive identification of their spatiality.

Remote sensing provides ease of spatial analytics [10], and its synoptic and repetitive
capabilities afford updated, consistent and comprehensive geospatial information with
great thematic detail, especially in complex urban environments [11]. Exploiting the conve-
nience of high-resolution sensors such as GeoEye, IKONOS, QuickBird and WorldView, con-
certed research efforts have been made to map informal settlements [12–15]. However, the
intricacy of the semantic abstraction of informal settlements has been emphasized [16–18].
Firstly, the cost-prohibitive nature and, sometimes, unavailability of high-resolution earth
observation (EO) data [7] is a major drawback in promoting efforts for the accurate delin-
eation of urban deprived areas. Secondly, the inherent variations in informal settlement
morphological appearances, either within or across geographical locations [19], confound
the task. Moreover, fragmented urban landscapes are difficult to represent using a pixel-
based classification approach where only spectral values are concerned [16], making char-
acterization of informal settlement morphologic differences complex [13,20].

Recently, object-based image analysis (OBIA) or geographic object-based image analy-
sis (GEOBIA) has been applied more frequently in capturing heterogeneity in fragmented
urban landscapes for informal settlement identification [5,6,16–18]. The strength of object-
oriented approaches (OOA) for informal settlement analysis is in its capability to incor-
porate spectral, spatial and contextual characteristics of an image, which intensify the
potential to capture informal settlement morphological diversities [17,21]. Kohli et al. [17]
used OBIA to map informal settlements in Pune, India, using Quickbird imagery, and
yielded overall accuracy of 80.8%. In another study, Fallatah et al. [22] mapped informal
settlements in Jeddah, Saudi Arabia, and distinguished informal and formal areas with
an overall accuracy of 83%. In a further progression of this work, taking advantage of
machine learning, they synergistically combined with OBIA to improve informal settlement
mapping in Saudi Arabia, achieving enhanced overall accuracy of 91% from GeoEye-1
imagery [16]. An attempt to integrate data from two sensors for OBIA was presented by
Pratomo et al. [5], combining GeoEye-1 and Landsat data in the Middle Eastern environ-
ment, achieving overall Random Forests (RF) classification accuracy of 95%. These past
efforts focused on the ontological framework suggested by Kohli et al. [23] using a range of
informal settlement indicators for segmentation at different scale levels. In that regard, Fal-
latah et al. [22] reported the need for expert knowledge in transferring informal settlement
indicators into local knowledge. In addition, the popularly used eCognition software, for
segmentation, requires a high level of image analysis skill in translating such indicators
into informal settlement identification [22]. In addition, the framework involves different
levels of rigorous segmentation as well as numerous processing steps for the classification
refinement at different spatial levels [18]. Sometimes, segmentation and classification are
performed in two different software [16]. Fallatah et al. [16] described the whole process as
time-consuming and cumbersome. In fact, numerous processing steps enforce a weighty
computational and storage burden on local computation platforms.
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Google Earth Engine (GEE), with its engrained segmentation algorithms, has presented
potential solutions to long-standing challenges of complex segmentation and classification
steps encountered when using classical image processing softwares. Access to advanced
algorithms that are highly parallelized behind the scenes [24] presents ease of analysis and
classification, as well as for visualization of outputs [25]. Apart from being a powerful
platform for image collection and organisation [26], GEE provides an application program
interface for summoning, processing, and stacking image input data, running all analyses
in parallel [27]. Within GEE, three segmentation algorithms can be implemented, which
include K-means, G-means, and Simple Non-Iterative Clustering (SNIC) [28]. According to
Achanta and Susstrunk [29], SNIC is computationally cheaper and uses less memory than
the K-means and G-means. The feasibility of the SNIC algorithm for object-based mapping
applications has been investigated [25,30–32]. SNIC has been successfully employed for
Land Use/Land Cover (LULC) mapping using PlanetScope (PL), Sentinel-2 (S2), and
Sentinel-1 (S1) data in central Brazil [32], for winter wheat mapping, using S2 in China [28]
and for crop mapping in China, using S1 data [30]. Significant improvements in mapping
accuracy have also been reported when the OBIA approach was integrated with Grey
Level Co-occurrence Matrix (GLCM) texture features within GEE [25,32–34]. The GLCM
algorithm permits the calculation of image textural indices based on second-order statistics
for image texture analysis [35]. According to Kohli et al. [21], a texture analysis approach is
critical in discriminating between formal and informal areas, which are sometimes difficult
to distinguish using the OBIA technique.

The advent of GEE has also increased data accessibility through the engrained abun-
dant imagery archives, for example S1 and S2, Landsat and MODIS [36]. Of late, the
availability of high resolution PL data within GEE has made OBIA implementable in the
mapping of heterogeneous terrestrial environments [32]. To take advantage of variations
in spectral or spatial domains of sensors available within the GEE platform, GEE presents
opportunities for data fusion [37]. Whilst optical sensors, for example S2, are sensitive to
the reflectivities of ground targets [38], SAR sensors (e.g., S1) are reactive to their structural,
textural, and dielectric characteristics [39]. Amani et al. [40] added that SAR data can
provide more differentiable land cover information than multi-spectral data. The syner-
gistic use of different sensors such as S1, S2, and PL EO data has offered opportunities
for different mapping applications, especially in highly dynamic, fragmented landscapes.
For instance, Mahdianpari et al. [41] integrated S2 and S1 for wetland mapping. Similarly,
Tavares et al. [42] combined S2 and S1 for urban LULC mapping in Brazil. Vizzari [32] and
Rao et al. [43] compared the performances of PL, S2 and S1 for LULC and crop mapping, re-
spectively. The authors demonstrated the benefits of integrating data from all three sensors,
yielding accuracy levels of 91% and 85%, respectively. Research endeavors that incorpo-
rated PL imagery reported improved classification of subtle features [32,34,43], presenting
opportunities for semantic abstraction of small deprivation pockets, identification of which
is inherently difficult [5]. According to Bwangoy et al. [44], classification of multi-source
satellite data yields higher classification accuracy relative to the accuracy achieved by a
single source data. Supporting the argument, Liu et al. [45] put forward that the integration
of two complementary datasets has the potential to minimize classification uncertainity.

Owing to this background, the study sought to integrate data from PL, S2, and S1 and
perform GEOBIA, within GEE, to map spatial heterogeneity of morphological informal
settlements in a geographically diverse Durban landscape, South Africa. To the best of the
authors’ knowledge, there has not been any study that has exploited OBIA on PL imagery
for capturing structural heterogeneity of informal settlements. Most importantly, GEOBIA,
comprising integration of object segmentation and object textural analysis, has not been
exploited for informal settlement analysis within the GEE environment.

The main objectives of the study are to: (a) develop an improved, reliable and repro-
ducible object-based classification workflow, within GEE, for capturing high morphological
variability in an informal settlement landscape; (b) investigate SNIC based OBIA, within
GEE, in accurately capturing subtle deprivation pockets in a heterogeneous landscape; and
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(c) exploit the potential of multiple datasets to synergistically enhance semantic abstraction
of morphologically diverse areas of deprivation in a fragmented, built-up area of Durban.

2. Materials and Methods
2.1. Study Area

The current research was carried out in part of Durban Metropolis, South Africa
(Figure 1). Located in the province of KwaZulu-Natal (Figure 1a), the metropolitan area
stretches from between longitudes 30◦56′30′′ E and 30◦59′30′′ E, and latitudes 29◦47′30′′ S
and 29◦50′30′′ S covering area of 1182 ha. According to Williams et al. [46], Durban is
characterized by an estimated population of 3.6 million, ranking third in South Africa
in terms of population size. The topography of the area is steep and highly undulating,
ranging from about 30 m to 120 m above sea level. Most of the informal settlements are
located on steep terrain, geometry that contributes to intricacies in capturing uniqueness in a
morphologically diverse informal settlement landscape. Generally, Durban is characterized
by a humid subtropical climate with mean annual precipitation exceeding 1000 mm per
annum [46]. Mild, dry winters and warm, wet summers also characterize Durban. Because
of the accommodation crisis, informal settlements present the main form of inadequacy in
terms of housing in the city of Durban with, approximately, 75 percent of the metropolitan
gross housing backlog of 305,000 units representing informal dwellings [47]. Durban
is characterized by varied morphological patterns, ranging from lining traffic arteries,
occupying open spaces, to being in proximity to river networks. Most of the roads along
which the informal settlements are situated also follow a steep topography and often lead
down to Umgeni River, making the residents vulnerable to flood hazards during extreme
climatic conditions [48]. Additionally, the characteristic location of the informal settlements
on steep slopes, sometimes characterized by fragile soils, contributes to their vulnerability
to landslides.

Figure 1. Study area selected in KwaZulu-Natal province (a), within Durban Metropolis (b), South
Africa, (c) is the overview of the area obtained with an RGB PlanetScope imagery, in UTM/WGS84
plane coordinate.
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2.2. Methodology

The workflow of this approach mainly included image collection, pre-processing, and
composition, image segmentation, and texture feature extraction, RF classification, and
accuracy assessment (Figure 2). Firstly, PL, S2, and S1 images were collected for the chosen
period and study area. Secondly, segmentation of the image into clusters was performed
using SNIC algorithm. Thirdly, GLCM algorithm was computed for the calculation of
texture metrics. Fourth, object-based classification was performed using RF protocol. The
confusion matrix was finally computed for accuracy assessment. The GEE platform was
utilized for implementation of all the mentioned procedures.

Figure 2. Workflow chart of the methodology.

2.2.1. Data Collection, Pre-Processing, and Image Composition

According to Tassi et al. [33], an important step in LULC classification within GEE
is the generation of the base composite dataset. The study utilized data from two optical
sensors, PL and S2, and one radar sensor, S1, that fell within the study period (1 June 2021
to 31 December 2021). PL imagery are acquired by 120 CubeSat 3 U satellites measuring
10 × 10 × 30 cm, referred to as a dove [49]. Its sensors can detect 4 spectral bands (RGB and
NIR) with a spatial resolution of between 3 and 5 m. The high-resolution composite base
maps for PL have recently become accessible in GEE for the tropical regions, appreciations
to the partnership between Google and the NICFI (Norway’s International Climate and
Forest Initiative). In the study period, PL images are available in GEE as cloud-free monthly
composite. S2 data, already available in GEE as orthorectified and radio-corrected to
provide surface reflectance values, was utilized in the analysis [32,50]. S2 images were
filtered considering the cloud coverage of less than 10%. In this step, the study leveraged
band QA60 of S2 that signifies the opaque and cirrus clouds to mask cloud cover for S2.

Normalized difference vegetation index (NDVI), and normalized difference water
index (NDWI) were computed from PL data, while bare soil index (BSI) [51] was calcu-



Land 2023, 12, 99 6 of 17

lated using S2 data. Being the widely-used index in texture-based informal settlement
detection [12,14], NDVI quantifies vegetation cover and better discriminates LULC classes.
According to Bouzekri et al. [52], NDWI is the best index for distinguishing road networks,
for example tarred roads in formal areas, compared to a mixture of sand, gravel and mud
which is characteristic of informal settlements. In addition to capturing brightness of
roads, thus, detecting tarred roads with low brightness [16], NDWI also identifies water
bodies [50]. The NDVI layer was calculated from the red (B3) and near-infrared (B4) bands
of the PL image, whilst NDWI was calculated from the green (B2) and near-infrared (B4)
bands of the same satellite. BSI is an index constructed from a combination of the NDVI
and the normalised difference built-up index (NDBI) [53]. The index effectively distin-
guishes bare land from built up land, land cover classes with relatively similar spectral
characteristics [54].

S1 carries a single C-band synthetic aperture radar instrument that supports operation
in single polarisation (HH or VV) and dual polarisation (HH + HV or VV + VH). The study
utilized two diverse polarisation modes which include single co-polarisation with vertical
transmit/receive (VV) and dual-band co-polarisation with vertical transmit and horizontal
receive (VH). Following Vizzari [32], the ratio between two polarization modes was used
to create an additional band, VH_VV. The ratio feature partially compensates for the radio-
metric instability of the sensor and shows higher stability than the single polarization [55].
The ratio has been proven promising for identifying non-forested wetlands [40]. The mean
values were obtained in GEE with a simple “reduce” step for all the PL, S2, and S1 bands
and derived indices, thus creating 6-month composite images.

2.2.2. Image Segmentation with SNIC

Segmentation involves splitting an image into objects by clustering neighbouring pix-
els with similar values [56]. The current study implemented image segmentation within the
GEE environment, using the SNIC algorithm. SNIC is an enhanced version of Simple Linear
Iterative Clustering algorithm (SLIC) [57] which uses super pixel segmentation to simplify
images into small clusters of image-connected pixels [29]. In the current research, SNIC anal-
ysis was executed on the visible and NIR (4) bands of PL datasets, segmenting the image
into a set of super pixels. Within the GEE platform, SNIC categorizes the objects (clusters)
with regard to the set input parameters, visits pixels only once and clusters pixels without
iterations [29]. The input parameters include: “image”, “size”, “compactness”, “connec-
tivity”, “neighbourhood size” and “seeds” [30] (see Shafizadeh-Moghadam et al. [25] for
definitions). Of these parameters, Shafizadeh-Moghadam et al. [25] iterated that the main
ones are “compactness factor”, the “connectivity”, and “neighborhood Size”. Accordingly,
after consideration of the characteristics of the landscape patches in the area of study, these
parameters were experimentally set as follows: “compactness” = 1, “connectivity” = 8,
“neighbourhood Size” = 128. The selection of parameters and parameter values are based
on repeated iterations as well as visual evaluation of the outputs [31,33]. SNIC is performed
using a regular grid of seeds as input generated by the “Image. Segmentation.seedGrid”
function [34] which requires a super pixel seed location spacing (in pixels) for the gen-
eration of seed grid. After consideration of the textural characteristics of the landscape
patches in the study areas, seed spacing values (5, 10, 15, 20) were also tested iteratively
and were then set at 10 for PL. To create the dataset for classification, the mean value of
bands contained in the multispectral-textural datasets were computed on an object basis
using a “reduce connected component” step. In order to allow visualization of the actual
size of the objects, a proper output scale of clusters was fixed using the “reproject” function
(scale = 5) [34]. Finally, the algorithm was used to compress the dataset and generate a
combined raster made up of clusters and added data layers encompassing the mean values
of the input features.
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2.2.3. Texture Analysis

In order to improve the image classification and avoid fuzziness, additional contextual
information in the form of textural information was computed in GEE using the GLCM
algorithm [30,58]. The textural information was extracted only from PL imagery. Follow-
ing prior studies that have incorporated image texture in OBIA for informal settlement
detection [5,16,22,59], contrast, entropy, variance, homogeneity, mean and angular second
moment were the texture indices employed in the mapping. The descriptions of the texture
metrics are shown in Table 1. GLCM application in GEE requires establishment of a grey
level 8-bit image as the input image. As performed in previous studies [34], the grey level
image was generated from PL data using the following formula:

Grey = (0.3 × NIR) + (0.59 × RED) + (0.11 × GREEN) (1)

Prior application of GLCM, the grey level image was rescaled in the 0–255 range,
using the 2nd and the 98th percentile as lower and upper limits [32], in order to improve
the results. The window size used in the current study for GLCM was 5 × 5, which was
established after various testing operations.

Table 1. Texture metrics computed using GLCM.

Code Texture Features Textural Index Description

T1 Angular second moment Describes how uniform the distribution of grey levels is in the image
T2 Contrast Measures variations in intensity of neighbouring pixel pairs
T3 Mean Measures the mean of the grey level sum distribution of the image
T4 Entropy Quantifies the randomness of the grey-level intensity distribution
T5 Variance Measures how spread out the distribution of grey levels is in the image
T6 Homogeneity Measures the homogeneity of the image

2.2.4. Object Based Image Classification

Table 2 shows the spectral bands, spectral indices and texture metrics used for the
object-based RF classification. The table also presents the sensors from which the variables
were derived. Following Vizzari [32], before proceeding to the final band fusion, a bicubic
resampling was used to resample S2- and S1-derived layers to a resolution of 5 m. A “reduce
connected components” step was performed to calculate the average values of all available
bands based on PL-derived SNIC objects. An RF protocol involving 200 trees was imple-
mented on the PL, S2, and S1 composite dataset. The RF approach uses bootstrap sampling
technology that selects, at random, a specific number of samples from the original set of
training samples to create a new training data set [30]. The choice of the classifier was made
owing to its capability to handle urban area classification where dimensional feature spaces
are concerned, as well as its robustness for informal settlement detection in complex urban
environments [60]. Numerous mapping applications using OBIA within GEE [25,31,42]
have shown the superiority of RF in object-based LULC classification. The RF method
has the advantages of easy parameterization and robustness against high-dimensional
data and overfitting [31], as well as the ability to compute the relative importance of all
elements in the classification model [26]. Five land cover types, (i) Informal settlement,
(ii) Bare land, (iii) Water, (iv) Other urban, and (v) Vegetation, were used as the classification
scheme. Table 3 shows the definitions of the land cover classes. A total of 1750 random
sample points were collected and visually classified in QGIS using Google high spatial
resolution imagery. Seventy percent of these points were used to train the RF classifier, and
the remaining thirty percent to validate the final LULC classification results.
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Table 2. The optical, SAR, spectral and textural features applied to the classifications in this study.

Satellite Band Types Features

PL
Main channels B (blue), G (green), R (red), NIR
Spectral indices NDVI = B4−B3

B4 + B3 , NDWI = B2−B4
B2 + B4

Textural features Angular second moment, contrast, variance, homogeneity,
mean, entropy

S2
Main channels B8, B11, B12
Spectral index BSI = (B12 + B4)−(B8 + B2)

(B12 + B4)+(B8 + B2)

S1
Main channels VV, VH
Ratio features VH-VV

Table 3. The definitions of Land Use/Land Cover classes.

Class Description

Informal settlement Densely built housing units that are contiguous
Bare land Exposed soil with neither grass, trees, nor built-up structures

Water Water bodies like dams, rivers, ponds, and swamps

Other Urban Housing units with regular layout pattern, residential,
commercial, industrial, freeways, highways, tertiary or local roads

Vegetation Area covered by grasslands, forests, croplands, small shrubs,
sparse and dense trees

2.2.5. Accuracy Assessment

According to Hu et al. [56], assessing the quality of a classified map is crucial for
verifying its suitability for the intended purpose and understanding the corresponding map
errors. Quantitative analysis of the classification accuracy involved the use of a confusion
matrix and its derived accuracy indices, which are overall accuracy (OA) (Equation (2)),
producer accuracy (PA) (Equation (3)), user accuracy (UA) (Equation (4)), and F-score
measure (Equation (5)), all computed within GEE. According to Zurqani et al. [61], the
F-score shows how effective the classifier is in the context of both PA and UA, by weighting
their average. F-score is computed as a harmonic mean of PA and UA.

OA =
Number of correct predictions

Total number of predictions
(2)

PA =
Number correctly identified in a given map class

Number actually in that reference class
(3)

UA =
Number correctly identified in a given map

Number claimed to be in that map class
(4)

F− score = 2 × (PA ∗ UA)

(PA + UA)
(5)

Further, the study also assessed spatial agreement of the classified outputs with ground
truth samples regarding the extent of informal settlements. Seven informal reference
settlement samples were identified from the VHR Google Earth Pro image. Malambo and
Heatwole [62] demonstrated the reliability of VHR image depiction as an independent
source for validation data collection. For the area assessment, polygons for these ground
truth samples were digitized, and their areas were measured. Corresponding areas for
the classified patches for the same identified samples were also calculated. The statistical
evaluation of the correct depiction of spatial extents was carried out using regression
analysis in R statistical software, using root mean square log error (RMSLE) and mean
absolute percent error (MAPE) accuracy metrics.
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2.2.6. Feature Importance Assessment

The current research utilized the RF algorithm for variable importance evaluation.
According to Zhao et al. [63], the evaluation of variable importance score entails turning into
a number, the contribution of a feature parameter in terms of its impact on the classification
accuracy. A variable importance graph was drawn in GEE to show the relevance of all the
features used in the classification. This graph supported an iterative selection of the most
relevant features in the classification.

3. Results
3.1. Accuracy Assessment of the LULC Map

The LULC object-based classification map using PL, S2, and S1 combined data is
presented in Figure 3. The generated LULC map was visually and statistically evaluated
using Google Earth Pro imagery and a confusion matrix, respectively. To better display
the details, some informal settlement areas were selected from the classified map and
compared with their equivalent Google Earth Pro images. Visually, when compared with
high-resolution satellite imagery, results of LULC classification indicates that SNIC based
object-based classification using integrated data inputs from PL, S2 and S1 delineated
informal settlements accurately with satisfactory visual depiction.

Figure 3. Comparison of results of informal settlements and LULC classification (a) and visual
appearance of informal sample settlements on an RGB image (b) (circled in red).

Table 4 shows the accuracy of the classifications obtained from the confusion matrix.
The overall accuracy from this experiment is 96%, exceeding 85%, which, according to Kpi-
enbaareh et al. [64] is the threshold for a good classification. The class-based performance
evaluation revealed that all LULC classes had high F-score values (>85%), indicating that
all the classes were clearly identifiable overall using this approach. Informal settlement
class yielded an F-score of 87%. However, the informal settlement class registered the
lowest F-score, considering results for other LULC classes.
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Table 4. Confusion matrix derived from LULC classification. PA: Producer’s Accuracy; UA: User’s
Accuracy, and Overall Accuracy in bold.

Informal Settlements Bare Land Water Other Urban Vegetation PA

Informal settlement 44 0 0 10 0 81%
Bare land 1 39 0 1 1 93%

Water 0 0 26 0 0 100%
Other urban 0 0 0 115 0 100%
Vegetation 2 1 0 3 282 98%

UA 94% 98% 100% 89% 100% 96%
F-score 87% 95% 100% 94% 99%

Figure 4 shows informal settlement patches overlaid on digitized polygons for the
same settlement. The results revealed the level of disagreement in spatial extent between
the classification output and ground truth samples for informal settlements. Calculations of
relative spatial errors demonstrated RMSLE of 0.69 and MAPE of 0.28. The results indicate
evidence of underestimation of the spatial extents by the model.

Figure 4. Classified informal settlement patch areas against ground truth patch extents.

3.2. Relative Contribution of Input Variables in RF Classification

Figure 5 shows the relative importance of the different input features in the classifica-
tion model and the sensors from which the features are derived. The results indicate that
S2 band 8 (B8), PL band 1 (B), NDWI, BSI, T5 (homogeneity), and T4 (variance) were the six
most important input variables in the classification. Homogeneity was the most important
texture variable.
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Figure 5. Importance assessment of LULC classification features. Features’ codes are reported in
Tables 1 and 2.

4. Discussion

The study sought to investigate the capability of object-based image classification,
performed within GEE cloud computing environment, for improved mapping of complex
informal settlement morphologies. The study capitalized on the embedded SNIC segmenta-
tion algorithm, the GLCM algorithm, and the availability of high-resolution PL and Sentinel
(S1 and S2) imagery within GEE, to precisely capture informal settlement diversities in
a heterogeneous built-up landscape. Versatility of the coding platform available within
GEE [65] and good reliability of GEE integrative packages for feature construction, as well
as ease of classification process, were explored to allow reproducibility of reliable maps.
This study is the first to introduce OBIA in GEE for informal settlement identification.

Generally, the results of the analysis demonstrated that performing OBIA on a 3-
sensor dataset within the GEE was successful in accurately depicting all LULC classes
in the study area, yielding overall accuracy of 96%. This accuracy value is far above the
85% which, according to Kpienbaareh et al. [64], is a threshold for good classification.
Class-specific accuracy results also indicated that all classes were accurately captured with
F-score values ranging from 87% to 100%. Such high classification results demonstrate
the proficiency of OBIA classification within GEE. An informal settlement identification
accuracy (F-score) of 87% demonstrates how an improved workflow within the GEE can
generate high-quality informal settlement maps in an area with high morphological vari-
ability. The results confirm the proficiency of experimental design and code writing [30] in
allowing accurate informal settlement identification. Taking advantage of enfolded SNIC
segmentation algorithms and integrated data from PL, S2, and S1, the results confirm the
effectiveness of the approach in capturing variability of spatial characteristics of informal
settlements in a heterogeneous urban environment of Durban. Mirroring the findings
both overall and at class level, the RF model was also able to capture the inner structural
heterogeneity in the informal settlement landscape. The worth of RF in mapping complex
environments within GEE is emphasized [25,31,32,42]. The current findings concur with
previous studies that integrated sensors within GEE in mapping complex environments,
for example, crop types [43,64], and LULC in the complex agri-natural space [32]. Their
studies suggested the importance of including all the sensors in the classification. Agreeing
with the assertion from Bwangoy et al. [44] that multi-source satellite data offer potential
for obtaining higher classification accuracy compared to the accuracy achieved by a single
source data, Vizzari [32] observed that textural analysis on image objects computed from
PL data, and integrated with the spectral information derived from S2 and S1, boosted
the efficacy of the 3-sensor dataset combination. The high accuracy levels obtained from
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integrating various datasets in the current study are also in agreement with earlier efforts
by Fallatah et al. [5], who through the integration of GeoEye data with time-series Land-
sat data, confirmed the relevance of integrating data from different sensors in informal
settlement mapping. Advancing works in Jeddah, Saudi Arabia, yielded overall accuracy
levels of 95%, compared to 83% for OBIA alone [22], and 91% for integrated machine
learning and OBIA [16]. Similarly, Liu et al. [45] mapped green cover using object -based
approach and integrated Unmanned Aerial Vehicle (UAV) multispectral data and light
detection and ranging (LiDAR) data. Their results also revealed significantly improved
classification accuracy and reduced classification uncertainities in comparison to using
either multispectral image or LiDAR data alone.

The suitability of texture parameters in clearly distinguishing built-up areas from
other complex classes, especially bare land, has been emphasized [17,21,66]. Through
the use of the GLCM algorithm engrained within the GEE, contextual information for
LULC mapping was added [22]. However, compared with previous works on OBIA,
there are inconsistencies in terms of the most important texture metrics contributing to
the classifications. For instance, the current study revealed that homogeneity attained the
highest importance score of all the texture features. The result is not consistent with other
studies [5,16] which, after investigating contrast, entropy, homogeneity, correlation, and
mean, found contrast and entropy to be the most significant texture parameter at settlement
level. Moreover, in an earlier study, Lai and Yang [67] utilized entropy to map layout of
informal settlements and other land cover classes. In another study, Shekhar [68] found
variance to be of high merit in the separation of built-up areas. Explaining differences in
importance of various texture measures, the authors noted that the relevance of particular
textural measures in capturing heterogeneity is reliant upon myriad factors, such as the
image spatial resolution, fragmentation of the landscape under investigation, the between-
or within-class differences among multifarious land cover categories, and the choice of
appropriate textural features. For instance, in the context of variability in landscape
components, Fallatah et al. [22] revealed that informal settlements in Jeddah differ in
typology from informal settlements in Asia and Africa in that both settlement types are
made up of similar building materials, causing textural complexities. On the other hand,
in Pune, slums generally have diverse appearances that differ from planned residential
complexes [17,69], whilst in Durban, they are usually made up of corrugated iron, plastics
and wood, with some upgraded areas showing similarities to formal areas. Pratomo et al. [6]
also indicated that such variability in morphology renders textural features’ contribution
context-specific and, sometimes, data-dependent.

Although high classification accuracies have been attained using OBIA methods within
the GEE platform, there have been some uncertainties in the identification of informal
settlements. From the confusion matrix (Table 4), there is evident misclassification between
informal settlements and the “other urban” class. Whilst OBIA could accurately capture
the spatial patterns of urban morphology, varying interurban morphological informal set-
tlement features could explain the confusion [19]. Another cause could be the high density
of backyard structures existing in some areas of the other “urban class”. Evidencing this,
Fallatah et al. [22] alluded to the complexity of urban areas because of their characteristic
intermixing of diverse man-made and natural features, which may engender confusion
between the object and its spectral reflectivity. According to Taubenböck et al. [7], a vital
requirement in the delineation of informal settlements is the capability to identify small
pockets of deprivation for informed decision-making. Although all LULC classes could
be accurately captured in the current study, the approach failed to capture some discrete
informal settlement patches. Figure 6 shows an informal settlement that is evident on
high-resolution RGB imagery (Figure 6d, red rectangle), but missing on a classified image
(Figure 6c, red rectangle).
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Figure 6. (a) shows misclassified informal settlement patches that on the ground (b) are commercial
buildings. The red rectangles indicate misclassification of bare land (d) as informal settlement (c) (red
patch). The black rectangle indicates missed informal settlement (c) that exists on the ground (d). The
legend for (a,c) is included in Figure 3.

Such uncertainties can be explained in terms of complexity in defining the term in-
formal settlement [6]. For instance, the same characteristic of density may differ locally
depending on the developmental stages of the informal settlements, presenting inner-
structural heterogeneity of these areas of deprivation [23]. Imprecisions may also be
explained in terms of similarity in some morphological characteristics with formal built-up
structures [18]. In the current study, there is evidence of other urban areas, for example,
commercial buildings, being misrepresented as informal settlements (Figure 6a, black rect-
angle). The misclassification can be also explained in terms of the similarity of roofing
materials, causing textural complexity. Evidently, confusion was also displayed between
bare land and informal settlements. An informal settlement patch exists (Figure 6c, black
rectangle) on an area that is predominantly bare (Figure 6d, black rectangle), which is evi-
dence of potential similarity in spectrum [17]. Many informal settlements have corrugated
iron roofs, and they may sometimes also have white backgrounds similar to bare ground,
causing misclassification. Myint et al. [70] also notes that rusted iron sheets, that are also
common as roofing materials in informal settlements, may tend to reflect similarly to bare
soils which are usually reddish in colour, further contributing to misclassification.

Conceptual imprecision in OBIA within the GEE platform may also be compounded
by complexity in application of segmentation algorithms in particular areas [31]. Hay
Chung et al. [71] observed that, because of landscape heterogeneity, unvarying segmen-
tation parameters may not yield the best results for all LULC types. Qu et al. [31] added
that segmentation results may be compromised due to similarity in spectral characteristics
among different land cover classes, as well as complexity in delineating the boundaries
between the objects, especially between formal and informal areas. Some researchers [40,71]
also noted that misclassifications could result from the quality of training samples that
largely affects the performance of classifiers, resulting in failure to capture the dynamics. In
that regard, Pratomo et al. [6] contend that it is critical to explicitly clarify the influence of
these uncertainties on classification results when aiming at remote sensing-based informal
settlement mapping.
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Nevertheless, despite these limitations, the present study demonstrated the worth of
classifying informal settlements using OBIA and multi-source data within GEE. However,
GEE computational limitations can make OBIA application in large study areas difficult.
The “export-to-asset” steps, based on background tasks, can help in OBIA applications in
such areas.

5. Conclusions

This study presented an object-based approach for informal settlement identification
within the GEE, using integrated datasets from PL, S2, and S1. GEE cloud computing was
successfully applied for informal settlement mapping in Durban, South Africa. The GEE
provided a powerful analysis platform for classification, allowing image segmentation and
texture feature extraction using inbuilt SNIC and GLCM algorithms, respectively. The land
cover classification yielded high overall accuracy (96%) and informal settlement identifica-
tion accuracy of 87% (F-score). The derived error metrics presented reasonable agreement
between the classified output with the ground truth statistics from Google Earth Pro.
The informal settlement map indicated that a satisfactory outcome was achieved through
the proposed object-based approach and could form the basis for deriving subsequent
on-demand products.

The proposed approach presents opportunities for future research in monitoring
the spatiotemporal dynamics of informal settlements over time. An understanding of
informal settlement dynamics would assist in planning and fundamental decision-making
for expediting informed management of cities.
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