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Abstract: Exploring protected area (PA) siting from a biodiversity perspective is critical in mitigating
human impacts on ecosystems. This paper used the MaxEnt model to predict the geographic
distribution patterns of wetland species in Zhengzhou and the environmental factors affecting
species’ habitat selection. Environmental variables were screened by correlation analysis to avoid
affecting the prediction results due to overfitting of the model. The AUC value of the training
set of the model ROC curve was above 0.8, and the prediction accuracy was high. The prediction
results showed that the only nature reserve in Zhengzhou, Yellow River Wetland Nature Reserve,
currently covers only 10.25% of the total area of the high suitability areas for plants and 17.54%
of the high suitability habitat areas for waterfowl in the whole area of Zhengzhou. The potential
suitability areas of wetland species outside the reserve can provide a basis for site selection for wetland
conservation planning in Zhengzhou. It was found that the geographic distribution of wetland species
in Zhengzhou is constrained by the distribution of water bodies, bioclimatic variables, land cover,
and population density.

Keywords: Zhengzhou; urban wetland; species distribution modeling; protected area (PA) systems;
conservation gaps

1. Introduction

Although artificial wetlands cannot replace the ecological functions provided by natu-
ral wetlands [1], as natural wetlands diminish with demand for agriculture or urbanization,
artificial wetlands in urban environments become increasingly crucial for wetland species
such as waterfowl [2]. As a city’s most biodiversity-rich ecosystem, wetlands are facing
a series of problems, such as decreasing scale and weakening functions due to climate
change and urbanization. Starting in the 19th century, establishing protected areas became
a meaningful way to mitigate and respond to the negative impacts of human activities
on global ecosystems [3]. Data from the State Forestry and Grassland Administration
show that China has established more than 10 types of protected areas, such as nature
reserves, scenic spots, forest parks, and geoparks, with the number of more than 10,000,
covering about 18% of the land area. However, with development and urbanization, the
problems of spatial fragmentation and conservation gaps have become more prominent in
nature reserve systems, and many important wetlands are not fully protected. The rapid
expansion of urbanization has caused damage to wetland ecosystems that is difficult to
reverse and costly to repair. Therefore, the construction of national ecological civilization
has put forward new requirements for wetland protection planning. On 24 December 2021,
the thirty-second meeting of the Standing Committee of the thirteenth National People’s
Congress adopted the Wetland Protection Law of the People’s Republic of China. It is

Land 2023, 12, 221. https://doi.org/10.3390/land12010221 https://www.mdpi.com/journal/land

https://doi.org/10.3390/land12010221
https://doi.org/10.3390/land12010221
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/land
https://www.mdpi.com
https://orcid.org/0000-0002-9624-8574
https://orcid.org/0000-0002-3006-1272
https://orcid.org/0000-0003-1482-5815
https://doi.org/10.3390/land12010221
https://www.mdpi.com/journal/land
https://www.mdpi.com/article/10.3390/land12010221?type=check_update&version=3


Land 2023, 12, 221 2 of 18

proposed that the objectives, tasks, general layout, protection, restoration priorities, and
guarantee measures of wetland protection planning should be clarified.

Maintaining species diversity is one of the essential priorities for the designation of
wetland reserves [4]. Understanding biodiversity characteristics in rapidly urbanizing
environments is vital to maintaining the stability of urban ecosystems [5]. In previous
studies, species occurrence and distribution data have been widely used to inform the
construction of PA networks [6]. The easiest way to incorporate this information is to use
point data directly, i.e., the locations where the species of interest were recorded. These data
may come from a variety of sources: museum records and surveys, collections of botanical
specimens or—in the case of point distribution data—online databases [7]. However, a
strength of point data is their availability, and increasingly point distribution data are
available through online databases. However, point data is also highly susceptible to
errors, such as inaccurate geographic coordinates or taxonomic records, misidentification
of species, or incorrect taxonomic nomenclature. In addition, some species’ presence
records may only relate to contemporaneous conditions [8]. Indeed, no area has complete
point data [9], and some species present may not be detected during extensive surveys,
thus making it almost impossible to investigate the entire possible range of most species
in detail.

Species distribution models (SDMs) [10] provide one way to overcome the typical spar-
sity of distributional data by associating them with a set of geographic or environmental pre-
dictors. Conceptually addressing errors caused by inadequate sampling and observations,
the statistical analysis of the relationships between occurrence and mapped environmental
predictors is usually based on records of species presence or abundance. Maps are often
created to show differences in the geographical suitability of single species [11,12]. The
currently applied species distribution modeling methods include: Ecological Niche Factor
Analysis (ENFA), Generalised Linear Model (GLM) [13] or Generalised Additive Model,
GAM), the BIOCLIM species distribution modeling package [14], the HABITAT and DO-
MAIN procedures [15], and the maximum entropy model. Additionally, there are other
methods. Among the non-regression methods, BIOCLIM was the first widely used SDM
package [16] and is based on the principle of relating the bioclimatic envelope of a species
to the range of many bioclimatic variables. DOMAIN, on the other hand, uses a similarity
measure to give an index of applicability of the prediction by calculating the minimum
distance to any presence record in the environment [17]. However, models that rely on
simple relational descriptions and variable weights tend to perform relatively poorly in
simulating current species distributions due to the complexity factor of species’ responses
to the environment [18]. In contrast, the maximum entropy model simulates the potential
spatial distribution pattern of a species by exploring [19], firstly, the non-random relation-
ship between the environmental characteristics of the species in its known range [20,21]
and, secondly, its potential habitat. This is achieved by using two available data collections:
the actual distribution of the species, and environmental variables [22,23].

The application of SDMs plays an essential role in quantifying species’ environmental
and ecological niches [24], evaluating species distribution in response to land use and other
ecological changes, and supporting conservation planning and PA selection [10]. However,
SDMs have been used less frequently in conservation planning [25,26]. Planning activities
are often conducted without involving an end-user or a stakeholder [27]. This has led to
questions about the utility of many conservation planning-related studies. In recent years,
Zhengzhou Municipal Party Committee and Municipal Government began to pay attention
to ecological construction as an important way to promote sustainable economic and social
development in Zhengzhou City.

In this study, the influence of bioclimatic and geographic factors on urban wetland
species was modeled based on the “MaxEnt” maximum entropy algorithm. Potential
habitats for wetland species were classified into four classes: unsuitable, low, moderate,
and high. By overlaying high suitability habitats with existing wetland reserves, the con-
servation gap areas of urban wetlands in Zhengzhou were initially identified. It provides a
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site selection basis for the conservation of urban wetlands and can lead to environmentally
friendly urban development and wetland conservation by local governments.

2. Materials and Methods
2.1. Study Area

There are two main reasons for choosing Zhengzhou as the study area. First, Zhengzhou
(34.7466◦ N, 113.6253◦ E) is one of the fastest-growing cities in China in terms of urbaniza-
tion [28]. In 2000, the built-up area of Zhengzhou was only 133 km2. Under the influence
of urban population growth and driving policy factors, the built-up area of Zhengzhou has
doubled in size since 2002, when construction of the Zhengdong New District began [27].
Secondly, Zhengzhou is located in the middle and lower reaches of the Yellow River, mean-
ing its wetlands are situated in the middle of three major migratory channels in China.
This location is an important place for wild birds and, especially, winter migratory birds,
specifically for wintering, resting, and feeding (Figure 1).
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Figure 1. (a) Location of Zhengzhou, Henan Province, in China; gray lines indicate the boundaries of
provinces and territories. (b) Henan Province; black lines depict city boundaries. (c) The blue line
shows the boundary of Zhengzhou City, which can be seen to the north of Zhengzhou close to the
Yellow River, the second-longest river in China.

In 2018, the Zhengzhou City Wetland Resources Protection Master Plan (2019–35) was
prepared by the Municipal Forestry Bureau with the support of the municipal government.
This resulted in a guarantee between the built and natural environment, with wetlands
recognized as an environmental resource whilst still supporting the development of urban
construction. A field survey of species resources was conducted by Henan Agricultural
University. This paper is one outcome of the survey and provides a scientific basis for
conservation planning.

2.2. Data Source and Processing
2.2.1. Records of Wetland Plants and Waterfowl Occurrence in Zhengzhou

Spatial data on wetland plant distribution were obtained from the 2018 Zhengzhou
wetland resource survey. Additionally, waterfowl occurrence records were combined
with the 2018 Zhengzhou bird survey and verifiable distribution data from the iNaturalist
data platform (https://www.inaturalist.org/ (accessed on 26 August 2021)). The wetland

https://www.inaturalist.org/
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dominant plant communities survey is based on the “National Wetland Resources Survey
and Technical Regulations (for Trial Implementation)” and the relevant provisions of the
“Zhengzhou Wetland Protection Regulations”. The survey was conducted in August
by a total of 76 investigators divided into 18 teams. The vegetation survey lines and
sample plots were laid out according to the distribution map of water systems. The census
was conducted using the sample line method and sample method. Three hundred and
twenty-three wetland plant diversity survey sample points were selected for the survey,
and 533 2 m × 2 m sample squares were set. Waterfowl surveys are conducted by direct
counting method within the survey area. When a waterbird is recorded in any observation
zone of a survey site, the survey site is considered to be the distribution point of that species
of waterbird.

Most species distribution modeling approaches require spatially independent occur-
rence record data input. However, researchers often introduce spatially autocorrelated data
into SDMs, reducing the ability of the model to predict spatially independent data [29]
and leading to results such as model overfitting or amplifying performance values [30].
Therefore, eliminating spatial aggregation of sample locations is essential for model cali-
bration and evaluation. In this paper, the spatially distributed data filter ‘Spatially Rarefy
Occurrence Data for SDMs’ (reduce spatial autocorrelation) in the SDM toolbox was first
used to dilute the data within one km [30] of other data points. After filtering the data
in this way, 211 wetland plant distribution points and 108 waterfowl distribution points
remained.

2.2.2. Environmental Variables

According to the references and the current situation of Zhengzhou City, a total of
27 environmental variables were initially selected, including 19 bioclimatic variables; three
topographic variables (elevation, slope, and slope direction); two land cover variables (land
cover type and normalized vegetation index); two habitat suitability variables (distance to
roads and distance to water bodies); and one population density variable.

• Bioclimatic variables

The bioclimatic variables data were derived from WorldClim Global Climate Data
version 2.0, which has a spatial resolution of approximately 1 km2. The data include
monthly temperature (minimum, maximum, and average); precipitation; and 19 other
bioclimatic factors (Table 1). The weather station data was interpolated by using thin slab
samples and MODIS satellite data to improve the prediction accuracy of the temperature
variables by 5–15% [31]. WorldClim data have been shown to be important predictors of
species distribution in a variety of studies.

Table 1. Names and units of bioclimatic variables.

No. Variable Name Units

BIO1 Annual Mean Temperature (◦C)
BIO2 Mean Diurnal Range (Mean of monthly (max temp–min temp)) (◦C)
BIO3 Isothermality (BIO2/BIO7) (×100)
BIO4 Temperature Seasonality (standard deviation ×100) C of V
BIO5 Max Temperature of Warmest Month (◦C)
BIO6 Min Temperature of Coldest Month (◦C)
BIO7 Temperature Annual Range (BIO5-BIO6) (◦C)
BIO8 Mean Temperature of Wettest Quarter (◦C)
BIO9 Mean Temperature of Driest Quarter (◦C)
BIO10 Mean Temperature of Warmest Quarter (◦C)
BIO11 Mean Temperature of Coldest Quarter (◦C)
BIO12 Annual Precipitation (mm)
BIO13 Precipitation of Wettest Month (mm)
BIO14 Precipitation of Driest Month (mm)
BIO15 Precipitation Seasonality (Coefficient of Variation) C of V
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Table 1. Cont.

No. Variable Name Units

BIO16 Precipitation of Wettest Quarter (mm)
BIO17 Precipitation of Driest Quarter (mm)
BIO18 Precipitation of Warmest Quarter (mm)
BIO19 Precipitation of Coldest Quarter (mm)

• Topographical variables

Topographic data were taken from the NASA DEM Digital Elevation Model (DEM)
released on 13 February 2020, which has a resolution of 30 m. The 3D Analyst in ArcGIS
10.8 was used to extract the slope direction (Aspect) and slope.

• Land cover variables

The land use data was derived from the 10 m resolution land cover data for 2020
(WorldCover v100) published by the European Space Agency (ESA) [32].The land use
classification has an overall accuracy of 74.4%, which is higher than similar publicly avail-
able data products. This data provides 11 land cover categories (8 in the study area)
defined by using the Land Cover Classification System (LCCS) and developed by the Food
and Agriculture Organization of the United Nations with the codes and classifications
(Table A1) [33]. The study area includes the following land classes: tree cover, shrub-
land, grassland, cropland, built-up, bare/sparse vegetation, permanent water bodies, and
herbaceous wetland.

The normalized difference vegetation index (NDVI) is an important indicator for the
ecological environment in spatial planning. The NDVI can be used for global and regional
ecological monitoring and simulation, vegetation phenology analysis and information
extraction, vegetation cover pattern and change, cropland replanting and crop identification
classification, etc. The NDVI quantifies the value of vegetation by measuring the difference
between near-infrared band reflectance and red band reflectance. It is calculated as follows:

NDVI =
(NIR − Red)
(NIR + Red)

(1)

NIR is the near-infrared band reflectance, and Red is the red band reflectance. When
Red is lower than the NIR, it means that the area to be measured has dense green vegetation
or healthy vegetation growth; when Red is approximately equal to the NIR, it means that
the vegetation growth is very poor or no vegetation, and the ground cover is rocky, bare
soil, water body, or urban built-up area; when Red is greater than the NIR, it means that
there is no vegetation. The NDVI data were obtained from the United States Geological
Survey (USGS) website (http://glovis.usgs.gov/ (accessed on 26 August 2021)), a Landsat
8/OLI land surface reflectance product [34].

• Habitat suitability variables

The river network distribution and road network data were obtained from the Open-
StreetMap platform (https://www.openstreetmap.org/ (accessed on 30 August 2021)),
which provides good coverage of water systems and roads in the study area. We used the
Spatial Analyst tool in ArcGIS 10.8 to extract the Euclidean distance from each pixel to the
nearest river and road.

• Population density variables

The population density in the year 2020 was obtained from the WorldPop open space
population dataset (https://www.worldpop.org/ (accessed on 2 February 2022)), which
has a resolution of 1 km.

In ArcGIS 10.8, we preprocessed all raster data by resampling them into a 30 m × 30 m
raster with the same number of rows and columns. To avoid multicollinearity among the
variables involved in the prediction and, thus, to affect the model prediction results, the

http://glovis.usgs.gov/
https://www.openstreetmap.org/
https://www.worldpop.org/
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initial model was first constructed by using 27 environmental variables to derive the contri-
bution of each factor (Table A2). The correlation coefficients between 27 raster variables
were calculated using the ‘raster.cor.matrix()’ function in the ‘ENMTools’ R package [35],
and the groups of variables with correlation coefficients greater than 0.7 were visualized
by using the ‘Virtualspecies’ package (Figure 2) [36]. Finally, 12 environmental variables
(Figure A1) with significant relative contribution, low correlation, and more apparent
ecological significance were screened for each species to inform the model prediction
(Table 2) [37].
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Table 2. Screening of the environmental factors that contribute most to the model and are not relevant.

Wetland Species Bioclimatic Variables Topography, Land Cover, Habitat Suitability, and Population
Density Variables

Wetland plants

BIO4 Distance to water
BIO12 NDVI
BIO2 Population density
BIO11 Aspect
BIO3 Land cover
BIO6 Slope

Waterfowl

BIO5 Distance to water
BIO12 Land cover
BIO15 Population density
BIO2 Aspect
BIO11 NDVI
BIO3 Slope

A detailed explanation of the bioclimatic variables is explained in Table 1.

2.3. Model Selection and Construction

Among SDM-based models, MaxEnt runs only require access to species occurrence
point information and environmental data. Among all models that satisfy the constraints,
the result with the highest entropy value is selected to predict the species distribution.
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The maximum entropy model can also effectively handle complex interactions between
variables; is more tolerant of small samples, non-regular sampling, and point data with a
small amount of bias; and has excellent model prediction performance [38].

Selected environmental layers and occurrence locations of waterfowls and wetland
plants were imported into MaxEnt in CSV and ASCII formats for modeling operations. The
model parameters were selected as 25% of the distribution points as the test set and 75% of
the distribution points as the training set using the ‘crossvalidate’ method (Crossvalidate,
dividing the species distribution data into 10 equal parts, selecting 1 part each time as the
test set and the remaining 9 parts as the training set, running 10 times repeatedly, with
higher data utilization) with the default setting of the maximum number of iterations of
500 and the maximum number of background point numbers is 10,000 [39]; the rest select
the default settings, and the final output ASCII result file is the average of 10 repetitive
runs [40]. After completing the run, the result file was imported into ArcGIS 10.8 software.
The degree of habitability was classified into four classes: unsuitable, low, moderate,
and high suitability habitat areas [41]. To identify wetlands, the potential geographical
distribution of plants and waterfowl in Zhengzhou City was determined.

2.4. Model Accuracy Evaluation

The subject operating characteristic curve (ROC) was used to test the simulation
prediction effect. The area under curve (AUC) value was used as the model prediction
measure, and the ROC curve used each value of the prediction result as the possible
judgment threshold. The corresponding sensitivity and specificity are calculated with the
false positive rate (1 specificity) as the horizontal coordinate and the true positive rate
(sensitivity) as the vertical coordinate. Since the AUC value is not affected by the judgment
threshold, it can be used to compare different models and therefore becomes the best
measure of model accuracy [40]. The AUC takes values between 0 and 1. The closer the
AUC is to 1, the better the prediction is. The criteria for judging the prediction model
from the AUC are: 0.7–0.8 is more accurate, 0.8–0.9 is very accurate, and 0.9–1.0 is highly
precise [42].

2.5. Importance Assessment of Environmental Variables

MaxEnt modeling aims to measure which variables are the most important for the
distribution of species in the model. The first approach is to understand the model’s gain
by modifying the coefficients of individual features at each step of the model construction
process of the MaxEnt algorithm through relative contribution (percent contribution) and
replacement importance (permutation importance), where an increase in the regularization
gain is added to the contribution of the corresponding variable at each iteration of the
training algorithm and subtracted from it if the change in the absolute value of lambda is
negative. In turn, for each environmental variable, the values of that variable in the training
presence and background data were randomly ranked. The program assigns the increase
in gain to the environmental variables on which the feature values depend and converts
them into percentages.

The results of the Jackknife test can reflect the contribution of different environmental
variables to the gain of the distribution and determine the contribution of individual factors
to the model by calculating the scores of “this variable only”, “except this variable”, and
all variables in the simulation, respectively [43]. The higher score for “only this variable”
reflecting more contribution of individual variables to the gain in species distribution;
the lower score for the “except this variable” scenario suggests that this variable is more
important to the species distribution gains.

3. Results
3.1. Environment Variable Filtering Results

Among the groups of variables with correlation coefficients greater than 0.7 in Figure 2,
we selected only the group with the greatest contribution to participate in the MaxEnt model
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and, finally, selected 12 variables each for wetland plants and waterfowl to participate in
the model predictions (Table 2).

3.2. Model Performance Assessment

According to the prediction results simulated by the MaxEnt model, the AUC values
for the training set of the ROC curves for wetland plants and waterfowl were 0.821 and
0.811, respectively, and the AUC values for the test level were 0.820 and 0.853, respec-
tively. Indicating that the simulation of the geographic distribution of predicted species in
Zhengzhou City by using the MaxEnt model was accurate. The obtained curves are shown
in Figure 3.
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3.3. Elements Influencing the Potential Geographic Distribution of Species

Of the 12 environmental factor variables used for MaxEnt model prediction, the
following table shows the estimated relative contribution (Percent contribution) of the
environmental variables to the MaxEnt model. The top three environmental variables
contributing to the potential geographic distribution of wetland plants were, in order,
distance to water bodies (to water, 56.3%), seasonal variation in precipitation (BIO15, 16%),
and the normalized vegetation index (NDVI, 5.6%). The top three environmental variables
contributing to the potential geographic distribution of waterfowl were: distance to water
bodies (to water, 64%), population density (POP, 12.3%), and daily difference in the mean
temperature (BIO2, 7.4%).

Permutation importance is the value that randomly displaces each environmental fac-
tor on the training presence and background data, with larger values indicating a stronger
model dependence on that variable. Permutation importance values of environmental fac-
tors affecting the potential geographic distribution of various species are shown in Table 3.
Response curves show how each variable affects the MaxEnt prediction (Figure A2).

It can be seen from Figure 4 that, when only a single environmental factor variable is
used, the three environmental factor variables with the highest regularized training gain
for wetland plants are: distance to water body (to water, 0.284), land cover (0.0613), and
temperature seasonality (BIO4, 0.054). The three environmental variables with the most
significant gain in waterfowl regularization training were: distance from the water body
(to water, 0.4012), land cover (land cover, 0.1444), and population density (pop, 0.1329). As
for the results of the “In addition to this variable” score, the factors with the smallest gain
for wetland plants were distance from water bodies (to water, 0.288), landcover (0.5538),
and temperature seasonality (BIO, 0.5574). The factors with the smallest gain for waterfowl
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were distance to water body (to water, 0.4534), population density (pop, 0.5819), and land
cover (0.5841).

Table 3. Analysis of the variable contributions.

Wetland Species Percent Contribution Permutation Importance

Wetland plants

Distance to water, 56.3% Distance to water, 44.1%
BIO15, 16% BIO4, 13.5%
NDVI, 5.6% NDVI, 9.3%
BIO12, 3.6% Landcover, 8%

Landcover, 3.6% BIO2, 5.7%
Population density, 3.6% Slope, 5.5%

Aspect, 3.3% BIO11, 4.3%
BIO11, 2.6% BIO12, 4%
Slope, 2.3% Aspect, 2.4%
BIO2, 2.2% Population density, 1.4%
BIO3, 0.5% BIO3, 1%
BIO6, 0.3% BIO6, 0.7%

Waterfowl

Distance to water, 64% Distance to water, 49.5%
Population density, 12.3% Population density, 12.3%

BIO2, 7.4% BIO2, 9.5%
Landcover, 5.8% Landcover, 7.6%

NDVI, 4.9% Slope, 6.6%
Slope, 2.3% NDVI, 6.2%
BIO15, 0.8% BIO11, 3.8%
BIO5, 0.7% BIO3, 3%

BIO12, 0.5% Aspect, 1.4%
Aspect, 0.5% BIO12, 0.1%
BIO3, 0.4% BIO15, 0%

BIO11, 0.4% BIO5, 0%
The biological variables are explained in detail in Table 1.

3.4. Identification of Potential Geographic Habitats of Species

The final habitat suitability map of wetland species in Zhengzhou City is shown
in Figure 5. Using ArcGIS 10.8 to calculate the area of the distribution raster data, high
suitability habitat areas for wetland plants and waterfowl were obtained as 78,613.84 ha and
71,129.79 ha, respectively. They account for 10.56% and 9.55% of the total area of Zhengzhou
City, respectively. The unsuitable areas were 226,579.86 ha and 248,153 ha, accounting for
30.43% and 33.33% of the total area of Zhengzhou City, respectively. Influenced by the
distribution of the wetlands, the best potential geographic distribution areas of wetland
plants in Zhengzhou are found in the northern and southeastern regions of the city, while
the best potential geographic distribution areas of waterfowl are concentrated in the densely
distributed areas of water systems in the northern part of the city.
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4. Discussion
4.1. Validity of the Model

Although the number and area covered by protected areas continue to grow globally,
it does not mean that these protected areas cover the full range of species [44]. Especially in
rapidly urbanizing areas, the dramatic increase in gray infrastructure has disrupted the
original ecosystem balance and affected wetlands such as rivers and lakes in cities [45].
Based on the MaxEnt model, this paper uses species distribution point data and environ-
mental variables, including bioclimatic, topography, land cover, population density, and
distance to road water bodies, to predict the current potential suitable range of wetland
plants and waterfowl in Zhengzhou City and to make a preliminary assessment of the
effectiveness of wetland species conservation in existing protected areas (PA). The model
prediction results were verified by ROC curve accuracy, and the model prediction results
were good. The main findings are described in the following subsections.

4.2. Variables Contribution and Similarities and Differences with Other Studies

The geographic distribution of wetland species is mainly governed by water body
distribution, bioclimatic, and population density. In terms of percent contribution, the
factor that contributed most to the distribution of wetland plants and waterbirds during
this period was distance to a water body. The second-most important factors were seasonal
variation in precipitation and population density, respectively. This is also in general
agreement with Karen A. Poiani et al. [46] that seasonal variations in precipitation affect the
hydrology and vegetation of wetlands. Wetland plants and waterfowl, as species closely
associated with freshwater habitats, are important indicators of ecosystem health [47]. Land
use changes have reduced the habitat availability at waterfowl stopovers and overwintering
sites [48]. As urban water bodies exhibit highly variable morphological characteristics [49],
urbanization reduces or alters aquatic habitat for waterfowl using water for municipal
purposes, in turn creating habitats from built infrastructures or altering existing streams,
rambling beaches, or wetlands [50]. During the construction of new urban areas over the
past 20 years, several new lakes have been built in Zhengzhou City [27], and these new
wetland water bodies have become an increasingly active area for birds [51]. The use of
artificial wetlands by wildlife also confirms that the construction of artificial wetlands
may offset the negative impacts of urbanization on biodiversity to some extent [52,53], but
localized increases in water area are not the norm in most cities [54].

4.3. Implications of the Study Results for Conservation Planning

High suitability habitat areas for various wetland species in Zhengzhou are 78,613.84 ha
for plants and 71,129.79 ha for waterfowl. At present, the only nature reserve in Zhengzhou,
Zhengzhou Yellow River Wetland Nature Reserve, covers only 8061.3 ha of wetland plants
and 12,472.9 ha of waterfowl, which are 10.25% and 17.54% of the total area of the high
suitability habitat for species in the whole area of Zhengzhou. Therefore, there are still a lot
of gaps in the habitat of species outside the protected areas that need to be protected and
managed. For other wetland species hotspot areas that are not included in PAs, various
forms of protection can be adopted based on existing policies. For example, in the year 2004,
the General Office of the State Council mentioned in the “Notice on Strengthening Wetland
Protection and Management”: for areas that do not have the conditions for designating na-
ture reserves, they can establish small wetland PAs, wetland parks, wetland multifunctional
management areas, or designate wildlife habitats in accordance with local conditions to
strengthen their protection and management [55]. In fact, the importance of small wetlands
for the persistence of local wetland-associated animal populations was demonstrated in
studies as early as 1993 [56]. Although some species have shown adaptability to urbaniza-
tion [57], methods for creating natural habitats in the city and maximizing the protection of
habitats suitable for wetland species still need to be explored in future research.
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4.4. Limitations

Although this study incorporated environmental factors such as topography, land
cover, habitat suitability, and population density into the prediction of wetland species’
fitness zones, some ecological niches are difficult to represent by environmental factors. The
relationships within species and between populations also limit species dispersal, and their
distribution changes to some extent, which is challenging to incorporate into the model.
Therefore, they may bring some bias to predicting species’ fitness zones. In the future,
other factors can be considered comprehensively. The most direct environmental factors
affecting species distribution can be selected as far as possible to make the prediction results
more accurate.

5. Conclusions

Species distribution modeling is becoming increasingly important in habitat research,
not only to determine the environmental needs of species scientifically but also to provide
strong support for subsequent habitat conservation. In this paper, the MaxEnt model
was used to identify the potential geographic distribution range and conservation gaps of
wetland species in Zhengzhou City. At present, the existing protected areas in Zhengzhou
cover no more than 20% of the high suitability area of wetland species in Zhengzhou. The
existing protected areas in Zhengzhou City are not sufficient to protect the integrity of
the potential geographic distribution areas of wetland species in Zhengzhou City. For the
hotspots of wetland species distribution that are not included in the protected areas, we
can take the establishment of small wetland reserves, wetland parks, and other forms of
protection and management according to local conditions.
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Appendix A

Table A1. Land cover categories in the study area.

Code Land Cover Categories LCCS Code Definition

10 Tree cover A12A3//A11A1
fA24A3C1(C2)-R1(R2)

Any geographic area dominated by trees, with a cover of
10% or more, land existing under a tree canopy, areas
planted for afforestation purposes and plantations, the
category also includes areas covered by trees, seasonal or
permanent freshwater irrigation, except for mangroves.

20 Shrubland A12A4//A11A2

Any geographic area dominated by natural shrubs with
a cover of 10% or more. Shrubs were defined as woody
perennials without a clear main stem, less than 5 m in
height, with persistent and lignified stems.
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Table A1. Cont.

Code Land Cover Categories LCCS Code Definition

30 Grassland A12A2
This category includes any geographic area dominated
by natural herbaceous plants, including grasslands,
pastures, etc., with a cover of 10% or more.

40 Cropland A11A3(A4)(A5)//A23

Land covered with annual tillage can be harvested at
least once within 12 months of the seeding/planting
date. Annual cropland produces herbaceous cover,
sometimes in combination with some trees or woody
vegetation. Note that perennial woody crops will be
classified as the appropriate type of tree cover or
shrub land cover.

50 Built-up B15A1

Land covered by buildings, roads and other
man-made structures (e.g., railroads), buildings
including residential and industrial buildings, urban
green spaces (parks, sports facilities) are not included
in this category, and waste dumps and extraction sites
are considered wastelands.

60 Bare/sparse vegetation B16A1(A2)//B15A2
Land with bare soil, sand or rock that does not have
more than 10% vegetation cover at any time of
the year.

80 Permanent water bodies B28A1(B1)//B27A1(B1)

This category includes any geographic area covered by
a body of water for most of the year (more than
9 months), lakes, reservoirs and rivers, which can be
fresh or brackish, and in some cases the water is
frozen for part of the year (less than 9 months).

90 Herbaceous wetland A24A2
Land dominated by natural herbaceous vegetation
(10% cover or more), permanently or periodically
inundated by fresh, brackish or salt water.

Table A2. Raster plot of all variables involved in the model predictions.

Wetland Plant Waterfowl
Variables Percent Contribution Variables Percent Contribution

Distance to water 46.3 Distance to water 34.8
BIO4 14.7 Land cover 14
DEM 7.5 BIO5 12
NDVI 4.2 Population density 10.5

Population density 3.6 BIO10 3.4
BIO12 2.5 BIO12 2.7
Aspect 2.4 BIO15 2.7

Land cover 2.4 Distance to road 2.6
BIO16 2.1 BIO18 2.2
BIO2 2 Aspect 2.1
BIO10 1.9 NDVI 1.7
BIO1 1.6 Slope 1.3
Slope 1.5 BIO1 1.3
BIO11 1.1 Dem 1.1
BIO5 0.9 BIO2 1.1

Distance to road 0.8 BIO14 0.9
BIO14 0.7 BIO17 0.8
BIO13 0.7 BIO11 0.7
BIO3 0.7 BIO4 0.7
BIO9 0.6 BIO7 0.6
BIO6 0.5 BIO3 0.5
BIO7 0.5 BIO19 0.4
BIO8 0.4 BIO16 0.4
BIO15 0.3 BIO6 0.4
BIO17 0.2 BIO8 0.4
BIO18 0.1 BIO9 0.3
BIO19 0.1 BIO13 0.3
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