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Abstract: Regarding evaluating disaster risks in Iran’s West Kurdistan area, the multi-layer perceptron
(MLP) neural network was upgraded with two novel techniques: backtracking search algorithm
(BSA) and biogeography-based optimization (BBO). Utilizing 16 landslide conditioning elements
such as elevation (aspect), plan (curve), profile (curvature), geology, NDVI (land use), slope (degree),
stream power index (SPI), topographic wetness index (TWI), rainfall, and sediment transport index
(STI), and 504 landslides as target variables, a large geographic database is constructed. Applying
the techniques mentioned above to the synthesis of the MLP results in the suggested BBO-MLP and
BSA-MLP ensembles. As accuracy standards, we benefit from mean absolute error, mean square
error, and area under the receiving operating characteristic curve to assess the utilized models, we
have also designed a scoring system. The MLP’s accuracy increases thanks to the application of the
BBO and BSA algorithms. Comparing the BBO with the BSA, we find that the former achieves higher
average MLP optimization ranks (20, 15, and 14). A further finding showed that the BBO is superior
to the BSA at maximizing the MLP.

Keywords: landslides susceptibility assessment; multilayer perceptron; BBO algorithm; BSA algorithm

1. Introduction

Among the most significant environmental risks in the world these days are land-
slides, having both human and fiscal consequences [1]. Of the most challenging tasks
in geological engineering is predicting the movement of landslides in hilly and reser-
voir environments [2]. Natural calamities are only one of many potential causes of a
landslide catastrophe. In addition to the geological circumstances in which they occur,
several additional factors may cause landslides to develop [3]. Predicting the deformation
and development of landslides [1] is one of the most difficult and crucial challenges in
geomorphology [4]. Deformation monitoring and prediction of landslide disasters may
lessen the danger of landslides to human populations, property, and infrastructure by
understanding the instability process [2] and altering landslide characteristics [5]. Natural
hazard studies have a serious problem in predicting landslide susceptibility. These prob-
lems manifest in landslides [3] since they are complicated, dynamic [4], and unpredictable
systems [5]. Various reasons, including geological, hydrological [6], morphological, and
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human-induced [7], might be accountable for the movement they create [6,7]. Various ways
of predicting landslides have been developed and deployed in recent years, which may be
split into two main groups: quantitative and qualitative methods [8]. In this complicated
geological environment [8], conventional methods for predicting total landslides are inade-
quately exact [9]. Various models, along with the landslide movement prediction technique
of analysis [10,11], frequency ratio [12], weights of evidence [13–15], the logistic regression
model [16], MCDM models [17], and neural network [18] were used. A mathematical,
statistical [9], nonlinear theoretical [10], and complete model followed the initial empirical
model for predicting landslide susceptibility. This progression has taken place during the
previous 50 years [19]. With the ongoing updating of artificial intelligence systems, certain
nonlinear landslide susceptibility analysis models have been built [11–17].

Due to the model’s high complexity, researchers tend to provide an optimized solution.
Optimization is finding the optimum values of a problem’s variables to minimize or
maximize an objective function. In other words, optimization is finding the best solution to
a trial by adjusting the importance of the variables that impact the result [18]. Optimization
aims to minimize or maximize an objective function, a mathematical expression that reflects
the item being improved. For example, suppose a company wants to make the most
money possible. In that case, the objective function could be a mathematical model of the
company’s profit based on many factors, such as production levels, prices, and advertising
costs. By adjusting these variables and finding the values that maximize the objective
function, the company may find the most feasible solution to the problem of maximizing
profits.

Due to the improvement of numerous solutions during optimization, multi-solution-based
algorithms have a more significant local optimum avoidance by nature. In this case, more
solutions may allow a solution trapped in a local optimum to escape from it. Multiple-
solution-based algorithms examine a more significant section of the search region than
single-solution-based algorithms; hence, the likelihood of acquiring the global optimum is
greater [18,19]. In addition, information about the search space may be shared across several
solutions, which expedites progress toward the ideal. Despite their many benefits, multi-
solution-based algorithms need additional function assessments. The most popular single-
solution-based algorithms are hill climbing and simulated annealing. Both algorithms are
based on a similar premise, but stochastic cooling allows SA to avoid local optimums more
effectively [18].

Iterated Local Search (ILS) [20] and Tabu Search (TS) [21] are two modern algorithms
based on a single solution. Popular multi-solutions-based algorithms [21–23] include
genetic algorithms (GA), particle swarm optimization (PSO), ant colony optimization
(ACO), and differential evolution (DE). Darwin’s evolution of natural selection impacted
the design of the GA algorithm. This algorithm sees solutions as solutions, and their
parameters reflect their DNA. This algorithm is primarily motivated by natural selection,
with the best individuals preferring to contribute more to improving mediocre solutions.

The GA algorithm represents solutions to a problem as “individuals” in a “population”,
with the parameters of each individual (its “genes”) reflecting different components of
the solution. The GA algorithm employs concepts that imitate the process of natural
evolution, such as selection, crossover (recombination), and mutation, to a population
of individuals. A genetic algorithm seeks to find the ideal solution to a problem by
“evolving” a population of solutions over time. The concept of “survival of the fittest” is
implemented in the GA algorithm via the selection process, in which the best individuals
have a greater chance of being picked to participate in the evolution of the population.
This guarantees that the population improves over time since the best solutions will likely
be passed on to future generations. The PSO algorithm resembles the feeding behavior
of flocks of birds and schools of fish. This algorithm improves solutions relative to the
best solutions previously reached by each particle and the best solution improved by the
“swarm”. The ACO algorithm imitates the collective behavior of ants in finding the shortest
route from the nest to the food source. DE employs simple formulae that incorporate
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the parameters of previous solutions to expand the candidate pool for a specific problem.
Two features distinguish the two types of nature-inspired algorithms [24]: enhancing
solutions until they fulfill end criteria and splitting the optimization process into two parts,
exploration and exploitation. Exploration is an algorithm’s propensity to display highly
unexpected behavior, resulting in significantly different solutions. Significant differences
in the solutions motivate a deeper exploration of the search space and, therefore, the
identification of its most promising sections. As an algorithm leans toward exploitation,
solutions often encounter changes on a smaller scale and prefer to explore them locally. A
combination of exploration and exploitation may lead to discovering the optimal global
solution for a particular optimization problem [18].

The conventional numerical methods mainly include catastrophe theory [20], PSO
neural network, cooperative work theory [21], back propagation neural network model [22],
support vector regression model [23], and chaos model (Huang et al., 2018), decision tree
model [24,25], long short –term memory [26], neural network extreme machine learning
model [27], Elman neural network model [25] and so on. A combination method has been
applied to attain efficient outcomes in the current work [26]. In this regard, researchers are
now using meta-heuristic strategies to improve efficiency due to the limitations of current
models, including local minimum and dimension dangers [27]. In this respect, all of these
meta-heuristic approaches have a great capacity to resolve optimization issues, and for
such reason, they have indeed been implemented in several scientific disciplines. The
algorithms have several characteristics, and the majority are population-based techniques.
Throughout the calculations, we could perhaps find the best design for each of them. It
might be beneficial to create a novel technique that enhances the process or outcomes
of optimization.

These techniques are used to find high-quality solutions that are based on the best
possible computing structure [28]. Several advanced strategies (including parallel compu-
tation, multi-agent systems, and decomposition of the search space) [29] are often used in
hybrid metaheuristic algorithms. The problems are solved collaboratively by a proactive
search agents group acting individually and with parallel computation. They solved many
large-scale distributed and dynamic systems with successful results [30]. Previous studies
have shown that not estimating the participation of each parameter in the classification
by the optimized ANN model is one of the primary challenges of neural network model
optimization algorithms. It also has some limitations and drawbacks, including high
computational power requirements and a significant computation time for determining
the final result. In cases where immediate results are required, both weaknesses can be
problematic [31]. Therefore, in order to have an idea of how effectively different algo-
rithms work, this research was conducted. This research applies optimization methods
with the neural network model [32] for comparison methods. The complete optimization
methods discussed in this sector work quite well [33]. Researchers have found that the
hybrid landslide prediction and zoning method yields the most reliable and productive
results. Therefore, the combined methods employed comprise multilayer perceptron and
two nature-inspired hybrid techniques of biogeography-based optimization (BBO) and
backtracking search algorithm (BSA). This research is one of the first practical studies that
attempt to analyze and enhance the outcomes of the neural network model in conjunction
with optimization algorithms using a novel strategy. Its findings may be beneficial in
natural disaster management.

2. Review of Case Study

In western Iran, on the border with Iraq, lies the 280203-square-kilometer Kurdistan
province, which accounts for around 1.7% of Iran’s total land area (between 34◦45′ and
36◦28′ north latitude and 45◦34′ and 48◦14′ east longitude). Its position relative to the
Greenwich meridian is measured in minutes. This study’s area encompasses the western,
central, and southern half of the province (Figure 1). The majority of this province consists
of mountains, and the number of peaks in this area is very high. The average mountain
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slope is 30–100%, and the mountains range in height from 1700–2300 m. In general, most of
the geological formations in this area have evolved in the second geological epoch. The area
under study is located in the Sanandaj-Sirjan tectonic zone. The average annual rainfall
in this province varies from around 350 mm to more than 1000 mm, and its climate is
Mediterranean. When landslides are most common, March and April have the most rainfall
annually. Topography and air currents considerably impact the province’s yearly average
temperature, which varies from roughly 2 degrees Celsius at heights to about 15 degrees
Celsius in low-lying regions and plains.
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3. Methodology

Maps, modelling methods, validation of the modelling methods, and analysis of the
optimization algorithms all need to be completed in order to complete the three tasks
outlined above. Detailed explanations of these steps are provided below.

3.1. Artificial Neural Network

ANN is an algorithm patterned after biological nerve cells (neurons) structure and can
learn independently [34]. Numerous applications, including robotics, pattern recognition,
medicine, power systems, signal processing, prediction, and system modeling, make
use of ANN. Figure 1 depicts a basic example of ANN [35]. ANN comprises neurons
interconnected by synaptic connections. In addition, it acquires new knowledge by drawing
conclusions or generating generalizations from the diverse sample data provided to it. The
ANN technique is utilized to solve nonlinear issues. Data is separated into a training set
and a test set. Adjusting the weights of the neural network in order to lower or minimize the
error rate is the objective of the training procedure. This procedure will continue until the
desired result is attained. The degree of performance of the training process is determined
by evaluating data not utilized during training in the neural network [26–30]. Feedforward
backpropagation is an effective design for training neural networks. The feedforward neural
network moves from the input layer of the model to the output layer in a single direction.
By simulating the human brain’s learning process, artificial neural networks (ANNs) are
computer software that performs core functions such as producing new data from the
data obtained by the brain via learning, remembering, and generalizing. Consequently, of
numerical simulations of the learning process, which was inspired by the human brain,
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artificial neural networks have emerged. Parallel distributed networks, connected networks,
and neuromorphic networks are different names for artificial neural networks.

Two modules comprise the mathematical model of an artificial neuron: (1) linear
activation and (2) a nonlinearity that confines signal levels within a specific range. Presented
is the structure of a convolutional neural network architecture [36]. For instance, the
aggregation function represents the cell body, and the inputs represent the dendrites [37].
The synapse is referred to as an activation function, a nonlinear function. Similar to an
axon, the link between the network and the nonlinear unit exists.

The ANN technique is effective with photos, text, and data tables. When dealing with
nonlinear functions and learning weights, having the benefit of being able to transform
any input into an output successfully ANN is the best technique. Thanks to the activation
nonlinear structure the ANN can master any convoluted connection between input and
output data, known as a universal approximation. ANNs are being used in the scientific
sector [28,29].

The ANN approach uses photos, text, and data tables [30,31]. Figure 2 depicts the
architecture of the artificial neural network [38]. Every bias weight is composed of the sum
of all neuron signals. All input weights are added to each neuron’s output. Backpropagation
is beneficial to alter the weights of a neural network in order to obtain gradients. During
backward propagation, the gradient may completely vanish or expand.
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3.2. Hybrid Model Development

Figure 3 of the study of the flowchart displays the input parameters for predicting
the output (the success rate of landslide susceptibility mapping prediction) [38]. The
hybrid models used in this experiment combined the BBO and the BSA. ANNs are used
in metaheuristic algorithms [39]. In these combinations, optimization methods are used
instead of the Levenberg-Marquardt (LM) method [40], which is usually used for training.
Multiple steps comprise this procedure, including:

(a) Determining the ideal structure of the ANN model: we are aware that the structure
of the ANN has a significant impact on the accuracy of its predictions [41]. As the
model’s backbone, it should be optimized in hybrid models [39]. The network with
several processors in the intermediate layer and a Tansig activation function is the
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optimal solution, as determined by a trial-and-error procedure applied to various
tested configurations.

(b) Specify the problem function and use the BBO-MLP and BSA-MLP models.
(c) Specify precise parameters such as population size, number of iterations, and

goal function.
(d) Minimizing inaccuracy by modifying the ANN’s weights and biases
(e) Storing the optimum solution when a termination condition is met.
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In order to find the minimum error (e.g., finding the best predictive network) during
the new model evaluation, we used the term mean square error (here abbreviated as MSE)
as the objective function. It indicates the quality of each iteration’s resulting solution. In
Equation (1), the MSE is given as a formula.

MSE =
1
U

U

∑
i=1

∣∣∣Siobserved − Sipredicted

∣∣∣ (1)

Siobserved, and Sipredicted display the expected and actual production figures. U also
represents the quantity of samples.

In this study, the iteration number is set to 1000. The calculated RMSEs or MSEs are
shown as a convergence curve that illustrates the optimization behavior of the architecture
given the number of iterations. These curves are shown in Figure 3 for the nine tested
population amounts: from 500 to 50 with 50 intervals such as ([500, 450, 400, 350, 300, 250,
200, 150, 100, and 50]). This approach ensures the problem is fixed using techniques of
uniform complexity.

3.2.1. Biogeography-Based Optimization (BBO)

Using biogeography as a foundation, the BBO algorithm attempts to map the geo-
graphic distribution of living organisms. In the 1960s, [42] developed mathematical models
of biogeography. They concentrated primarily on the distribution of species inside and
between the surrounding ecosystems, as well as the migration of species between habitats.
There has been a great increase in the study of biogeography since then. It was not until
2008 that Simon developed a general-purpose optimization algorithm [43]. Listed here are
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its BBO steps. In the first step of the BBO, a random population is produced and given the
label ‘habitat,’ similar to that in prior evolutionary techniques [44,45]. The habitat suitability
index (HSI) and the suitability index variable (SIV) are used to assess the suitability of
these individuals (i.e., possible solutions). Two of the BBO’s first functions, migration and
mutation, are detailed as follows:

As a first step, feasible solutions are refined to achieve higher levels of quality. In
order to establish whether or not SIV adjustments are required, an immigration rate (λg)
is calculated [46]. Emigration rates (µg) are established in situations where modifications
are needed. On a probabilistic basis, it is utilized to figure out which solution to mi-
grate. It excludes highly-fitting solutions from consideration in order to prevent random
corruption [44,47].

There are many effective risks in a region. For this reason, making a series of changes
in the amount of HIS is not out of mind and its balance may be abnormal. In these cases, a
factor is evaluated for each of the population relations in the mutation or non-mutation
state, and this factor determines the solution to the existing problems. Therefore, the higher
the probability, the higher the accuracyIf S represents the number of species, then the
mutation rate is shown as the following equation:

Equation (2):

Pf
g =


−
(
λg + µg

)
Pg + µg+1

Pg+1

−
(
λg + µg

)
Pg + λg−1

Pg−1

−
(
λg + µg

)
Pg + λg−1

Pg−1

+ µg+1
Pg+1 1 ≤ S ≤ Smax − 1,

 (2)

The subsequent approach depicts the conventional BBO algorithm introduced by
Simon (Simon, 2008; Lim et al., 2016).

A Classical BBO Algorithm

(1) BBO parameters require configuration, which consists of emanating a representative
method for habitats, that is concerned with hanging and initializing the highest
migration rate, transformation rate, and elitism parameter.

(2) Create a random set of habitats based on the possible solution sets and initialize them.
(3) Each habitat’s migration and emigration rates can be determined by utilizing its HSI.
(4) Migrate in a random fashion to change the environment of each special habitat. The

HSIs were then computed again.
(5) Each habitat should be assigned a mutation rate based on the number of species present.
(6) Random mutations should be applied to every non-light habitat. It was then recalcu-

lated for each individual HSI.
(7) To begin the next iteration, go to step one (3). Repeat for as many generations as

necessary till you have come up with the right answer.

3.2.2. Backtracking Search Algorithm (BSA)

BSA is a new evolutionary algorithm based on populations [48]. In an iterative process,
the objective function is reduced to the minimum possible value. BSA has five evolutionary
mechanisms: initialization, selection-I, mutation, crossover, and selection-II. As depicted
in Figure 4, the BSA’s general flowchart is shown. It is explained in more detail in the
following sections.
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A. Initialization: BSA’s initial population (P) consists of D variables and N individuals,
which are generated at random. Equivalently, Equation (3) states it this way:

Equation (3):
Pij ∼ U

(
lowj, upj

)
. (3)

For I = 1, 2, . . . N and n = 1, 2, . . . , D, where N is the population proportion, D is the
tribulation of dimension, and U is the uniform distribution.

B. Selection-I: Pre- and post-selection are handled by the selection-I and selection-II
operators, respectively, in BSA. Using the pre-selection operator, the historical population
(Pold) is acquired, and this data is used to decide the search’s direction. To find out what
(Pold) is valued, you must perform the following three steps:

Equation (4) is used to randomly construct the first historical population.
Equation (4):

Pold
ij ∼ U

(
lowj, upj

)
(4)

Pold is recalculated at the beginning of each iteration by applying Equation (5)
Equation (5):

i f a < b then Pold := P/a, b ∼ U(0, 1). (5)

where := is the update procedure, and a and b are random numerals.
Using Equation (6), we can rearrange the individuals of the historical population

as follows:
Equation (6):

Pold := Permuting
(

Pold
)

(6)

The permutation function is a random shuffling function.
C. Mutation. The mutation is applied to the first trial population (mutant) by BSA as

described in Equation (7).
Equation (7):

Mutant = P + F·
(

Pold·P
)

(7)

where F controls the amplitude of the search direction matrix (Pald-p).
D. Crossover. As a result of BSA’s crossover, the final trial population (T) is formed.

Two steps are involved:
1. For the trail population T, a binary-valued matrix (matrix) is constructed with a size

of N × D, where N is the number of individuals.
2. n ε {1,2, . . . , N} and m ε {1, 2, . . . , D} are the initial values of the binary integer matrix.
The value of T is updated by using Equation (8) as follows:
Equation (8):

Tn,m := Pn,m (8)

E. Selection-II. BSA greedy selection is the name given to selection-II. The trail popu-
lation T is replaced if its fitness values outperform those of the population P. Whichever
individual with the highest fitness value yields the most effective global solution.
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F. Fitness evaluation. In order to evaluate a group of individuals, the fitness evaluation
is utilized. An individual’s level of fitness is the outcome of this algorithm.

These procedures, apart from the initial setup, continue indefinitely until the pausing
requirements have been met. A collection of BSA processes is shown in Figure 4. During
initialization, the population is seeded with a random population of individuals (P). Indi-
vidual historical populations (Pold) are also generated in the Selection-I process. There’s a
random rearrangement of Pold members in this stage, and the Pold value is modified. There
is no change in Pold value after several repetitions. With the help of Pold and P, a mutation
process develops a new experimental population (mutant). Furthermore, P and Mutant are
used to create a population of the final cross-trial (T). P is eventually updated with all of
the individuals in T in Selection-II by determining which one has the best fitness and then
selecting that individual [48,49]. Those who contributed to the work, as long as you do not
meet the halting conditions, you will keep switching between the first and second options.
Figure 4 depicts the BSA flowchart in all of its detail.

3.3. Landslide Inventory Map (LIM) and Landslide Conditioning Factors

Applying the Artificial Intelligence optimization algorithms (BBO and BSA) in assess-
ing and predicting high-risk regions requires a solid database containing information and
factors that influence landslide occurrence [40]. Based on prior research and experts’ opin-
ions, 16 parameters influencing slope movements were subsequently identified [50]. Using
the DEM layer in ArcGIS 10.3, the slope, gradient, orientation, transverse, and longitudinal
curvature layers were generated [51]. Additionally, the Normalized Difference Vegetation
Index (NDVI) layer was developed on the USGS website using Landsat satellite images
from ETM sensors using Arc GIS 10.3 on 8 January 2019. In each of the one hundred cities
evaluated using the geodatabase, the lithological strata and radius from the fracture were
derived using the same method. Likewise, lithological layers [52] and fault distance were
extracted from the geological maps of thousand cities investigated [41].

Interpolation Distance Weight (IDW) was employed to construct the precipitation lay-
ers founded on long-term annual mean rainfall at rain gauge stations in study cities. Thus,
(1) distance from the fault, (2) profile curvature, (3) elevation, (4) NDVI, (5) topographic
wetness index (TWI), (6) rainfall [53], (7) stream power index (SPI), (8) terrain roughness
index (TRI), (9) slope degree, (10) plan curvature, (11) sediment transport index (STI),
(12) distance from the river, and (13) distance from the road. Table 1 lists the characteristics
that determine the categorization of landslides. Figure 5 demonstrates that ArcGIS 10.3,
SPSS 20, and MATLAB were used to assess and execute models and methods. As shown
in Figure 6, databases on the causes of landslides in Sanandaj, Saghez, Baneh, Sarvabad,
Marivan, and Saghez were developed by extracting data from these layers.
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Table 1. Landslide conditioning factors and their class.

Factor Classes GIS
Data Type Scale Classification

Method

Profile

−25.21
GRID 30 m × 30 m Natural breaks−1.11

0.34–21

Plane

Convex −16.58

GRID 30 m × 30 m Natural breaksFlat −0.62

Concave 0.22–15

SPI (Stream
Power Index)

−8.4

GRID 30 m × 30 m Manual

−4.3

−1.37

0.28–2.2

2.3–8.5

TWI
(Topographic

Wetness Index)

1.7–5.3

GRID 30 m × 30 m Natural breaks

5.4–6.7

6.8–8.4

8.5–11

20-Dec

Distance
to River

200

Line 30 m × 30 m Natural breaks

400

600

800

>800

Rainfall

400

GRID 30 m × 30 m Natural breaks

500

600

700

800

NDVI
(Normalized

Difference
Vegetation

Index)

−1.04

GRID 30 m × 30 m Natural breaks

0.041–0.13

0.17–0.20

0.24–0.32

0.33–0.65

Slope

<7

GRID 30 m × 30 m Manual

15

22

32

>80
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Table 1. Cont.

Factor Classes GIS Data
Type Scale Classification

Method

Aspect

a-Northwest, b-South, c-North,
d-Southeast, e-East, f-West,

g-Southwest, e-Northeast, j-North
k-Flat,

GRID 30 m × 30 m

Azimuth

classification

Land use Sliding influential factors Polygon 1:25,000 Natural breaks

Geology

Qt1

Polygon 1:100,100 Natural breaks

OMI, OMm1, OMI,

Jkb2, Ksfsh, kussh, K1m,

Pr

Qiib, Oibv

hmet

Urm

PEf

TRI (Terrain
Ruggedness

Index)

0.11–0.38

GRID 30 m × 30 m Natural breaks

0.39–0.46

0.47–0.52

0.53–0.6

0.61–0.89

STI (Sediment
transport index)

0–0.45

GRID 30 m × 30 m Natural breaks

0.45–7.44

7.45–28.2

28.3–52.7

52.8–82.6

Distance
from Road

100

Line 1:25,000 Manual

200

300

400

>500

Distance
from Fault

100

Line 1:100,100 Manual

200

300

400

>500

Elevation

<1000

GRID 30 m × 30 m Natural breaks

1500

2000

2500

>3000
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4. Results and Discussion

The MATLAB environment tests analyze and simulate model architectures in the
study. To find the best design, several networks with different numbers of layers and
types of neurons have been built. When the number of layers and neurons in a standard
ANN is changed, the accuracy of the models also changes (see Table 2). On average,
based on the RMSE and R2 indicators, the best network was created using a feed-forward
back-propagation approach with six hidden units (i.e., the tansig function and six neurons
in the hidden layer) (Table 2). Initial optimization results are used as a starting phase for
different optimization methods. The best predictive network results from the model with
the highest score (or least rank in Table 2). It is noteworthy that the scores came directly
from the model prediction result accuracies. For instance, the lowest RMSE obtained results
in a higher score for the specified model. However, for the R2, the higher R2 will result
in a higher score. Therefore, the next sections make use of the results of these networks.
Figures 7 and 8 further show how the MSE changes when the amount of each neuron per
hidden layer increases or decreases. Table 2: A sensitivity study of forecasting landslide
susceptibility mapping’s number on varying numbers of neurons.

Table 2. Change in neuronal density as a predictor for landslide susceptibility mapping: sensitivity analysis.

Model ID Number of
Neurons

RMSE
Training

RMSE
Testing

RMSE
Total

Scoring
Total Score RANKTrain Test Total Data

ANN_1 1 1.214 1.230 1.222 1 1 1 3 10
ANN_2 2 0.873 0.891 0.875 2 2 2 6 9
ANN_3 3 0.629 0.655 0.635 5 4 5 14 6
ANN_4 4 0.649 0.624 0.641 4 5 4 13 7
ANN_5 5 0.560 0.553 0.561 8 9 8 25 3
ANN_6 6 0.721 0.717 0.722 3 3 3 9 8
ANN_7 7 0.570 0.573 0.579 7 7 7 21 4
ANN_8 8 0.554 0.557 0.550 10 10 10 30 1
ANN_9 9 0.549 0.551 0.555 9 8 9 26 2

ANN_10 10 0.582 0.578 0.584 6 6 6 18 5
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Figure 7. The variation of mean squared error versus iterations obtained from the proposed BBOMLP
structures in predicting landslide susceptibility mapping.
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The succeeding optimization strategies will be built upon the foundation of the first
optimization discovery phase. Thus, these networks’ outputs are utilized in the next parts.
Better prediction accuracy is seen in structures with less MSE. Regression and classification
results may be solved more accurately using the proposed model’s estimated values. The
proposed BSAMLP architectures in forecasting landslide susceptibility mapping for various
hybrid BBOMLP and BSAMLP structures display variation in mean squared error (MSE)
against iterations in Figures 6 and 7. The BBO and the BSA have settled on 400 and 450
(Nswarm) as the optimal solution based on these data.

Error Analysis

The findings of the second stage are presented by comparing real data with the
anticipated values of the hybrid design. In the majority of instances, receiver operating
characteristic (ROC) curves are used to determine the optimal hybrid design (AKA ROC
curves). As stated before, the graph depicts how the diagnostic capabilities of a binary
classifier system vary when the discriminating threshold is altered. An AUC of one would
be desirable, whereas a result of zero would indicate no correlation. There is no connection
between a predicted value and its actual zero value. The AUC summarizes ROC curves
by assessing a classifier’s ability to differentiate across classes. With increasing AUC,
the model’s ability to differentiate between positive and negative classifications grows.
Figures 9 and 10 show the ROC curves for the specified hybrid BBO-MLP and BSA-MLP
models. The best prediction model (based on the proposed hybrid BBO and BSA models)
was built for population sizes 450 and 400 based on the results of the iteration phase. This
outcome is the result of 20,000 MSE modeling and assessment iterations.

Step two of the grading process involves the use of AUC to determine the optimal
hybrid designs. In the BBOMLP training datasets, the expected AUC accuracy indices
for population sizes of 150, 400, 500, 50, 250, 300, 100, 450, 100, and 350 were 0.914, 0.909,
0.906, 0.906, 0.905, 0.903, 0.899, 0.896, 0.896, and 0.883, respectively (Table 3). Likewise, the
BBO-MLP testing datasets generated AUC values of 0.842, 0.834, 0.809, 0.804, 0.801, 0.798,
0.792, 0.788, 0.773, and 0.743 for swarm populations of 150, 300, 500, 200, 250, 450, 400, 100,
50, and 350, respectively. Regarding testing and training predictive modeling outputs, the
optimal hybrid technique to forecast landslide susceptibility mapping (e.g., how well the
algorithm may forecast landslide susceptibility) has a swarm population of 150. Moreover,
it proves that the outcome of phase one closely mirrors those of step two. In the event of
BSAMLP (Table 4), the testing and training AUC values were (0.813, 0.805, 0.804, 0.803, 0.799,
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0.799, 0.794, 0.795, 0.789, and 0.789) and (0.771, 0.771, 0.771, 0.758, 0.756, 0.727, 0.715, 0.710,
0.706, 0.702, and 0.694) under the same swarm population conditions (Figures 11 and 12).

Table 3. The Results of AUC for different BBOMLP proposed structure in predicting the landslide
susceptibility mapping.

Population
Size

Network AUC Results Scoring Total
Score

RANKTraining Testing Training Testing

50 0.906 0.773 8 2 10 6
100 0.899 0.788 4 3 7 9
150 0.914 0.842 10 10 20 1
200 0.896 0.804 2 7 9 7
250 0.905 0.801 6 6 12 5
300 0.903 0.834 5 9 14 3
350 0.883 0.743 1 1 2 10
400 0.909 0.792 9 4 13 4
450 0.896 0.798 3 5 8 8
500 0.906 0.809 7 8 15 2
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Table 4. The Results of AUC for different BSAMLP proposed structure in predicting the landslide
susceptibility mapping.

Population
Size

Network AUC Results Scoring Total
Score

RANKTraining Testing Training Testing

50 0.789 0.702 1 3 4 9
100 0.789 0.694 2 2 4 9
150 0.795 0.710 4 5 9 6
200 0.799 0.727 5 7 12 4
250 0.813 0.756 10 8 18 2
300 0.803 0.689 7 1 8 7
350 0.794 0.706 3 4 7 8
400 0.805 0.771 9 10 19 1
450 0.804 0.758 8 9 17 3
500 0.799 0.715 6 6 12 4
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The final landslide susceptibility mapping using both BBO-MLP and BSA-MLP is
shown in Figure 13. This map was prepared based on swarm sizes 150 and 400, which
have the highest accuracy and the lowest MSE in the two models. The results show that the
BBO-MLP has high accuracy in optimizing. Additionally, according to findings [54], it must
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be emphasized that the BBO and BSA has certain appealing qualities as well. Their findings
are comparable to the results of this study which have been done on an immense scale and
expresses the high accuracy of the algorithm in ANN model optimization operations. Ad-
ditionally, another Iran study used ANN for susceptibility to landslides [13]. A comparison
of its findings with the results of this study has shown that the optimized algorithm ANN
had a higher AUC. Prior studies are supplemented by using the BBO-MLP and BSA-MLP
models in landslide susceptibility mapping. To some extent, the investigation results may
also serve as a source of information.
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Additionally, the maps indicate that the northern part of the study area in western Iran
has fewer landslides and its sensitivity to landslides is low. However, the northwest and
southeast part of the study area in Kurdistan province is in accordance with mountainous
areas and has a high potential for the risks of landslides, especially in the rainy season. As
can be seen in the map, circular points show the landslide points in the status quo, which
adapt to high-risk and high-risk classes indicating the high accuracy of the two algorithms
used for optimization. Other areas that are classified in the northern part of the moderate
risk indicate that according to the model forecasts these areas also have the potential for
landslides and should be taken into account in crisis management planning.

5. Conclusions

Hybrid algorithms are becoming more popular as a solution to a variety of complex
issues. Two new methods, BBO and BSA, have improved landslide susceptibility mapping.
For identifying the spatial link between landslide-conditioning elements, an MLP neural
network was used. Conditioning factors were evaluated based on factors, including; eleva-
tion, slope aspect, slope angle, NDVI, distance to fault, plan curvature, profile curvature,
rainfall, distance from the river, distance to road, SPI, STI, TRI, TWI, land use, and geology.
There were 1072 sites in the landslide inventory database, separated into two groups for
training and testing the model, each comprising of 536 landslides. The results showed AUC
values; the Optimized metaheuristic algorithm was calculated to be 0.842 in swarm size 150
for BBO-MLP and BSA-MLP, it was obtained in swarm size 400. The landslide susceptibility
map was created based on the best-fit hybrid model specified as an optimized category
with a higher AUC. The real inspiration for using BBO and BSA algorithms in the current
study was the widespread use of conventional optimization for landslide susceptibility
mapping. The algorithm’s computational parameters were effectively optimized via a
synthetic neural network. That model’s ideal structure was ultimately discovered after
significant trial and error. There are fourteen landslide conditioning factors in the spatial
database in different ecological, geographical, and structural dimensions. By random
selection, the proposed models are trained on seventy percent of the identified landslides
using an accidental sampling method, and their precision is evaluated on the residual thirty
percent. To evaluate the accuracy of the forecasting models, the area under the curve (AUC)
criterion was used. The precision indicator of the area underneath the receiving operating
characteristic curve (AUROC) demonstrated that the maps created by the BBO-ANN (with
an AUROC value of 0.842) are more precise compared to those generated by the BSA-ANN
(with an AUROC value of 0.771). Additionally, the corresponding estimated AUCs in this
regard were for BBO-MLP 0.842, 0.834, 0.809, 0.804, 0.801, 0.798, 0.792, 0.788, 0.773, and
0.743 and BSA-MLP 0.813, 0.805, 0.804, 0.803, 0.799, 0.799, 0.794, 0.795, 0.789, and 0.789,
respectively. A 150-person swarm size characterizes the best-fit hybrid model for predicting
landslide susceptibility mapping, and it belongs to the BBO-MLP model. According to
the findings, these algorithms functioned well to enhance the MLP’s learning potential.
Additionally, adding metaheuristic algorithms such as BBO may significantly enhance
the performance of the ANN with a drop in prediction MSE of 1.230 to 0.551 percent.
Three well-known accuracy criteria—MSE, RMSE, and AUROC—were employed to create
a rating system that compared the practicality of the utilized model. The result of this
part showed that effectively the BBO and BSA algorithms increase the MLP’s capacity
for learning.

Therefore, Evolutionary science can be utilized as a first step to improve the reliability
of neural computing. The BBO-MLP ensemble takes less time to train correctly than the
BSA-MLP, according to the data. Additionally, the BBO algorithm enhances the accuracy
of the MLP. Moreover, referring to the calculated total ranking scores of 10, 7, and 5, it be-
comes apparent that the BBO performs more efficiently than the BSA in optimizing the MLP.
However, the highest prediction accuracy is found in structures with less error and in this re-
search, each of the two algorithms achieved a lower error (RMSEBBO-MLP and BSA-MLP = 0.551
and 0.557). Additionally, despite the superiority of the BBO-MLP in learning landslide



Land 2023, 12, 242 23 of 25

patterns, both ensembles presented a close prediction accuracy (AUCBBO-MLP = 0.842 and
AUCBSA-MLP = 0.771). In general, this BBO-MLP is more effective in improving neural
network performance in this paper.
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