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Abstract: Neotropical forests offer alternatives to surface cooling and their conservation is an effective
solution for mitigating the effects of climate change. Little is known about the importance of tropical
dry forests for temperature regulation in Chiquitania, a region with increasing deforestation rates.
The impact that deforestation processes are having on the surface temperature in Chiquitania remains
an open question. This study evaluated trends in forest cover loss based on land surface temperatures
(◦C) in forested and deforested areas in Chiquitania. We hypothesized a positive relationship between
higher deforestation and a temperature increase, which would decrease the resilience of highly
disturbed Chiquitano forests. We evaluated ten sampling sites (10 × 10 km), including five in forested
areas with some type of protection and the other five in areas with populated centers and accelerated
forest loss. We developed scripts on the Google Earth Engine (GEE) platform using information
from the Normalized Difference Vegetation Index (NDVI, MOD13A2) and the daytime and nighttime
Land Surface Temperature (LST, MYD11A1) from MODIS products for the period 2001–2021. The
statistical significance of the trends of the time series averages of the MODIS products was analyzed
using a nonparametric Mann–Kendall test and the degree of the relationship between the variables
was determined using the Pearson statistic. Our results based on NDVI analysis showed consistent
vegetation growth in forested areas across the study period, while the opposite occurred in deforested
lands. Regarding surface temperature trends, the results for daytime LST showed a positive increase
in the four deforested areas. Comparatively, daytime LST averages in deforested areas were warmer
than those in forested areas, with a difference of 3.1 ◦C. Additionally, correlation analyses showed a
significant relationship between low NDVI values due to deforestation in three sites and an increase
in daytime LST, while for nighttime LST this phenomenon was registered in two deforested areas.
Our results suggest a significant relationship between the loss of forest cover and the increase in land
surface temperature in Chiquitania. This study could be the first step in designing and implementing
an early climate–forest monitoring system in this region.

Keywords: Amazon basin; climate change; climate refugees; protected areas; tropical dry forests

1. Introduction

Tropical dry forests are of great ecological importance but are also highly threatened
and have received little attention focusing on the impact of their loss in the context of
climate change [1]. Forests offer solutions for surface cooling due to the ability of trees to
capture and redistribute the energy of the Sun [2]. Forests can exert a strong influence on
local land surface temperature based on biophysical mechanisms as they generally have a
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lower surface albedo and higher evapotranspiration than unvegetated areas [3]. However,
these environmental functions can be degraded and even lost if forests are not managed
sustainably and responsibly.

Changes in land use have great potential to influence temperature extremes [4]. In-
deed, the processes of deforestation directly lead to changes in the physical characteristics
of the land surface, which can substantially alter the fluxes of heat, carbon, and moisture
in atmospheric circulation and climate [5–7]. Globally, different biomes are experiencing
changes in the Land Surface Temperature (LST) distributions driven by extreme weather
events and land surface changes [8]. As the loss of forest cover increases, greater absorption
of shortwave radiation from the Sun is generated, releasing longwave radiation after a few
hours and producing increased wind chill [8]. In tropical areas, deforestation significantly
suppresses evapotranspiration and moderately increases albedo, exerting a warming in-
fluence on the global climate [9,10]. Deforestation also causes warming effects during the
day and cooling at night [11]. In addition, changes in land use due to the growth of urban,
periurban, and rural areas are generating notable increases in LST levels as urbanization
processes reduce natural vegetation, thereby increasing impervious areas and albedo alter-
ation and causing urban residents to be exposed to a greater risk of heat stress than rural
residents. This effect is known as the Urban Heat Island [12].

Globally, estimates indicate that between 1982 and 2016, the largest net loss of tree
canopy in the tropical region occurred in the tropical dry forest biome (−8%), while the
largest net loss of tree canopy occurred in the tropical dry forest biome (−2%) [13]. The main
causes of disturbance in these forests are associated with commodity-driven deforestation,
silviculture, shifting agriculture, and wildfire [14]. In South America, the area of natural tree
cover decreased by 16%, while the use of grasslands, croplands, and plantations increased
considerably [15]. Recent global studies highlighted the tropical forests of Brazil and the
Chaco of Argentina, Paraguay, and Bolivia as the most threatened forest ecosystems in
the world due to recent agricultural expansion. In Bolivia, the area identified with the
highest growth in deforestation is the Chiquitano Forest [16,17] due to the rapid expansion
of the mechanized agricultural and livestock frontier [18,19]. Currently, the drivers of
the rapid and recent increase in deforestation in the Chiquitano Forest are the combined
effect of soy expansion, the consolidation of corporate land holdings, and the increase of
degraded soils in productive areas [19]. In the Department of Santa Cruz, where the main
extension of the Chiquitano Forest in Bolivia is located, the annual rate of deforestation
reached −0.16% until 2019 [20], mainly caused by an expansion of cattle ranching, medium-
and large-scale mechanized agriculture, and small-scale agriculture [18,19]. Despite this
factor, 70.7% of the forests are of great importance in terms of forest area in the region, with
three non-fragmented stands of more than two million hectares that represent the largest
proportion with 57.9% [21]. If the current trend of forest loss in Santa Cruz continues, it
is expected that by 2050 the forest area will be reduced from 25.1 million to 12.8 million
hectares, mainly in the Chiquitania region [20].

Based on remotely sensed temperature data, recent research conducted in a lowland
metropolitan area of Bolivia [22] found that daytime temperatures of forested areas showed
a difference of −1.1 ◦C in relation to agricultural/livestock use and −2.4 ◦C in comparison
with urban areas, while the average nighttime temperature of fragmented forests showed
a dissimilarity of 0.1 ◦C with agricultural/livestock use and −0.7 ◦C with urban areas.
However, studies on the effects of deforestation on land surface temperature in Chiquitania
are nonexistent. The conversion of forests to cropland in the Chiquitania region corresponds
to morphological changes in the vegetation, leading to a decrease in canopy conductance
and, consequently, to an increase of approximately 2 ◦C in local temperature, as well as
slight nocturnal cooling [23].

This study was conducted to identify the effects of recent deforestation on land surface
temperature in the Chiquitania region. Specifically, the three aims of this study were (a) to
determine annual trends in forest cover loss; (b) to determine annual trends in the daytime
and nighttime LST (◦C) in forested and deforested areas; (c) to establish the relationship
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between intact forested areas and areas with deforestation processes and daytime and
nighttime LST (◦C) in Chiquitania. We hypothesized that the increase in temperature
at ground level is related to a reduction in tree cover, which would demonstrate that
conservation is key to risk and hazard management. This research will help decision
makers formulate risk prevention strategies for natural disasters, adapt to climate change,
and establish public policies that can help improve land-use planning, thus avoiding the
progressive advance of land-use change.

2. Materials and Methods
2.1. Study Area

The study area includes the Chiquitania region, an extensive flat to undulating plain
located in the Department of Santa Cruz, with mountain ranges of varying amplitude, both
vertical and horizontal, formed by transverse faults and water erosion. The Chiquitania
region contains a rich cultural heritage made up of indigenous Chiquitano, Guarayo, and
Ayoreo peoples, as well as Creoles, indigenous peoples from western Bolivia (Quechua and
Aymara), and Mennonite settlers [24].

The climate of this region is warm sub-humid tropical with a rainy period in summer
and dry weather in winter, with little average annual thermal variability. The distribution of
precipitation determines a strong seasonal rainfall regime, with the rainy season extending
from November to March, reaching its maximum in January [24]. The average annual
monthly temperature is 25.3 ◦C, with a difference in the latitudinal gradient; high values
between September and March, with a maximum in October; low temperatures between
June and August, with lower averages in July [24].

In the Chiquitania region, there are three well-defined vegetation types: forests, well-
drained savannas, and savannah wetlands [25]. Forest cover is mainly represented by the
Chiquitano Dry Forest (Figure 1), which extends between the Amazonian forests to the
north and the Chaco forests to the south [25]. The Chiquitano Forests represent the second
largest area of tropical dry forests in the Americas [26] and cover an area close to 24 million
hectares, 83% of which are located in Bolivia [27]. The most widely distributed forest type
is occupied by large areas of well-drained plains with dominant species such as Acosmium
cardenasii, Anadenanthera colubrina, Aspidosperma cylindrocarpon, Aspidosperma tomentosum,
and Astronium urundeuva, among others [25].
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2.2. Data Sources

Normalized Difference Vegetation Index. We used the product MOD13A2 Version
6 (https://lpdaac.usgs.gov/products/mod13a2v006, accessed on 12 June 2022), which
provides Normalized Difference Vegetation Index (NDVI) values every 16 days at a spatial
resolution of 1 km. The NDVI was used to determine trends in values over a time series in
forested and deforested areas. The NDVI shows values between −1 and 1 and is determined
using the near-infrared (NIR) and red (RED) bands, where values near −1 indicate little
photosynthetic activity and, thus, little vegetation growth or reduction, while values near
1 reflect the opposite [28]. MOD13A2 is designed to provide spatially and temporally
consistent comparisons of vegetation conditions and was processed from the MODIS
L3 daily surface reflectance product (MOD09), corrected for the effects of atmospheric
gasses, thin cirrus clouds, and aerosols [29]. In recent decades, MOD13A2 data have been
used to quantify vegetation activity and to detect vegetation dynamics in many biological
communities [30–32].

Land Surface Temperature. Land Surface Temperature (LST) is one of the most im-
portant parameters in the physical processes of surface energy and water budgets from
local to global scales [8,33,34]. Remotely sensed thermal infrared data provide spatially
continuous LST measurements with global coverage to examine the thermal heterogeneity
of the Earth’s surface and the impact of natural and human-induced changes on sur-
face temperatures [3]. LST data were selected from the daily product MYD11A1 ver. 6
(https://lpdaac.usgs.gov/products/mod11a2v006, accessed on 12 June 2022), obtained
during the daytime and nighttime series from a MODIS sensor with a 1 km spatial resolu-
tion for the period 2001 to 2020. MODIS land surface temperature and emissivity products
provide per-pixel emissivity and temperature values in a sequence from global swath-based
products to grid-based products [35]. In recent years, studies using MODIS data were
conducted to analyze the temporal and spatial patterns of regional surface temperature;
good results were achieved [36]. In addition, daytime and nighttime LST products have
already been validated [37]. The original MODIS LST product was obtained in Kelvin (◦K)
values, which were then converted to Celsius (◦C).

Terrestrial Coverage Type. We used the MODIS product MCD12Q1.006 (https://
lpdaac.usgs.gov/products/mcd12q1v006, accessed on 1 December 2021), which provides
a Land Cover Type (TCT) classification developed by the University of Maryland (Type
2). The TCT consists of a series of coverage maps with annual interventions and a spatial
resolution of 500 m [38] available for the period 2001 to 2020. This product was used to
define the selection of sampling sites.

Meteorological stations. We used the monthly average data of maximum and mini-
mum temperatures (in ◦C) provided by the Bolivian Meteorological Service (SENAMHI,
https://senamhi.gob.bo, accessed 10 November 2022) for the urban areas of Concepción
and San Ignacio for the period 2001–2020.

2.3. Sampling Sites and Data Processing

Using a stratified randomized design, ten sampling points were selected, with five in
forested areas and five in areas with deforestation. Then, 10 km rectangular buffers were
created around these central points to obtain 10 × 10 km quadrants representing an area of
100 km2 for each sampling site. The criteria for selecting these sites were based on a distance
of more than 100 km from each other. The main criterion for forested areas was that the
areas were legally protected or were indigenous territories larger than 100 km2. We selected
five quadrants with intact forests in 2020, with three located in northern Chiquitania and
two distributed in southern Chiquitania. The main selection criterion for deforested areas
was that they represent important urban areas or show different levels of land-use change
between 2001 and 2020 due to productive agricultural or livestock activities, identified
based on the product MCD12Q1.006. Deforested areas were represented by quadrants
located in two population centers in northern Chiquitania and areas with high deforestation
rates in southern Chiquitania (Figure 2). Table 1 details the characteristics of all the sites

https://lpdaac.usgs.gov/products/mod13a2v006
https://lpdaac.usgs.gov/products/mod11a2v006
https://lpdaac.usgs.gov/products/mcd12q1v006
https://lpdaac.usgs.gov/products/mcd12q1v006
https://senamhi.gob.bo
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(quadrants) in terms of their names, forest cover, geographic location, and climate. The
climate region was identified based on a global map of the aridity index [39].
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Cruz, Bolivia: land cover and deforestation until 2020, prepared by the Chiquitano Forest Conserva-
tion Foundation (in Spanish FCBC).

Table 1. Sampling sites selected for five areas of intact forest and five areas with deforestation in the
northern and southern Chiquitania sector, Santa Cruz, Bolivia. Climate region: aridity index [39].

Sites Coverage Types Sector Altitude Domain Climate Region

Noel Kempff Forest North 220–310 National protected area Humid
Bajo Paraguá Forest North 210–260 Municipal protected area Humid
Monteverde Forest North 260–340 Indigenous territory Humid
San Rafael Forest South 240–330 Municipal protected area Humid
Tucabaca Forest South 210–270 Departmental protected area Dry sub-humid
San Ignacio Deforestation North 370–530 Urban area Humid
Concepción Deforestation North 470–520 Urban area Humid
El Cerro/California Deforestation South 252–263 Area livestock/agricultural Dry sub-humid
Nueva Esperanza Deforestation South 260–310 Area livestock/agricultural Humid
Santa Ana/Buena Vista Deforestation South 190–230 Livestock area Dry sub-humid

The analyses were performed using the Google Earth Engine (GEE), a cloud com-
puting platform designed to store and process large datasets (petabyte scale) for deci-
sion making [40,41]. We used the 10 polygons to extract the land cover product values
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MCD12Q1.006 in ArcMap and reclassified the 15 class types into 7 categories: water bodies,
forests, shrublands, savannas, grasslands, urban/croplands, and barren. We then calcu-
lated annual percentages for each of the categories (2001 to 2020). To assess the level of
uncertainty in the resulting classification, 100 random verification points were distributed
in ArcMap, grouped into the 7 categories. In GEE, we selected Sentinel-2 satellite imagery
to verify the classification. This approach allowed us to obtain a confusion matrix [42]
and three types of accuracy estimates—overall accuracy, user accuracy, and producer
accuracy—including their 95% confidence intervals. The confidence level obtained from
the coverage classification was 90%.

In the GEE platform, the ten polygons (10 × 10 km) were used and a script was
developed for analysis purposes using information from NDVI and LST products for the
period from 2001 to 2021. Each quadrant was composed of 100 pixels of MODIS products
(1 pixel = 1 km2), so the number of samples in quadrants was calculated with a heterogeneity
of 50% and a confidence level of 95% through random point scattering in GEE. Following
the methodology proposed by Olofsson et al. [42], 86 points were distributed in each
quadrant, resulting in a total of 860 sampling points.

2.4. Statistical Analysis

Trends of change. Differences in trends in MODIS product time series averages of
daytime and nighttime temperatures (LST) and vegetation cover (NDVI) were analyzed
using a nonparametric Mann–Kendall statistical test [43,44]. This test is commonly used as
a trend test for the median slope operator and produces Z-score outputs, allowing both the
significance and trend direction to be assessed. The trend values were obtained in RStudio
using the Trend package [45].

Correlation between variables. To find the significance (p < 0.05) and degree of the
relationship between variables, the intersection between NDVI values and daytime and
nighttime LST data was determined using GEE and Pearson’s correlation coefficient (r).
Pearson’s coefficient is defined as the association and relationship between two variables
and the strength of their relationship. In other words, this coefficient shows how change in
one variable causes a change in the other variable, with values ranging between −1 and 1,
where a value of −1 indicates a total negative linear relationship, 0 indicates the absence of
correlation, and +1 indicates a total positive correlation.

Technical validation. We calculated the monthly averages of the daytime and nighttime
LST data and performed an accuracy assessment with the information obtained from the
weather stations (maximum and minimum temperatures) based on Pearson’s coefficient
and the Root Mean Square Error (RMSE).

3. Results
3.1. Temporal Dynamics of Land Cover Type

Our results show that the five sites with forest did not feature variations in the per-
centages over the 20 years of analysis (Figure 3). However, the urban areas of San Ignacio
and Concepción showed a reduction in forest areas and savannas but an increase in grass-
lands. In the case of El Cerro/California, the forested area was completely reduced, while
grasslands and croplands increased. The area of Nueva Esperanza was the most strongly
impacted and the area of Santa Ana/Buena Vista reduced its forest cover from 100 to 61%
(Figure 3).
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Figure 3. Annual percentage of land cover type in forested and deforested areas in the Chiquitania
region (2001–2020). Sites with intact forest: (a) Noel Kempff, (b) Bajo Paraguá, (c) Monteverde,
(d) San Rafael, and (e) Tucabaca. Sites with deforestation: (f) San Ignacio, (g) Concepción, (h) El
Cerro/California, (i) Nueva Esperanza, and (j) Santa Ana/Buena Vista.
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3.2. Annual Trends of Forest Cover Loss in the Chiquitania Region

The NDVI time series for each study site (Table 2) is shown in Figure 4. There was
a small but significant trend (p < 0.05) in the mean values of the index in areas with
no forest change (Noel Kempff, Monteverde, San Rafael, and Tucabaca). In sites with
increasing deforestation rates during the analysis period, NDVI showed a negative trend.
The strongest trend occurred in the El Cerro/California Mennonite colonies (p < 0.001),
where all forest cover in 2001 (12% of the quadrant area) was lost by 2021. The next strongest
trend was observed at the Santa Ana/Buena Vista site (p < 0.001), where 61% of the original
forest area remained by the end of the study period. Significant negative trends were also
recorded in San Ignacio, although the area lost 5% of its natural vegetation cover (p < 0.05).

Table 2. Trends in NDVI time series in forested and deforested areas in the Chiquitania region
(2001–2021). n—MODIS data series, p—statistical significance < 0.05 (highlighted in bold), Z—Mann–
Kendall nonparametric test.

Sites % Forest
2001

% Forest
2021 n p Z

Noel Kempff 100 100 483 0.014 2.456
Bajo Paraguá 100 100 483 0.157 1.417
Monteverde 100 100 483 0.013 2.492
San Rafael 100 100 483 0.007 2.698
Tucabaca 100 100 483 0.036 −2.094
San Ignacio 41 36 483 0.007 −2.685
Concepción 49 43 483 0.808 −0.243
El Cerro/California 12 0 483 0.000 −8.007
Nueva Esperanza 0 0 483 0.308 −1.019
Santa Ana/Buena Vista 100 61 483 0.000 −5.988
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The annual averages of daytime LST (°C) obtained from the daily MODIS product 
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between northern and southern Chiquitania (Figure 5). The forests of Noel Kempff (27.0 
± 0.50 °C ), Monteverde (27.0 ± 0.45 °C), and Bajo Paraguá (26.6 ± 0.57 °C), located in the 
northern Chiquitania region, presented lower average temperatures than those in the 
southern region, specifically in San Rafael (28.1 ± 0.84 °C) and Tucabaca (29.3 ± 0.92 °C). 
Between forested areas, the daytime LST averages showed a difference of up to 2.7 °C. 
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Figure 4. Trends in NDVI time series in forested and deforested areas in the Chiquitania region
(2001–2021). The red line represents the trend line of the data points. Sites with intact forest:
(a) Noel Kempff, (b) Bajo Paraguá, (c) Monteverde, (d) San Rafael, and (e) Tucabaca. Sites with
deforestation: (f) San Ignacio, (g) Concepción, (h) El Cerro/California, (i) Nueva Esperanza, and
(j) Santa Ana/Buena Vista.

3.3. Annual Trends in Land Surface Temperature (LST) Day and Night (◦C) in Forested and
Deforested Areas
3.3.1. Annual Averages of Daytime LST

The annual averages of daytime LST (◦C) obtained from the daily MODIS prod-
uct MYD11A1 showed latitudinal variations in relation to the location of the sampling
sites between northern and southern Chiquitania (Figure 5). The forests of Noel Kempff
(27.0 ± 0.50 ◦C ), Monteverde (27.0 ± 0.45 ◦C), and Bajo Paraguá (26.6 ± 0.57 ◦C), located
in the northern Chiquitania region, presented lower average temperatures than those in the
southern region, specifically in San Rafael (28.1 ± 0.84 ◦C) and Tucabaca (29.3 ± 0.92 ◦C).
Between forested areas, the daytime LST averages showed a difference of up to 2.7 ◦C.
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The main variations were associated with deforestation sampling sites (Figure 5). The
areas of the population centers and surroundings of San Ignacio (28.7 ± 0.56 ◦C) and
Concepción (28.7 ± 0.74 ◦C) showed lower average temperatures compared with the areas of
the Santa Ana/Buena Vista ranches (30.5 ± 3.95 ◦C). Even lower temperatures were observed
in the areas of the Mennonite colonies of El Cerro/California (32.3 ± 1.74 ◦C) and Nueva
Esperanza (33.4 ± 1.34 ◦C). In the latter, the forest cover was completely lost. Between
deforested areas, daytime LST averages showed a difference of up to 4.7 ◦C. Comparatively,
daytime LST averages in deforested areas were warmer than those in forested areas, with a
difference of 3.1 ◦C.

In addition, in the deforested areas, a pattern of temperature increase anomalies in
the daytime LST averages was evident for 2002 and 2010–2012 and was even higher for
2019–2020 (Figure 5), especially in the areas of the Mennonite colonies El Cerro/California
and Nueva Esperanza. In forested areas, this pattern was also evident in southern Chiqui-
tania (San Rafael and Tucabaca).

3.3.2. Annual Trends of Daytime LST

Regarding the trends of the increase in daytime LST (◦C), the results showed a positive
increase at four of the five sites with the loss of forest cover (Table 3, Figure 6). The highest
trend was recorded in the San Ignacio area (Z = 45.10; p > 0.001), followed by the El
Cerro/California Mennonite colonies (Z = 8.35; p > 0.001), Santa Ana/Buena Vista ranches
(Z = 5.75; p > 0.001), and Concepción town center (Z = 45.10; p > 0.05). For sampling sites
with intact forests, no significant changes in diurnal temperature trends were observed
(Table 3 and Figure 6).

Table 3. Daytime LST trends (◦C) for the ten study sites in the Chiquitania region. n—MODIS data
series, p—statistical significance < 0.05 (highlighted in bold), Z—nonparametric Mann–Kendall test.

Sites Coverage n p Z

Noel Kempff Forest 874 0.412 0.821
Bajo Paraguá Forest 881 0.089 1.700
Monteverde Forest 885 0.124 1.540
San Rafael Forest 922 0.438 0.775
Tucabaca Forest 936 0.143 1.467
San Ignacio Deforestation 908 0.000 45.108
Concepción Deforestation 899 0.028 2.200
El Cerro/California Deforestation 877 0.000 8.357
Nueva Esperanza Deforestation 908 0.168 1.380
Santa Ana/Buena Vista Deforestation 932 0.000 5.753

3.3.3. Annual Averages of Nighttime LST

Compared with the results found for daytime LST, the values of nighttime LST
temperatures did not show wide variations between the sampling sites (Figure 7). The
forested areas of Noel Kempff (20.5 ± 0.51 ◦C), Monteverde (20.0 ± 0.41 ◦C), Bajo Paraguá
(20.4 ± 0.43 ◦C), San Rafael (20.8 ± 0.46 ◦C), and Tucabaca (20.7 ± 0.43 ◦C) presented similar
averages. For the sites where forest cover loss was recorded (Figure 7), the Concepción
area (19.1 ± 0.46 ◦C) recorded the lowest temperatures relative to El Cerro/California
(20.5 ± 0.49 ◦C), San Ignacio (20.4 ± 0.43 ◦C), Nueva Esperanza (21.0 ± 0.48 ◦C), and
the Santa Ana/Buena Vista (21.1 ± 0.61 ◦C) colonies. Comparatively, the nighttime LST
averages between forested and deforested areas showed almost no difference (0.06 ◦C).

Similar to daytime LST, a pattern of temperature increase anomalies was recorded in
the nighttime LST averages mainly for the years 2002 and 2015 (Figure 7), especially for the
Nueva Esperanza colony and the Santa Ana/Buena Vista ranches.
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Figure 6. Time series trends in daytime LST (◦C) in forested and deforested areas in the Chiquitania
region (2001–2021). The red line represents the trend line of the data points. Sites with intact forest:
(a) Noel Kempff, (b) Bajo Paraguá, (c) Monteverde, (d) San Rafael, and (e) Tucabaca. Sites with
deforestation: (f) San Ignacio, (g) Concepción, (h) El Cerro/California, (i) Nueva Esperanza, and
(j) Santa Ana/Buena Vista.

3.3.4. Annual Trends of Nighttime LST

The results for annual trends of nighttime LST (◦C) showed only a positive and
significant increase in the forested areas related to Noel Kempff (Z = 4.40; p > 0.001) and
Bajo Paraguá (Z = 2.95; p > 0.01) and in the populated areas of San Ignacio (Z = 2.95;
p > 0.01) and Concepción (Z = 2.07; p > 0.05) (Table 4, Figure 8). The rest of the sites, despite
indicating an increase and decrease, were not statistically significant.
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Figure 7. Average annual nighttime LST (◦C) in forested (a) and deforested (b) areas in the Chiquitania
region (2001–2021).

Table 4. Nighttime LST trends (◦C) for ten Chiquitania study sites. n—MODIS data series,
p—statistical significance < 0.05 (highlighted in bold), Z—nonparametric Mann–Kendall test.

Sites Coverage n p Z

Noel Kempff Forest 669 0.000 4.403
Bajo Paraguá Forest 738 0.003 2.957
Monteverde Forest 794 0.064 1.853
San Rafael Forest 835 0.760 −0.306
Tucabaca Forest 878 0.136 1.493
San Ignacio Deforestation 738 0.003 2.957
Concepción Deforestation 848 0.038 2.070
El Cerro/California Deforestation 887 0.499 −0.677
Nueva Esperanza Deforestation 860 0.445 0.764
Santa Ana/Buena Vista Deforestation 898 0.955 −0.056

3.4. Relationship between Intact Forest and Areas with Deforestation Processes and Daytime and
Nighttime LST (◦C)

The results also indicated that there was a statistically significant medium to high
correlation between NDVI and daytime LST, especially for the Santa Ana/Buena Vista
ranches (r = 0.76), San Ignacio (r = 0.60), and El Cerro/California Mennonite colonies
(r = 0.60) (Table 5, Figure 9). As the NDVI levels decreased, the temperature increased.
For nighttime LST, a significant relationship was found between the loss of forest cover
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and the increase in nighttime temperature in the Santa Ana/Buena Vista (r = 0.59) and El
Cerro/California (r = 0.58) areas (Table 5, Figure 10). These results suggest that deforestation
increased the land surface temperature in the Chiquitania region.
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Figure 8. Trends in the time series of nighttime LST (◦C) in forested and deforested areas in the
Chiquitania region (2001–2021). The red line represents the trend line of the data points. Sites with
intact forest: (a) Noel Kempff, (b) Bajo Paraguá, (c) Monteverde, (d) San Rafael, and (e) Tucabaca.
Sites with deforestation: (f) San Ignacio, (g) Concepción, (h) El Cerro/California, (i) Nueva Esperanza,
and (j) Santa Ana/Buena Vista.
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Table 5. Pearson correlation (r) between NDVI values with daytime and nighttime LST for the ten
study sites in the Chiquitania region. Higher correlations are highlighted in bold.

Sites Coverage Daytime
LST-NDVI

Nighttime
LST-NDVI

Noel Kempff Forest 0.08 0.07
Bajo Paraguá Forest 0.29 0.15
Monteverde Forest 0.09 0.11
San Rafael Forest 0.01 0.03
Tucabaca Forest 0.08 0.00
San Ignacio Deforestation 0.60 0.15
Concepción Deforestation 0.21 0.01
El Cerro/California Deforestation 0.60 0.58
Nueva Esperanza Deforestation 0.11 0.09
Santa Ana/Buena Vista Deforestation 0.76 0.59
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Figure 9. Relationship between NDVI and daytime LST (◦C) values in forested and deforested areas
in the Chiquitania region (2001–2021). The red line represents the trend line of the data points. Sites
with intact forest: (a) Noel Kempff, (b) Bajo Paraguá, (c) Monteverde, (d) San Rafael, and (e) Tucabaca.
Sites with deforestation: (f) San Ignacio, (g) Concepción, (h) El Cerro/California, (i) Nueva Esperanza,
and (j) Santa Ana/Buena Vista.
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Figure 10. Relationship between NDVI and nighttime LST (◦C) values in forested and deforested
areas in the Chiquitania region (2001–2021). The red line represents the trend line of the data points.
Sites with intact forest: (a) Noel Kempff, (b) Bajo Paraguá, (c) Monteverde, (d) San Rafael, and
(e) Tucabaca. Sites with deforestation: (f) San Ignacio, (g) Concepción, (h) El Cerro/California,
(i) Nueva Esperanza, and (j) Santa Ana/Buena Vista.

3.5. Validation Using In Situ Measurement

Table 6 shows the validation statistics (performance metrics) of the monthly average
daytime LST and nighttime LST in relation to air temperature data from weather stations
in the urban areas of Concepción and San Ignacio. The results of these correlations were
also significant and very high for the two study sites. However, the RMSE values were
lower for Concepción, with 5.4 ◦C for daytime LST and 5.5 ◦C for nighttime LST.
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Table 6. Pearson correlation (r) and Root Mean Square Error (RMSE) between the monthly averages
for LST and the air temperatures of the meteorological stations (Concepción and San Ignacio). The
highest correlations are highlighted in bold.

Sites LST (◦C)
Maximum
Temperature
(◦C)

Minimum
Temperature
(◦C)

RMSE (◦C)

Concepción
Daytime LST 1 - 5.4
Nighttime LST - 0.8 5.5

San Ignacio
Daytime LST 1 - 6.4
Nighttime LST - 0.8 8

4. Discussion

Deforestation in Bolivia is growing at an alarming rate. Recent estimates indicate that
the country lost a total of seven million hectares by 2021, 86% of which will be concentrated
in the department of Santa Cruz [19]. In addition, the advance of deforestation has been
associated in recent years with areas destined for forest use and exploitation [20], as well
as legally protected areas [20]. The expansion of soybean and cattle ranching has been
the main direct cause of deforestation [19]. Our analyses sought to identify changes in
forest cover in sites located in protected areas and indigenous territories using the MODIS
product MCD12Q1.006, as well as changes in areas known to be the fastest growing areas
of deforestation in Chiquitania. While the area of Nueva Esperanza presented the highest
concentration of cropland, we found an evident reduction of natural cover in urban areas
(Concepción and San Ignacio), as well as in the areas of El Cerro/California and Santa
Ana/Buena Vista. If this deforestation trend continues, it is estimated that forest could
disappear completely by 2050 [20].

Assessments of vegetation cover status, changes, and processes are important com-
ponents of global change research programs and are topics of considerable societal im-
portance [46]. Spectral vegetation indices (e.g., NDVI) are among the most widely used
satellite data products and provide metrics for climate, hydrological, and biogeochemical
studies, land cover change detection, phenology, and natural resource management [47]. In
addition, these indices are important for the analysis of vegetation growth and decrease
trends [48]. Our results were mainly based on a comparison of vegetation trends in forested
and deforested areas. Using NDVI, we detected continuous vegetation growth in intact
forests (Noel Kempff, Monteverde, and San Rafael), which showed no evidence of forest
degradation processes in these areas. The explanation for these results is that high NDVI
values are mainly related to the density of green leaves in a given area, making them a
good indicator of vegetation cover and vitality [49]. Our assessments considered a long
time series (2001–2020) to ensure that the results would not be influenced by seasonal
and interannual variability in the forests of the Chiquitania region [50]. In contrast, we
found sites with negative and statistically significant trends in NDVI values in three of
the five sampling sites (El Cerro/California Mennonite colonies, Santa Ana/Buena Vista
ranches, and San Ignacio), where a decrease in forest cover was recorded at different sites
in Chiquitania. This result was expected, especially considering the current scenario of
accelerated land-use change processes in the region [19]. In addition, there was evidence of
a negative trend marked by decreases of the NDVI in the Tucabaca forests. These results
are very close to those of San Rafael, a forested site with a positive trend, which suggests
disturbances due to illegal logging; however, ecological disturbance processes (e.g., changes
in stomatal conductance) that cause physiological weakening and tree mortality could not
be ruled out. However, the results for Tucabaca should be interpreted with caution and
field evaluations should be carried out to identify the factors causing this degradation.

Land Surface Temperature (LST) monitoring using remote sensors offers several ad-
vantages over a wide observation range, including easy access and strong spatial continuity.
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Multiple studies have been conducted globally in recent years to determine LST [3,8,51,52],
which is a key parameter for obtaining a more direct measure of surface conditions when
analyzing surface–climate interactions [33,52]. Due to these qualities, we were able to deter-
mine, over a long period of time (2001–2020), the diurnal and nocturnal temperatures at the
local level in Chiquitania. Of the 10 study sites, the highest diurnal LST levels were found
in Nueva Esperanza, a completely deforested area. In addition, in the Cerro/California
Mennonite colony area, which lost its remaining forest cover, a notable increase in diurnal
LST was identified from 2007 onwards, which coincides with the decline in the trend of
photosynthetic activity of the vegetation presented in Figure 3. In addition, we were able
to compare the differences in LST between forested and non-forested areas. Our results
showed that the average values of daytime LST between forested sampling sites varied by
up to 2.7 ◦C and those between deforested sites varied by up to 4.7 ◦C. However, when com-
paring forested and deforested sites, the difference in the averages was 3.1 ◦C. Differences
in the diurnal temperature range are known to be smaller for forested areas and larger for
non-forested areas [53], because LST increases in deforested areas may be exacerbated by
changes in roughness length, which impede energy dissipation via sensible or latent heat
fluxes [54]. In contrast, nocturnal heating is caused by the release of stored thermal energy
during the day [3]. However, comparisons of nighttime LST averages for the ten sampling
sites did not show notable differences and, for this reason, nighttime LST could not be
considered a good indicator of the differences between forested and deforested areas in
Chiquitania. Nevertheless, our data help highlight the large differences between daytime
and nighttime LST averages, which for the forest was 7.1 ◦C and for the deforested areas
was 10.2 ◦C. This information is valuable, because it highlights the importance of forests in
regulating temperatures in the Chiquitania region.

It is known that anomalies of maximum LST capture spatial patterns that are associated
with droughts and heat waves on the land surface [8]. In our study, both forested areas
and those with deforestation processes in Chiquitania showed interannual anomalies of
temperature increases in the daytime LST averages for the years 2002, 2010–2012, and
2019–2020, with the latter increases being higher than the others. In addition, in terms
of nighttime LST, similar patterns were recorded for 2002 and 2015. In the Amazon area,
generalized anomalies in LST values and large-scale directional changes towards higher
temperatures were found in 2005 and 2010 [8], where large and severe droughts were
recorded [55]. However, by 2020 different severe to extreme meteorological megadroughts
events were recorded at the continental level. One of these events occurred in southern
Brazil and Paraguay [56,57] and was also observed in Bolivia. In addition, on a local scale,
drought events in the Chiquitania region were identified based on different climate stations,
showing significant trends of increased frequency and intensity [21]. Further studies are
needed to understand the relationship between heat waves and droughts, which could
improve our understanding of the impacts of land-use change on the local climate.

Recent studies indicate that in some lowland areas of Bolivia, temperatures tend
to increase mainly in urban and agricultural/livestock areas [19]. In our research on
Chiquitania, it was shown that there is a tendency for an increase in daytime LST values,
which is associated with deforestation processes, independent of the differences between
the climate regions (humid and dry sub-humid areas) of the sampling sites. The trend
of an increase in diurnal LST was statistically significant in four of the five areas with
deforestation, mainly in San Ignacio, which registered the highest value in the Mann–
Kendall test. However, in the sampling sites with forests, there were no statistically
significant trends in daytime LST values, because tropical forests can exert a strong influence
on local LST. As such, forests generally have a lower surface albedo due to absorbing more
shortwave radiation during the day and higher evapotranspiration compared with areas
with bare vegetated surfaces [3,58]. Nevertheless, nighttime LST values corresponded to
another scenario, with a significant increase observed for the two forested areas (Noel
Kempff and Bajo Paraguá) and two urban areas (San Ignacio and Concepción). Although
an increasing trend in areas with deforestation was expected, new questions emerged
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regarding nighttime LST trends in forests. A possible explanation for this phenomenon is
the presence of a large number of granitic rocky outcrops (inselbergs) in the Noel Kempff
and Bajo Paraguá areas [54], which concentrate the heat during the day and radiate heat to
the surrounding forest during the night [59,60]. However, further research is needed in this
area.

Globally, deforestation in tropical regions is causing strong warming between
0.38 ± 0.02 [52] and 2.4 ± 0.10 ◦C [3] (LST values). Our results showed a statistically
significant correlation between NDVI and LST at three sites for diurnal values and two sites
for nocturnal values. This result is in addition to the trend of 0.1 ◦C per decade observed
for the air temperature increase rate [61]. This result is concerning because the Chiquitania
region is home to hundreds of thousands of people who carry out productive livestock
and agricultural activities. The increase in LST values in the Chiquitania region could
lead to a series of effects that have not been evaluated, including migration, economic
production, and human capital to impacts on biodiversity [62]. Given that forest loss is
at the heart of both global and local warming, initiatives to reduce deforestation must
remain a priority [63]. Climate change adaptation strategies based on maintaining forest
integrity are required to mitigate the increase in LST in the Chiquitania region [64], where
the conservation of existing forests and restoration of those lost to deforestation should be
prioritized [65].

Protected areas continue to be the main defense against forest cover loss and the best
strategy for maintaining the ecological integrity of forests [66]. Bolivia has approximately
130 protected areas, of which approximately one-third are located in the Department of
Santa Cruz [67]. Most of these protected sites contain ecosystems of high conservational
value and, in many cases, intact forests [68]. However, there is direct and indirect pres-
sure around these areas owing to the rapid expansion of the agricultural and livestock
frontier [19,69]. In the Chiquitania region, this expansion has caused a loss of forest con-
nectivity [19], a reduction of critical ecosystems [70,71], and a loss of habitats of key and
priority species for conservation [72]. If this scenario continues in these protected areas, up
to half of forest area harbors could be lost in the next 30 years [68].

Reducing current deforestation trends in Chiquitania is a high priority. It is necessary
to redefine norms and public policies regarding forest conservation, aimed at territorial
management at multiple scales. Undoubtedly, revising the design criteria for land-use
plans, enforcing the economic and social functions of private and communal property,
and promoting the protection and restoration of conservation easements will improve
opportunities for thermal regulation and the maintenance of ecological functionality at the
landscape scale in the Chiquitania region. It is also necessary to establish a monitoring
system to evaluate changes in natural vegetation cover, especially temperature and precipi-
tation, at regional and local scales. With these changes, there will be greater opportunities
to increase socio-ecological resilience to the impacts of climate change.

5. Conclusions

This is the first study conducted in the Chiquitania region of Bolivia over a long time
series to identify the relationship between land surface temperature increases and forest
cover loss through remote sensing products. NDVI remains an essential tool for monitoring
the health of the field and determining the loss or maintenance of forest cover, especially in
the present scenario where deforestation is advancing rapidly. In addition, LST was shown
to be a key parameter that can help estimate temperature variations at different scales of
space and time. Our findings demonstrate the importance of using combined time series
data of spectral indices and LST to fully understand temperature trends and their drivers
in the Bolivian lowlands.

These results indicate that the forests of the Chiquitania region play a fundamental role
in the regulation of temperature. Our study highlights the importance of protected areas in
the Chiquitania region for the conservation of forests, which, in turn, affects the regulation
of land surface temperatures. The evaluated forest sites represent national (Noel Kempff),
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departmental (Tucabaca), and municipal (Bajo Paraguá and San Rafael) protected areas, as
well as an indigenous territory (Monteverde), demonstrating that the legal allocation of
land tenure and territorial management focusing on the conservation and sustainable use
of wild resources are important for maintaining the integrity and conservation of natural
ecosystems. However, this scenario may change in the face of land-use change trends. In
this sense, conservation strategies and actions are very important for safeguarding the
maintenance of forest integrity, biodiversity, and environmental functions. For this reason,
it is necessary to continue working on management and capacity building to protect these
sites.
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