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Abstract: The quantitative urban system structure in historical periods and the long time-scale urban
land area grid dataset with spatial attributes are important for land use and land cover change (LUCC)
research. In this study, we aimed to measure the area of county level and above cities in mainland
China in the 1930s, also known as the traditional Chinese era (TCE), using a geographic information
system (GIS) model and 1:50,000 military topographic maps. Furthermore, we aimed to identify the
structure and characteristics of the urban system in the TCE according to the administrative area
division using methods such as the rank size law. The results of this study revealed that 1265 county
level and above cities existed in the TCE, including 25 provincial level or above cities, 179 prefectural
level cities, and 1061 county level cities. The total land area of all of the cities was 1396.48 km2, with a
mean value of 1.1 km2 and a standard deviation of 2.37 km2. The rank-size analysis indicated that the
urban system in TCE was characterized by large cities with insignificant development (q = 0.829 < 1,
R2 = 0.905). The results of the Lorenz curve and Moran analyses showed that the spatial distribution
of the urban systems in China during the traditional period exhibited nonuniform agglomeration.
Large-scale military topographic maps of historical periods have proven to be a good source for land
use reconstruction. The 1◦ × 1◦ grid urban land area dataset constructed based on a GIS model in
the TCE is important for future research on historical LUCC and can provide basic data for climate
change models, urban economic history, and other disciplines.

Keywords: historic land use; traditional Chinese era; urban systems; urban land use; historic
topographic map

1. Introduction

The urban built-up area is one of the major types of land use and land cover change
(LUCC), and it is also the land use type that has most drastically changed the morphol-
ogy of the Earth’s surface [1,2]. With the development of human civilization [3,4], the
human factor now plays an increasingly significant role in LUCC [5,6]. Historical land
use datasets with geospatial attributes are required for making future LUCC projections
and for climate change modelling. Several research programs organized by the interna-
tional scientific community since the 1990s, such as the International Human Dimensions
Programme on Global Environmental Change (IHDP) [7,8] and the International Geo-
sphere Biosphere Project (IGBP) [9], have enhanced the reconstruction of the historical
LUCC [10]. Driven by frameworks such as the IGBP/BIOME300 and past global changes
(PAGES) [11,12], the quantitative reconstruction of the spatial patterns and evolutionary
processes of various land use types over historical periods, especially the last 100 years,
has become a hot research topic [13]. The field of economics also uses data on the size of
ancient cities, the area of regional urban systems in particular, as an important modeling
instrumental variable [14].
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In recent years, several sets of historical land use datasets have been established at
varying scales by related scholars, such as the Global Land Use Dataset from the University
of Wisconsin [15,16], the Global Historical Environmental Dataset from the Netherlands
Environmental Institute [17,18], and the Chinese Traditional Agricultural District Cropland
Dataset [19,20]. Many local records and historical archives have been preserved in China,
and Liu et al. [21] reconstructed the area of cities in China in 1700 based on statistical
documentary sources. However, previous studies have generally involved quantitative
reconstructions, and the characteristics of the historical urban system have been less fre-
quently investigated in terms of the spatial patterns. Reconstructing the characteristics of
the urban system in the historical period also requires specific topographic map information
for each city as a way to reconstruct the sizes of cities using geospatial attributes [22,23].
Such research is of great significance, as remotely sensed data can only be reconstructed
for urban land during the past 40 years. Therefore, in order to reconstruct the structural
characteristics of the Chinese urban system over the last 100 years and an urban area grid
dataset with spatial attributes, we need to develop new methods and sources of materials.

With the excavation of a series of archives in recent years, large-scale military surveying
and mapping topographic data conducted by the late Qing Dynasty and the Republic of
China are considered a reliable data source for historical land use and reconstruction [24–26].
In addition, because cities have important strategic significance in military activities [27],
such military topographic maps in urban areas have high measurement accuracy and utilize
reliable data sources [28]. These topographic maps, largely completed in the 1910s and
1930s, have clear city wall boundaries and can therefore be used to reconstruct the area of
the city in the historical period (Figure 1). Chinese society in the middle of the Republic of
China (1930s) was still in the traditional agricultural era, so this time period can be regarded
as the traditional Chinese era (TCE). This collection of maps covers mainland China, except
for Taiwan province, where information is temporarily missing. Therefore, the temporal
and spatial scopes of this study were defined as cities at or above the county level in
mainland China during the TCE (1930s). The main objectives of this study were as follows.
First, using historical military topographic maps and GIS-based modeling, the extent of
the city walls of each city was extracted and the area of the city was calculated. Second,
the structure and characteristics of the urban system in the TCE were identified according
to the administrative area division using methods such as the fractal and rank-size law.
Third, a 1◦ × 1◦ grid dataset with spatial attributes for the scale of urban land use in the
TCE was generated.
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Figure 1. Example of the urban scope marks in the military topography of the Republic of China
(A–F represent Beijing, Nanjing, Suzhou, Kaifeng, Xian, and Guangzhou, respectively).

2. Research Area, Data, and Methods
2.1. Definition of the Scope of the Research Area

Considering the possibility of obtaining data and facilitating comparative study,
land use reconstruction in historical periods is still based on the modern administrative
scope [29,30]. The Chinese Modern Administrative Region can be roughly divided into
regions such as the Central Plains, the southwest, South China, Jiangnan, the northwest,
and Northeast China. Among these, the measured work of the topographic maps in the
Central Plains, Jiangnan, and South China began during the late Qing Dynasty; hence, the
information was relatively sufficient. The surveying and mapping work in related cities
and regions in the northeast and northwest regions were also conducted as part of the
work during the Republic of China. Due to the high altitudes in Tibet, which may lead to
difficult conditions for human habitation and the development of urban systems, from the
perspective of measured map data from the 1930s, there was a lack of a clear urban scope
(Figure 2).

To better connect the statistics of the current administrative division’s data statistics
and the comparative analysis of long-term sequence land use data, the provincial adminis-
trative unit of this study utilized the administrative division of 2020. In addition, due to
the actual conditions when the statistics were conducted, Hebei included Beijing, Tianjin;
Su-Hu included Jiangsu and Shanghai; Gan-Ning included Gansu, Ningxia; and Chuang-
Yu included Sichuan and Chongqing, with a total of 27 units of analysis. The placement of
the administrative borders utilized the China Historical Geographic Information System
(CHGIS) dataset (http://fas.harvard.edu/~chgis, accessed on 12 June 2022) jointly devel-
oped by Harvard University and Fudan University. In terms of the selection of the grid

http://fas.harvard.edu/~chgis
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network specifications, the reconstruction of the grid network was based on 1◦ × 1◦. In the
mid-latitude region of China (40◦ N), this grid covers an area of about 9454.61 km2.

Land 2023, 12, x FOR PEER REVIEW 4 of 24 
 

Northeast China. Among these, the measured work of the topographic maps in the Cen-

tral Plains, Jiangnan, and South China began during the late Qing Dynasty; hence, the 

information was relatively sufficient. The surveying and mapping work in related cities 

and regions in the northeast and northwest regions were also conducted as part of the 

work during the Republic of China. Due to the high altitudes in Tibet, which may lead to 

difficult conditions for human habitation and the development of urban systems, from the 

perspective of measured map data from the 1930s, there was a lack of a clear urban scope 

(Figure 2). 

To better connect the statistics of the current administrative division’s data statistics 

and the comparative analysis of long-term sequence land use data, the provincial admin-

istrative unit of this study utilized the administrative division of 2020. In addition, due to 

the actual conditions when the statistics were conducted, Hebei included Beijing, Tianjin; 

Su-Hu included Jiangsu and Shanghai; Gan-Ning included Gansu, Ningxia; and Chuang-

Yu included Sichuan and Chongqing, with a total of 27 units of analysis. The placement 

of the administrative borders utilized the China Historical Geographic Information Sys-

tem (CHGIS) dataset (http://fas.harvard.edu/~chgis, accessed on 12 June 2022) jointly de-

veloped by Harvard University and Fudan University. In terms of the selection of the grid 

network specifications, the reconstruction of the grid network was based on 1° × 1°. In the 

mid-latitude region of China (40° N), this grid covers an area of about 9454.61 km2. 

 

Figure 2. The geographical scope of the research area. 

2.2. Military Topographic Map Information 

The 1:50,000 military topographic maps of the Republic of China used in this study 

were derived from the national basic military topographic mapping plan of the General 

Staff of the Ministry of National Defense at that time. The mapping and cartography were 

concentrated in the 1910s and 1930s. These military topographic maps were used for mil-

itary purposes at that time, so the accuracy of mapping was high, especially in urban ar-

eas. This collection of topographic maps basically covers most of China [26,31], except for 

Figure 2. The geographical scope of the research area.

2.2. Military Topographic Map Information

The 1:50,000 military topographic maps of the Republic of China used in this study
were derived from the national basic military topographic mapping plan of the General
Staff of the Ministry of National Defense at that time. The mapping and cartography
were concentrated in the 1910s and 1930s. These military topographic maps were used
for military purposes at that time, so the accuracy of mapping was high, especially in
urban areas. This collection of topographic maps basically covers most of China [26,31],
except for nonurban areas in Qinghai, Xinjiang, Inner Mongolia, and Tibet. The map
collection was obtained from the Institute of Modern History, Academia Sinica (http:
//map.rchss.sinica.edu.tw/, accessed on 13 June 2022) [32]. Some maps of eastern China,
including Heilongjiang, Jilin, Liaoning, and Jing-Jin-Ji, were also supplemented by the Sino-
American Cooperative Aerial Survey Team during World War II, the University of Texas
Library, USA (https://maps.lib.utexas.edu/maps/ams/china/, accessed on 13 June 2022).
The statistics indicate that the number of topographic maps in this collection is about
7300 [33]. The map size is 46 cm × 35 cm, and each map spans 15′ in longitude and 10′ in
latitude (the space range is about 24.194 km by 18.532 km). The surveying and mapping
method of the 1:50,000 military topographic maps utilizes triangulation, and the projection
is the Lambert conformal conic projection [34]. This set of military topographic maps has a
unique legend symbol for the walled part of the city, so the extent of the city can be derived
from the topographic map based on the walls.

2.3. Ancient Chinese Administrative Divisions and Cities

Although the administrative divisions have changed frequently throughout China’s
history, since the Ming and Qing dynasties, the basic administrative divisions have been
divided into three levels: provinces, prefectures, and counties. For administrative and
military defense reasons, the seats of these administrative districts developed into provin-
cial, prefectural, and county cities. This pattern of administrative divisions and urban

http://map.rchss.sinica.edu.tw/
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development was inherited by the later Republic of China and has continued to influence
the pattern of urban systems in modern China. From the late Qing dynasty to the Republic
of China, the number of cities above the county level in China remained relatively stable at
about 1500 [35]. These cities above the county level form the basis of the current Chinese
urban system, which contains about 1700 cities above the county level. Considering that
many new county-level administrative units were established after the founding of the
People’s Republic of China, it can be assumed that county-level cities have a strong histori-
cal resilience in the structure of China’s urban system. Therefore, the criteria adopted in
this study for selecting the surveyed number of cities was that all of the cities in the area
covered by this set of military topographic maps were counted.

2.4. Walled Cities in China

Although the construction of walled cities began early in China’s history, the walls
of these cities have been maintained and repaired throughout the subsequent phases of
history [36]. After extensive construction of city walls during the Ming and Qing dynasties
(1368–1911), most cities above the county level in China had city walls [37]. With the
widespread use of military weapons such as artillery and the gradual modernization of
China, the defensive function of the city walls gradually disappeared. Beginning in the
1940s, the development of many Chinese cities began to expand beyond the limits of the
city walls. The walls of most Chinese cities were also demolished during this process [38].
Considering that this study focused on reconstructing the size and systemic structure of
cities in the 1930s, the specific time of the construction of each city did not affect the results
of the study. Due to changes in administrative divisions throughout China’s history, the
number of cities above the county level has changed from dynasty to dynasty. In this study,
a total of 1265 cities at or above the county level were reconstructed based on military
topographic maps.

Although some cities in the Chinese traditional period had built-up areas beyond the
city walls [39], we chose the city walls, an intuitive criterion, as the basis for determining
the city’s extent, because this study focused on the characteristics of the urban system in the
TCE as a whole. The extent of the city walls is the most direct symbol of ancient Chinese
cities. It has been shown that although not all of the area within the city walls was utilized
during the TCE, and some areas outside the walls may have been built-up urban areas,
the percentages of these phenomena were not significant. Therefore, related studies have
generally offset these occurrences against each other and have considered the city wall area
to be the urban extent during the historical period [23].

2.5. GIS Reconstruction
2.5.1. Reconstruction Process

Relevant military topographic maps has information such as latitudes and longitudes,
and we utilized the ArcGIS 10.2 (ESRI Inc., Redlands, CA, USA) for spatial georeferencing
(this process can utilize other GIS software, such as the open source QGIS and not just
ArcGIS software). The process of georeferencing historical topographic maps consists of
three main steps. First, the 1:50,000 index diagram of each province was spatially aligned
to the boundaries using the georeferencing tool in GIS software. In this way, preliminary
alignment is obtained for each 1:50,000 topographic map. Second, the 1:250,000 Sino-
American Cooperative Aerial Survey Team topographic map was then spatially aligned
to its own latitude and longitude on every map four corners. Because the area covered
by these 1:250,000 maps is not large, it is about equal to the extent of 160 km by 110 km.
After controlling the longitude and latitude of the four corners of the map, the second order
polynomial transformation provided by the georeferencing tool in ArcGIS software allows
the whole map to obtain a better spatial projection effect. In the third step, the preliminary
aligned 1:50,000 topographic map was compared with the 1:250,000 topographic map or
remote sensing image according to the topographic features, such as mountain peaks, rivers,
and other terrain features, to complete the fine-tuning. After completing the georeferencing
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of the topographic map, the polygon tool in ArcGIS determined the city according to the
city wall and the city area calculated using the geometry tool. Finally, the scale of urban
land was calculated in the 1◦ × 1◦ grid. The detailed GIS reconstruction workflow is shown
in Figure 3.
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2.5.2. Accuracy Evaluation

The accuracy of the reconstruction results was compared and analyzed using cities
that are still preserved and still have relatively complete city walls. The specific method
was to sort out and collect China’s currently preserved city wall remote sensing images.
Based on Google Earth, the city wall lengths and urban scales were measured to evaluate
the accuracy of this reconstruction result.

2.6. Fractal and Rank-Size Law

The size distribution of the urban system has the characteristics of self-similarity and
is fractal [40]. Hence, the fractal model was used to calculate its fractal dimension. In
a specific area, the urban rank and the city size are in agreement with the order of the
rank-size rule, and the expression is

Si = S0 × Ri−q (1)

where Si in the equation is the size of the i-city; S0 is the theoretical value of the first city
size; Ri is the first city rank; the q is the Zipf dimensions. Generally, the upper equation can
be utilized to calculate the logarithm and obtain the following:

ln Si= lnS0 − q ln Ri (2)

where the least squares method is utilized to obtain the fractal dimension, q. Studies have
shown that [41,42], when q > 1, the cities in the area are more concentrated, and large cities
are prominent; when q < 1, the cities in the area are scattered, and small or medium-size
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cities are more developed. Theoretically, the relationship between q and D depends on
the fitting coefficient of the equation [43]. The empirical equation shows that q and D are
reciprocal to each other in the case where the fitting coefficient of the equation is close to 1,
that is:

q×D =1 (3)

Through this formula, the fractal dimension D of the urban system can be obtained.
The change in fractal dimension D can reflect the balance of the urban system. The larger
the balance, the closer the scale between cities, the smaller the gap between each other, the
more balanced the city, and the lower the urban primacy index. On the contrary, the more
uneven the size of the city system, the higher the urban primacy index. Related studies
have shown that lnS0 represents the structural capacity of the urban system. The more
complicated the urban system, the larger the overall scale, the larger the structural capacity;
on the contrary, in the simple urban system, the overall size is smaller, and has a smaller
structural capacity.

2.7. Coefficient of the Variation and the Urban Primacy Index

The coefficient of variation (CV) can eliminate the difference between the size of a
single city and obtain the change degree of the whole city. CV is used to measure the degree
of difference between the size of each city in a region, and its calculation method is the ratio
of the standard deviation of the scale value of all cities in the region to the average value.
The urban primacy index is a common method for describing and analyzing the structure
of city systems and consists primarily of the 2-city index (K2), the 4-city index (K4), and
the 11-city index (K11) [43,44]. In addition, to reflect the status of the first city in the urban
system, K1 was defined as the first urban primacy index, that is, the first city in the region
accounted for the proportion of all cities in the region. The calculation method is:

K1 = S1/ ∑i
i=1 Si

K2 = S1/S2
K4 = S1/∑4

i=2 Si
K11 = 2S1/∑11

i=2 Si

(4)

In the formula, K indicates the urban primacy index, Si is the size of the i city.

2.8. Space Lorentz Curve

Economist M. Lorrenz put forward the space Lorentz curve method [45,46] in the
process of studying the balance of economic development, and it was later used by many
disciplines for research on differential patterns. For study on the concentration and balance
of spatial data, the Lorentz curve is an important method. Lorenz curve can reflect space
concentration of urban system. If the curve is closer to the absolute uniform line, the
distribution of the scale of the urban system in the region is more uniform; otherwise, the
distribution is more concentrated.

2.9. Getis–Ord Cold and Hotspot Analysis

Getis–Ord statistics allow us to identify areas that are statistically spatially hot versus
cold. It can help us to identify areas with higher index values or lower index values in and
around the region. Therefore, it is also called cold- and hotspot analysis. Cold- and hotspot
analysis can help us more accurately identify the spatial gathering of a certain element in
the area [47,48]. Therefore, the agglomeration or decentralization of urban land in the area
in the area can be identified by Getis–Ord Gi

∗. The relevant formulas are:

G∗i =
∑j wijxj − x∑j wij

S

√
[n∑j w2

ij−(∑j wij)
2]

n−1

(5)
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In the formula, n is the total number of samples, x is the average value, wij is a spatial
weight matrix, and S is the standard deviation. In general, G∗i will be normalized:

Z(G∗i ) =
G∗i − E(G∗i )√

Var(G∗i )
(6)

In the formula, E(G∗i ) is the expected value, and Var(G∗i ) is the variance.

3. Results
3.1. Urban Area Reconstruction

In this study, the extents of a total of 1265 cities at or above the county level in the
middle of the Republic of China (1930s) were calculated (Figure 4) that were distributed in
25 provincial-level administrative regions in the country. Among these, there were 25 cities
at or above the provincial level, 179 cities at the prefecture level, and 1061 county-level
cities. Among these, the largest city was Beijing, with an area of 58.5 km2. The smallest city
in the region was Xinjiang Jinghe, with an area of 0.02 km2. The average value of all cities
above the county level was 1.10 km2, and the standard deviation was 2.37 km2.
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3.2. Level of Urbanization of the Grid

Based on the reconstruction method discussed in Section 2.5, a gridded reconstruction
of the land scale of cities at or above the county level in China during the traditional period
was conducted to obtain a 1◦ × 1◦ resolution urban land scale dataset (Figure 5). Of the
total 1096 grids, 710 had an urban area of 0. The remaining 386 grids had a maximum value
of 62.93 km2 and a minimum value of 0.02 km2. Figure 4 shows the distribution of the city
sizes in China during the traditional period, which was characterized by high levels in
the north, low levels in the south, high levels in the east, and low levels in the west of the
country, and this was also associated with flat topography and more developed agriculture
of the North China Plain and the Central Plains of China providing the ability to support
larger cities. In contrast, against the background of lower urban sizes in the west and south,
the larger urban sizes in regions, such as the Chengdu Plain and the Pearl River Delta, were
clearly associated with topography and more developed agriculture and commerce. In
addition, the spatial distribution of city sizes within each province was generally consistent
with the urban hierarchy, with the provincial or prefecture cities generally being located
in a grid of larger cities. As can be seen from Figure 5, the regional grid city size values
for western Sichuan, western Yunnan, Qinghai, Xinjiang, and Tibet were zero. These areas
are generally ethnic minority concentrations, and their production structures and levels
of agricultural development differ significantly from those in the east. In addition, their
urban development is relatively backward.
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3.3. Urban System Structure

There were a total of 1265 cities above the county level within the study area, and
the total land size of all the cities was 1396.48 km2, with a mean value of 1.10 km2 and a
coefficient of variation (CV) of 2.15. As a whole, all cities as a system of cities had urban
primacy indexes of K1 = 0.041, K2 = 1.397, K4 = 0.868, and K11 = 0.841. The rank-size
curve (Figure 6A) and the double-logarithm scatter plot (Figure 6B) showed that the urban
system in traditional China was one in which large cities were not significantly developed
(q = 0.83 < 1, R2 = 0.91), and the proportion of small cities, which were generally county-
level cities, was high. As can be seen from Figure 6A, except for the first two cities with
large area, the other cities have little change in area with the increase in location sequence.
For the urban system in this period, most cities were small cities. This characteristic of the
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urban system was also related to the fact that during the Republican period, China was still
a traditional agricultural country, with cities being more administratively dominated and
commercial cities not yet developed.
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Figure 6. City rank-size curve (A) and double logarithmic scatter plot (B) of the rank-size distribution
in the TCE.

The urban system characteristics of the provinces were measured using the coefficient
of variation (CV), the city primacy index, and the fractal dimension. The results showed
(Figure 7) that the urban system characteristics varied significantly between provinces and
regions. The coefficients of variation were larger in the provinces of Jing-Jin-Ji, Su-Hu, and
Chuan-Yu, which also indicated that there were significant differences in city sizes within
these provinces and regions, with large cities and small cities existing at the same time.
Although the urban system in the TCE has certain common characteristics, the study of
urban system in different regions also shows that the development of urban system in
different regions has different characteristics. This also suggests that we need to consider
the differences in the development of different regions when studying the urbanization
of China in the historical period. This led to their larger coefficients of variation. In terms
of the urban primacy index, all indicators were larger in Jing-Jin-Ji and Su-Hu, indicating
that there were more pronounced urban primacy index effects in these two regions. This
result also agreed with the role of Beijing and Nanjing, the two largest cities in the urban
system of their provinces. The R2 of the double logarithm of the city rank-size fit for the
25 provinces and regions was nearly greater than 0.7, which was a good fit and indicated
that their city size distribution had fractal characteristics; for example, small cities constitute
the majority of the urban system. The fractal dimension of most provinces was near 0.8
to 0.9, for which it is generally considered that when q < 1, the distribution of urban sizes
in the region is more dispersed, and small and medium-sized cities are more developed.
Only the provinces of Su-Hu, the northeast, and the frontier regions had fractal dimensions
of q > 1, which also indicated that the Su-Hu region had developed to the stage of city
primacy during the traditional Chinese period. The reason for a fractal dimension of
q > 1 in the northeastern and frontier regions other than Su-Hu was primarily due to the
underdevelopment of cities in these regions, the small number of cities, and the absolute
dominance of some provincial cities in terms of city size within the province due to military
or other reasons.
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Figure 7. Index of the primary characteristics of the provincial urban system in China during the TCE
(CV: coefficient of variation; K1, K2, K4, K11: urban primacy index; q: Zipf dimensions; D: fractal
dimension; lnS0: logarithm of theoretical value of the first city size; R2: determination coefficient of
rank size equation).

3.4. Spatial Clustering Characteristics

The results of the Lorenz curve calculation are shown in Figure 8. The cumulative
frequency curve of the rank size of cities above the county level in China during the
traditional period has a downward concave form. As the curve lies below the line of
uniform distribution (i.e., the diagonal line in the diagram), it can be concluded that the
distribution of cities during this period was in a state of agglomeration with nonuniform
spatial distribution. It is difficult to quantitatively describe and analyze the distribution of
urban system in TCE. This study obtains the spatial Lorentz curve of urban system through
the restoration of cities one by one in the topographic map, which has important reference
significance for future research. By calculating the degree of concentration of the curve, i.e.,
the ratio of the area under the cumulative frequency curve to the area under the uniform
distribution line, a value of 0.50 was derived for the degree of concentration. This shows
that the distribution of urban system in TCE is between uniform distribution and extreme
distribution. The most extreme situation is that all urban areas are concentrated in one big
city, which is only the most extreme situation in theory.

3.5. Spatial Trends

The spatial trend analysis showed that there was a north–south and east–west trend
in the size of Chinese cities above the county level during the traditional period in terms of
large-scale spatial patterns (Figure 9). In general, the distribution of city sizes tended to
increase from west to east and decreased from north to south. This pattern of the spatial
distribution was also consistent with the results of the map analysis shown in Figure 4B.
The primary reason for this pattern is that the eastern portion of China had been ahead
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of the western region in terms of urban development during the traditional period. In
contrast, the north, with its long history of development and more plains, had also seen a
larger scale of urban construction than the south.
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Figure 8. Lorenz curve of the distribution of urban systems in China during the TCE (The red
line represents the uniform distribution of cities in the urban system. The blue dot represents the
cumulative number of cities and cumulative urban land area in TCE).
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Figure 9. Spatial distribution trends of cities in China during the TCE.

To further analyze the different spatial patterns of cities above the county level across
the country during the traditional period, all cities in the study area were analyzed in groups
at 10◦ intervals in the longitudinal direction and 5◦ intervals in the latitudinal direction.
The results of the kernel density and frequency analyses showed that in longitude, China’s
traditional period cities at the county level and above were primarily distributed between
100◦ E and 130◦ E (Figure 10A), while in latitude, most cities were distributed between
20◦ N and 50◦ N (Figure 10B). The kernel density curve of the distribution showed that
the cities were more evenly distributed at latitude, closer to a normal distribution. This
shows that the distribution of cities in TCE is more balanced in the north–south direction.
A large number of cities are concentrated in the mid latitude area, and there are relatively
few cities very close to the north and south frontier region. At longitude, the distribution
was skewed towards a concentration between 110◦ E and 120◦ E. The results of the box plot
analysis of the size distribution of cities above the county level in each group showed that
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the mean city size tended to increase gradually in both longitude (Figure 10C) and latitude
(Figure 10D), and the dispersion within the group also tended to increase with increasing
longitude and latitude. In terms of longitude distribution, there are relatively few cities
in western China. This is also related to the small population in western China. The cities
in Northeast China are relatively large. The reason for this phenomenon may be that the
terrain in Northeast China is relatively flat and suitable for urban development.
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Figure 10. Kernel density maps of the spatial distribution (A,B) and size distribution box plot (C,D) of
cities in China during the TCE.

3.6. Characteristics of the Regional Agglomeration of Urbanization Levels

The results of this urban scale grid reconstruction (Figure 5) showed that certain urban
agglomerations with high levels of urbanization were already formed in China during the
traditional era. For example, Jing-Jin-Ji, Henan, Shandong, and other central plains; Su-Hu,
Anhui, Zhejiang, and other southern regions. There were also city clusters of certain sizes
in the Chengdu Plain, the Pearl River Delta, and the Guanzhong Plain. The results of the
Moran analysis showed a z-score of 12.81 (p < 0.001) (Figure 11). This result suggested that
the spatial distribution of city sizes above the county level in China during the traditional
period was characterized by extreme clustering. This meant that areas with high city size
values were also surrounded by high value areas, and areas with low city size values were
surrounded by low value areas.

GIS software was used to classify the number of cities above the county level in China
during the traditional period according to the provincial administrative regions to which
they belonged (Figure 12), the results showed that Shanxi, Henan, and Zhejiang had the
highest urban densities of 6.70, 6.26, and 6.09 cities/104 km2, respectively. Provincial ad-
ministrative regions with relatively low urban densities included Inner Mongolia, Xinjiang,
Qinghai, and Tibet. A kernel density analysis of the urban density showed a contiguous
area of highly concentrated urban density forms in the regions of the North China Plain,
Shanxi, and the Guanzhong Plain in northern China, and these were also the primary urban
agglomeration areas in China during the traditional period. In addition, small areas of high
urban density formed in the Yangtze River Delta and the Chengdu Plain.
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To better reflect the spatial distribution characteristics of urban agglomerations, the
reconstructed urban land scale grid dataset was analyzed using the hotspot analysis func-
tion in the GIS model, and the results are shown in Figure 13. A hotspot analysis of the
urban scale of the 1◦ × 1◦ grid during the Republic of China period revealed three primary
agglomerations, namely the Jing-Jin-Ji region, the border area between northern Henan
and Shandong, and the Yangtze River Delta.
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3.7. Differences in Urban Systems at the Provincial Level

Although, overall, all cities at or above the county level constitute an urban system
with a fractal dimension of q < 1 and are of the type where smaller cities are more developed
and larger cities are less pronounced, this does not mean that all provinces and regions are
of this type. To compare the variability in the distribution of city size between provinces
and regions, a scatter plot of the combined use of the urban primacy index (K2) and the
total urban land area proposed by Xu et al. [49] was used to illustrate the inter-provincial
differences in city sizes. As shown in Figure 14A, as the total size of the urban land in
the province and region increased, their urban primacy index was also higher. There was
a significant positive correlation between the urban land and the urban primacy index
(K2), with a correlation coefficient of 0.362, p < 0.01. Among these, Jing-Jin-Ji and Su-Hu
had a large total urban land size and a high urban primacy index, while Xinjiang and
other provinces and regions had small total urban land sizes and insignificant first city
development. The results shown in Figure 14B indicate that the total size of urban land
in the province shows a degree of positive correlation with the average size of individual
cities within the province, with a correlation coefficient of 0.35, p < 0.01. Although the
Jing-Jin-Ji region had the largest total urban area, the differences between cities were more
pronounced, with smaller gaps between cities in the Su-Hu region and larger average
city size.
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Figure 14. Scatter plot of the interprovincial differences in urban land use with K2 (A) and mean land
scale (B).

4. Discussion
4.1. Comparison with Other Urban Land Use Data

Previous studies have been limited by the materials available and have less frequently
examined the size of historic cities in China [32]. Using archival documents, He et al. [23]
estimated the area of cities at or above county level in 18 provinces during the late Qing
dynasty (1820s) based on a model and by assuming that all of the cities were square.
By comparing the urban area data for the 1820s with the results of this study, a good
correlation was found between the two datasets (Figure 15). The regression equation is
y = 1.6678x − 0.1212 (R2 = 0.896, p < 0.001). Since He et al. utilized a modeling approach
rather than actual measurements, the results were overestimated by 66% overall. Fur-
ther analysis yielded a Spearman rank correlation coefficient of 0.851 (p < 0.001) for the
two datasets. Despite the numerical differences between the two data sets, the results of
the regression analysis and the rank correlation coefficient test indicate that the results of
this study are reasonable, and the differences may originate from the errors of the different
reconstruction methods.

4.2. Types of Urban Scale Systems

To further discuss the types of urban size systems in each province of China during
the traditional period, a cluster analysis was conducted for 25 provinces based on the
coefficient of variation (CV), the urban primacy index (K1, K2, K4, and K11), the fractal
dimension (q and D), the structural capacity (lnS0), and the coefficient of determination (R2)
of the regression equation for each province and region (Figure 16). The results showed
that Jing-Jin-Ji and Su-Hu belonged to the first category. The urban system in this category
was characterized by a high coefficient of variation and urban primacy index, a fractal
dimension close to one, and a large structural capacity and R2 > 0.9. The second category
included Guangdong, Chuan-Yu, Shaanxi, Jilin, Hainan, Guangxi, and Qinghai. The urban
system in this category was characterized by a medium range of coefficient of variation
values, a high city primacy index, a small fractal dimension, medium structural capacity
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values, and an R2 of approximately 0.8. The remaining provinces and regions were divided
into a third category, a group of urban systems characterized by a smaller coefficient of
variation, a smaller degree of the urban primacy index, and a smaller structural capacity.
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Figure 15. Scatter plot of 1930s urban land data and 1820s urban land data.
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Figure 16. Heat map (A) and cluster map (B) of the urban systems in the TCE. The numbers 1–25
denote Heilongjiang, Jilin, Liaoning, Jing-Jin-Ji, Henan, Shanxi, Shandong, Anhui, Su-Hu, Zhejiang,
Hubei, Hunan, Jiangxi, Fujian, Guangdong, Hainan, Guangxi, Guizhou, Yunnan, Chuan-Yu, Shaanxi,
Gan-Ning, Qinghai, Xinjiang, and Inner Mongolia, respectively. The green, blue and red in the
numbers 1–25 represent the three classification results.

4.3. Uncertainty Analysis: A Comparison Using Remote Sensing Data

The reconstruction of areas of ancient urban land may have certain errors. Therefore,
to more effectively explain the reliability and error range of the reconstruction results, this
study system sorted out the ancient cities in China that had relatively complete ancient city
walls and utilized Google Earth’s remote sensing image data to measure the area of the
cities. In this manner, a set of verification data was obtained. The set of remote sensing
survey datasets for ancient cities included 12 cities (Figure 17): Jingzhou, Zhengding, Heze,
Qufu, Baoding, Datong, Xiangyang, Nanyang, Fenyang, Pingyao, Xingcheng, and Dali.
The reasons for selecting these cities for comparative study were that (1) the ancient city
walls of these cities have not been demolished and still remain within the modern cities;
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(2) these cities were distributed throughout various regions of China as much as possible
so that they are representative; and (3) suitable remote sensing image data were available
and the city walls could be more obviously identified on the maps.
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Figure 17. Google remote sensing image of a city in which the walls are still preserved (yellow lines
indicate the extent of the wall. Letters (A–L) denote Jingzhou, Zhengding, Heze, Qufu, Baoding,
Datong, Xiangyang, Nanyang, Fenyang, Pingyao, Xingcheng, and Dali, respectively. Scale bar = 1 km.

The walls of these cities are well preserved and could be interpreted from remote
sensing images. The urban land areas of the cities based on the remote sensing image
measurements were considered true values. Therefore, these results were obtained using a
regression analysis of the historical data and remote sensing data. The correlation coefficient
between the urban area reconstructed based on historical data and the remote sensing
measurement data was 0.976, and the regression equation was y = 0.944x + 0.106 (R2 = 0.95,
p < 0.001). It can be seen that the reconstruction results are highly correlated with the
remote sensing data (Figure 18).

4.4. Limitations

In addition to the uncertainty of the historical topographic maps in the reconstruction
process, this study still has limitations in terms of the research methodology and research
depth. Considering that the aim of this study was the reconstruction of urban systems, the
analysis of individual cities in the historical period, as well as the point pattern of cities,
needs to be strengthened. In this study, more common spatial analysis methods such as the
spatial Lorenz curve, hot spot analysis, spatial trend analysis, and kernel density analysis
were used. However, methods such as the mean center and standard deviation ellipse were
not applied in this study because only the 1930s reconstruction data were available, which
made it difficult to perform point pattern change analysis for different time periods. In the
future, an attempt can be made to build a city size dataset for China during different time
periods in the last hundred years and to conduct a complete spatial and temporal pattern
analysis. In addition, since urban clustering studies require more indicators to describe
cities, but at present, we are limited to historical data; we can only reconstruct the sizes of
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cities in historical periods, so it is difficult to conduct urban clustering studies, which is
also a limitation of our study.
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Figure 18. Scatter plot of the extent of the wall reconstructed from historical topographic maps, and
the extent of the wall reconstructed from remote sensing imagery.

5. Conclusions

The structure of the urban system in the TCE (1930s) has not previously been studied
quantitatively. This hinders the development of a database of urban land use in historical
periods, especially gridded urban sites with spatial attributes. In this study, we attempted
to measure the area of county level or above cities in mainland China using a GIS model
and 1:50,000 military topographic maps from the 1930s. The following primary conclusions
were drawn.

(1) A total of 1265 county level or above cities were counted in the TCE, including
25 provincial level or above cities, 179 prefectural level cities, and 1061 county level
cities. Based on the extent of the city walls in TCE, the largest city was Beijing, with an
area of 58.5 km2, and the smallest city was Jinghe in Xinjiang, with an area of 0.02 km2.
The total land area of all of the cities was 1396.48 km2, with a mean value of 1.1 km2

and a standard deviation of 2.37 km2.
(2) The results of the rank-size analysis indicate that the urban system in the TCE was

characterized by large cities with insignificant development (q = 0.829 < 1, R2 = 0.905)
and a high proportion of county-level cities. The characteristics of this urban system
were also related to the fact that in the 1930s, China was still a traditional agricultural
country, the cities were more administrative-driven, and commercial cities had not
yet developed. The results of the Lorenz curve and Moran analyses showed that the
distribution of urban systems in China during the traditional period had a nonuniform
spatial distribution of agglomeration.

(3) Large-scale military topographic maps of historical periods have proven to be a good
source for land use reconstruction. Uncertainty analysis showed that the military
topographic maps for the 1930s have good accuracy, and the correlation coefficient
between the reconstructed urban areas based on topographic maps and the area values
obtained using remote sensing images was 0.976. The 1◦ × 1◦ gridded urban land
area dataset constructed based on a GIS model of the TCE is important for future
research on historical LUCC and can provide basic data for climate change models,
urban economic history, and other disciplines.
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