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Abstract: The evaluation and monitoring of the ecological environment quality of heritage sites can
help provide sustainable and healthy development strategies for heritage management organizations.
In this study, an ecological evaluation model based on the remote sensing ecological index (RSEI) was
used to measure the ecological environment of the Shibing Karst World Heritage Site and its buffer
zone and the Moran index and geographic probe model were combined to quantify the ecological
environment. The results show that, (1) from 2013 to 2020, the ecological environment quality of the
heritage site and buffer zone was moderate to high and the mean RSEI values in the three periods
studied were 0.720, 0.723 and 0.742, showing an overall upward and improving trend; (2) ecological
environment quality grades of moderate and good accounted for more than 70% of the area, the
distribution pattern of ecological environment quality is significantly better at the heritage site than
in the buffer zone and the southwest is better than the northeast; (3) the Moran index increased from
0.600 in 2013 to 0.661 in 2020, residing in the first and third quadrants, respectively, with significantly
spatial aggregation; and (4) greenness and humidity were shown to play a positive feedback role
on the ecological environment quality and the spatial influence ability of humidity and dryness
was greater. Overall, the RSEI is an effective method of evaluating and monitoring the ecological
environment quality of heritage sites, the ecological environment quality of the Karst heritage site in
Shibing is in a steady state of improvement and the relevant departments of heritage conservation
need to further coordinate the relationship between conservation and development to promote the
sustainable development of the heritage site and provide effective solutions for the monitoring of
other Karst World Heritage sites.

Keywords: remote sensing; ecological environment; world natural neritage; Shibing Karst; South
China Karst

1. Introduction

To protect the common natural and cultural heritage of mankind, UNESCO adopted
the Convention Concerning the Protection of the World Culture and Natural Heritage at its
17th General Conference, held at its headquarters in Paris, in November 1972 and initiated
the organization of the World Heritage Organization in 1976 [1]. World Heritage refers to
cultural and natural heritage with outstanding value that is a precious treasure of nature
and a symbol of human history, culture and civilization, representing the most valuable
cultural and natural landscapes and the common wealth of mankind [2]. In many countries
around the world, World Heritage Sites have been considered representatives of national
culture and even as symbols of the country [3,4]; however, in recent years, World Natural
Heritage Sites (WNHs) have suffered extensive damage due to earthquakes, tsunamis, soil
erosion, human activities, etc. [5,6]. To date, 17 World Natural Heritage (WNH) properties
have been inscribed on the List of World Heritage in Danger.
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Karst is one of the most remarkable landscapes in the world, mainly consisting of spe-
cial topography and associated ecosystems developed on carbonate rocks, characterized by
vadose flows, caves, dark rivers, canyons, depressions and conical and towering peaks [7].
China is one of the countries with the most extensive karst distribution in the world, with
1.25 million km2 of carbonate rock outcrops [8] accounting for 13% of the total land area of
China. The “South China Karst” is a series of heritage sites, the first phase of which consists
of three constituent sites: Shilin Karst (Yunnan), Libo Karst (Guizhou) and Wulong Karst
(Chongqing), which were inscribed on the World Heritage List in 2007 for meeting World
Heritage criteria (vii) and (viii) [9]. The second phase of heritage sites consists of Guilin
Karst (Guangxi), Shibing Karst (Guizhou) and Jinfo Mountain Karst (Chongqing), which
were inscribed on the World Heritage List in 2014 for meeting World Heritage criteria (vii)
and (viii). As karst areas are characterized by soil vulnerability, hydrological vulnerability,
vegetation vulnerability and human vulnerability [10], it is necessary to monitor them
regularly and to protect the sustainability of karst WNHs.

To protect World Heritage properties, the World Heritage Centre developed a program
of periodic monitoring reports, conservation status reports, etc., in the 1970s to investigate
and track the health of natural World Heritage properties [11]. Monitoring is the process
of collecting information, analyzing data [12] and subsequently using the information to
assess the status, threat factors and severity of resources [13]. Current research applications
to monitor ecological quality through integrated survey data by remote sensing [14], PSR
models [15], urbanization factors [16] and natural succession of the landscape [17] are
also common. However, in the process of monitoring heritage sites, it is important to
consider human and financial constraints and to choose an appropriate strategy. With
the development of remote sensing science, multi-source remote sensing technology is
frequently applied in the monitoring of WNHs [18], especially the combination of GIS
and remote sensing technology, which enables researchers and managers of heritage sites
to effectively and reliably monitor the ecological environment quality [19,20]. Currently,
one method for measuring ecological quality is single-factor change analysis, including
analysis of land use change [21,22], NPP [23] and eco-efficiency change [24], as well as other
factor changes closely related to the ecological environment. Another method is integrated
multi-factor change analysis, which is more comprehensive and accurate compared with
single-factor analysis, and scholars have proposed various evaluation index systems for
this purpose [25,26]. Xu Hanqiu et al. [27] proposed a pure remote sensing-driven Remote
Sensing based Ecological Index (RSEI) to reflect the ecological status comprehensively,
which was normalized and subjected to principal component analysis from four aspects:
greenness NDVI, heat LST, humidity WET and dryness NDISI, to achieve remote sensing
ecological status evaluation. Subsequently, several scholars have conducted practical
studies in areas such as Bayinbrook WNHs and Karajun-Kurdening WNHs in Xinjiang,
China [28]. Although this method has been successfully applied in different regions, no
remote sensing ecological evaluation study on karst WNHs have been conducted.

As a typical representative of dolomite karst landscapes, this study uses Landsat
remote sensing images as the data source, explores the characteristics of ecological en-
vironment quality changes in the heritage site by constructing a RSEI model and using
principal component analysis, Moran index [29] and geographic probe, further analyzes the
driving factors of its ecological environment changes and provides a reference basis for the
ecological environmental protection and sustainable development of karst heritage sites.

2. Materials and Methods
2.1. Study Area

Shibing Karst WNHs is located at 108◦01′36′′–108◦10′52′′ E, 27◦13′56′′–27◦04′51′′ N
in Shibing County, Guizhou Province. The average elevation is 912 m (ranging from 600
to 1250 m). It is located on the slope of the overlap between the mountains of Qianzhong
and the hills of western Hunan (Figure 1). It has a typical and complete dolomite karst
landscape, which is deeply cut by rivers and has a surface form of crested canyons and
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crested valleys. The heritage site represents continental tropical–subtropical dolomite karst
geological evolution and bio-ecological processes and is an ideal place and natural test site
for the study of dolomite karst forest vegetation.
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2.2. Data Source and Pre-Processing

The image data used for this study were Landsat 8 OLI remote sensing images
of the Shibing Karst WNHs from 2013 to 2020, which are available through the USGS
(https://earthexplorer.usgs.gov/; last accessed on 12 October 2022) and Geospatial Data
Cloud (http://www.gscloud.cn/; last accessed on 12 October 2022). The image data are
available for free. The acquired images were all in the third quarter of the year and cloud-
free in the study area and the image quality was good. The data are preprocessed with
radiometric calibration, atmospheric correction, geometric correction, image mosaic, image
alignment, etc.

2.3. Methodology
2.3.1. Ecological Indicators Extracted

RSEI is a new ecological index that uses multi-source remote sensing data and in-
tegrates several natural factors as the main driving factors to monitor and evaluate the
ecological environment quality of a certain area, which has the characteristics of short cycle
time and wide application when compared with the code EI index and complements the
EI index well. The index couples four quantifiable indexes, namely, greenness, humidity,
dryness and heat, and is constructed using a principal component analysis (PCA), which
can quickly evaluate the ecological environment quality for a certain study area.

Greenness. The Normalized Difference Vegetation Index (NDVI) is one of the best
indicators of healthy vegetation growth, vegetation distribution and vegetation density
distribution and has the following formula [30,31]:

NDVI =
ρ4 − ρ3

ρ4 + ρ3
(1)

https://earthexplorer.usgs.gov/
http://www.gscloud.cn/
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Humidity. The wetness component of the tasseled cap transformation (WET) com-
ponent reflects the moisture content of water bodies, soil and vegetation and is mainly
obtained from the remote sensing tassel cap transformation.

WETOLT = 0.1511ρ1 + 0.1973ρ2 + 0.3283ρ3 + 0.3407ρ4 − 0.7117ρ5 − 0.4559ρ6 (2)

Dryness. The degree of soil drying is an important factor that affects the ecological
environment and is positively related to it [32]. However, in practice, the presence of certain
building sites in the area is also an important factor affecting the ecological environment.
Therefore, the Normalized Difference Imperviousness and Soil Index (NDISI) is synthesized
using both the bare soil index (SI) and the Impervious Built-up Index (IBI).

NDISI =
SI + IBI

2
(3)

SI =
(ρ3 + ρ5)− (ρ1 + ρ4)

(ρ3 + ρ5) + (ρ1 + ρ4)
(4)

IBI =
2ρ5/(ρ5 + ρ4)− [ρ4/(ρ4 + ρ3) + ρ2/(ρ2 + ρ5)]

2ρ5/(ρ5 + ρ4) + [ρ4/(ρ4 + ρ3) + ρ2/(ρ2 + ρ5)]
(5)

Heat. Land surface temperatures (LST) were calculated using the Landsat user manual
model [33] and the surface temperature was chosen to represent the heat index.

Lρ =
[
εP(Ts) + (1− ε)L↓

]
τ + L↑ (6)

P(Ts) =
Lρ − L↑ − τ(1− ε)L↓

τε
(7)

Ts =
K2

Ln[K1/P(TS) + 1]
(8)

In the equation, Lρ is the thermal infrared radiance brightness value; ε is the surface-
specific emissivity; Ts is the real surface temperature; and k is the calibration parameter.

Construction of RSEI. The above four indicators were standardized in order to facilitate
comparisons under the same system and the standardization formula was as follows:

NIi =
(Ii − Imin)

(Imax − Imin)
(9)

where NIi is the index value after the normalization of an image element; Ii is the DN value
of the index at an image element i; Imax is the maximum value of the index; and Imin is the
minimum value of the index.

The four standardized images were then synthesized and the four indicators were
coupled using principal component analysis (PCA), a multidimensional data compression
technique that selects a few important variables via the orthogonal linear transformation
of multiple variables that has the advantages of integrating the weights of each indicator,
avoiding human determination and automatically and objectively determining each indica-
tor based on the nature of the data themselves and the contribution of each indicator to
each principal component. The following equation was used for the initial RSEI calculation:

RSEI = 1− PCA[ f (NDVI, WET, NDBSI, LST)] (10)

Similarly, the calculated RSEI values were standardized to obtain the final RSEI.

2.3.2. Exploratory Spatial Data Analysis

The first law of geography states that the correlation between features is related to
distance and, in general, the closer the distance, the greater the correlation between features;
the farther the distance, the greater the dissimilarity between features [34]; therefore, the
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law of spatial correlation is often used in spatiotemporal evolution studies [35] and the
global Moran’s I index is used to express the global spatial autocorrelation.

I =

n
∑

i=1

n
∑

i=1
ωij(xi − x)

(
xj − x

)
S2

n
∑

i=1

n
∑

j=1
ωij

(11)

S2 =
1
n∑(xi − x)2 (12)

where I is the global Moran’s I index with a value range of (−1, 1), I < 0 indicates a negative
correlation and I > 0 indicates a positive correlation; ωij is the weighting coefficient; and Xi
and Xj are the remotely sensed ecological indices at i and j in the study area, respectively.

Local spatial autocorrelation in terms of local Moran’s I index:

Ii =
(xi − x)

s2 ∑
j

ωij
(
xj − x

)
(13)

2.3.3. Geographical Detector

A geographic detector is a statistical method that detects spatial differentiation and
reveal the driving forces behind it. It is mainly used to analyze the interaction between
multiple factors [36] and the analysis of spatial differences in regional variables, such as
changes in spatial patterns. A model consists of four main detectors: the divergence and
factor detector, interaction, risk and ecological detector.

Divergence and factor detection. This is mainly used to detect the spatial heterogeneity
of the attributes and the ability of the drivers to explain the RSEI attributes.

q = 1− 1
Nσ2

L

∑
h=1

Nhσ2
h (14)

where q is the explanatory power of an influencing factor on RSEI, which takes values in the
range [0, 1]—the larger the value, the stronger the explanatory power; h is the sub-region
of the image factor; L is the number of grades and classifications of RSEI and the influence
factor; Nh and N are the numbers of units in different grades of the region and the whole
region, respectively; σ2

h and σ2 is the variance of RSEI in different grades of the region and
the whole region.

Risk Area Detection. This is mainly used to determine whether there is a significant
difference in the mean values of attributes between two sub-regions using the t-statistic test.

tyh=1−yh=2
=

Yh=1 −Yh=2[
Var(Yh=1)

nh=1
+

Var(Yh=2)
nh=2

]1/2 (15)

where Yh=i denotes the mean value of the attributes in subregion h, nh denotes the number
of samples in subregion h and Var indicates the variance. If H0 is rejected at the confidence
level, there is a significant difference in the mean values of the attributes between the two
sub-regions.

2.3.4. Processing Flow

A flow chart of the ecological environment dynamic monitoring and driver analysis is
shown in Figure 2.
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3. Results
3.1. Characteristics of the Ecological Environment

In a principal component analysis, the principal component is a linear combination of
individual indicators and the weights of the indicators are the eigenvectors. These indicate
the contribution of each indicator to the principal component and determine the actual
significance of the principal component. The four normalized indicators were analyzed
using the principal component analysis module in ENVI. The eigenvalues and contribution
rates of the principal components were obtained to demonstrate the applicability of RSEI
in karst heritage sites (Table 1). The results showed that PC1 had the largest eigenvalues
among the four PCs in the study years, with a proportion of 80–87%, indicating that PC1
collected the most information on the variability of the four indicators compared to PC2,
PC3 and PC4. Therefore, all four indicator variables are represented by PC1.

Table 1. Results of principal component analysis.

Year PC1 PC2 PC3 PC4

2013
Eigenvalues/λ 0.012 0.002 0.001 0.000

Contribution Ratio/% 80.21% 11.51% 7.81% 0.47%

2016
Eigenvalues/λ 0.660 0.001 0.001 0.0001

Contribution Ratio/% 87.42% 7.9% 3.46% 1.22%

2020
Eigenvalues/λ 0.008 0.002 0.001 0.000

Contribution Ratio/% 80.56% 10.94% 6.17% 2.33%

Table 2 provides the mean values of RSEI, which range from 0.720 to 0.742 (correspond-
ing to level 4). This indicates that the overall ecological quality of Shibing karst improved
during the study period. The mean values of the four indicators during the study period
are also provided. Over all four study years, WET, which contributed the most to PC1,
increased by 18.8%, from 0.753 to 0.895 and NDVI increased by 0.056 (7.2%). Of the other
two indicators, NDISI decreased by 60.7% and LST increased by 7.5%. The increases in
NDVI and WET and the decreases in NDISI and LST can be offset by an increase in RSEI by
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3.1% over the study period. Together, the four indicators of RSEI produce a quantitative
signal of response to ecological stressors. The strength of RSEI lies not only in its ability to
provide a specific area final score but also in its interpretation of the scores of four indica-
tors representing specific spatial characteristics of ecological states. Thus, as an ecological
quality evaluation indicator, RSEI is more comprehensive than other individual indicators.

Table 2. RSEI and mean value of each index.

Year
Index

RSEI
NDVI WET NDISI LST

2013 0.773 0.753 0.880 0.469 0.720
2016 0.782 0.776 0.509 0.570 0.723
2020 0.829 0.895 0.345 0.436 0.742

3.2. Analysis of Spatial and Temporal Variation in RSEI

In order to more accurately reflect the characteristics of ecological environment quality
changes at the Shibing Karst WNHs, the RSEI was divided into five levels of parity, with
Level 1 0–0.2 (very poor), Level 2 0.2–0.4 (poor), Level 3 0.4–0.6 (moderate), Level 4 0.6–0.8
(good) and Level 5 0.8–1 (excellent). In the RSEI grade images of the study years (Figure 3),
the changes in the ecological environment quality of the Shibing Karst WNHs from 2013
before the inscription to 2020 after the inscription are comprehensively illustrated. The
red patches representing areas with poor to very poor ecological conditions are mainly
concentrated in the southern part of the buffer zone, near the urban area of Shibing County,
and have been developed intensively. The green patches, ranging from good to excellent,
are widely distributed over the site, which is dominated by dolomite karst with good forest
and shrub cover. The overall greening trend indicates that the ecological condition within
the site is very good, while the eastern and southern areas of the buffer zone near the urban
area need to be improved.
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Figure 3. Spatial and temporal evolution of the RSEI grades at the Shibing Karst.

The area of each ecological status class was calculated and the data are shown
in Figure 4. The area of the five areas in 2013 was 0.167 km2, 3.124 km2, 30.012 km2,
189.774 km2 and 60.222 km2, respectively. From 2013 to 2020, the fifth level increased to
84.861 km2 and the first, second, third and fourth levels decreased to 0.002 km2, 0.0981 km2,
23.076 km2 and 175.262 km2, respectively. The area of the region with poor and worse
RSEI levels decreases period by period and the regional transition mainly occurs between
adjacent layers, which is manifested as a transition from lower to higher levels. The main
transition types are level 1 to level 2, level 2 to level 3, level 3 to level 4 and level 4 to level 5.
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Figure 4. Area and proportion of each ecological class from 2013 to 2020.

We counted the area of the three RSEI grades. Combined with Table 3, the area of good
and excellent regions in the third RSEI classification of the Shibing Karst WNHs increased
from 88.24% in 2013 to 91.82% in 2020, indicating that the overall ecological environment
quality within the site is good. The area of the medium region decreased from 10.6% in
2013 to 8% in 2020, indicating that the medium region is more stable. The areas with poor
and worse RSEI grades decreased period by period, from 1.15% in 2013 to 0.04% in 2020
and the degree of decrease was more obvious.

Table 3. RSEI and mean value of each index.

Area (km2) 2020

2013 I II III IV V Total

I 0 0.019 0.095 0.051 0 0.165
II 0 0.027 1.980 1.109 0.005 3.121
III 0.001 0.041 13.095 16.797 0.077 30.011
IV 0.001 0.006 7.869 144.407 37.489 189.772
V 0 0.002 0.035 12.895 47.288 60.220

Total 0.002 0.095 23.074 175.259 84.859 283.289

As can be seen from Table 4, from 2013 to 2020, 37 km2 of the Shibing Karst WNHs
were converted from good to excellent, accounting for 13.23% of the total area. The area of
excellent turned to poor is 0% and the area of good and medium turned to poor is less than
0.1%. In general, the ecological environment quality of Shibing Karst WNHs is in a better
state after its inscription.

Table 4. Single-factor detection q-value.

Factors 2013 2016 2020

NDVI 0.418 0.611 0.364
NDISI 0.823 0.900 0.798
WET 0.907 0.750 0.834
LST 0.279 0.271 0.531

DEM 0.011 0.033 0.129
LUCC 0.612 0.341 0.655
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To further indicate the spatial and temporal changes in the ecological environmental
quality of the heritage site, this paper analyzes the changes in RSEI values between 2013
and 2020 (Figure 5) and divides the results into five conversion levels: significantly lower,
slightly lower, basically unchanged, slightly higher and significantly higher, for a compre-
hensive analysis of the data of the three phases of the Shibing Karst WNHs. It can be seen
that, from 2013 to 2016, the ecological environment quality within the heritage site basically
remained unchanged. Between 2016 and 2020, the ecological environment quality of the
heritage site significantly improved and the parts that showed a decreased index were
almost all within the buffer zone. Through on-site investigations and by understanding
the relevant local areas, we found that both the buffer zone and the heritage site were
developing tourism during this period and human activities were more obvious, which
caused damage to the ecological environment in the buffer zone. In general, the ecological
environment quality of the heritage site and buffer zone is improving and only in the buffer
zone are there scattered areas with a decreasing trend.
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3.3. Characteristics of Ecological and Environmental Quality Changes
3.3.1. Spatial Characterization Based on Global Moran’s I Index

The RSEI maps for 2013–2020 were used to examine the global Moran’s I index, which
can describe the overall correlation (Figure 6). The global Moran’s I indices all passed the
significance test (0.02 significance level), indicating that the ecological and environmental
quality of Shibing Karst WNHs has significant spatial autocorrelation characteristics. In
terms of evolutionary trends, the global Moran’s I index showed an increasing characteristic
from 2007 to 2018, the degree of spatial clustering of the ecological environment in the
study area was continuously strengthened and the level of clustering was improved.
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3.3.2. Spatial Characterization Based on Local Moran’s I Index

The local Moran index was used to assess the spatial dependence between samples.
The following four types of spatial association were proposed. High–high cluster value
type, high–low outlier type, low–high outlier type and low–low cluster type. High–high
and low–low clusters correspond to positive spatial autocorrelation, while high–low and
low–high outliers correspond to negative spatial autocorrelation. The characteristics of local
spatial clustering are summarized in Figure 7. 1. High–high clustering type. The spatial
differences of the high–high clustering type are small. The values of neighboring samples
are highly sampled and show significant positive correlations. Most of the high-clustering
samples are distributed in the middle, i.e., within the heritage site. 2. High–low outlier
type. The sample itself has high ecological quality, while its neighboring samples have low
ecological quality, showing a negative correlation of “high itself, low surrounding”. The
high–low outlier samples were scattered at the edge of the study area, showing a point-like
distribution structure. 3. Low–high outlier type. The value of this sample is very low,
while the value of the neighboring samples is high. The low–high outlier type shows a
negative correlation of “low itself, high surrounding”. They are mainly distributed in parts
of the buffer zone. 4. The spatial variation of the low–low clustering type is small. These
samples and their neighboring samples are of low ecological quality and show a significant
positive correlation. The number of low–low clustering type samples gradually decreased
and showed a blocky distribution, mainly in the buffer area.
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3.4. Detection and Analysis of Factors Influencing Ecological Environment Quality
3.4.1. Single-Factor Analysis

In this study, the remote sensing ecological index was used as the dependent variable
in geo-detector and land use type, elevation, NDVI, NDISI, WET and LST in the study area
were selected as independent variables. Data integration of dependent and independent
variables was performed before model construction. Geographic detectors generally use a
grid to represent spatial statistical units. Therefore, in this study, the natural interruption
method was used to classify the independent variables into five classes and a 300*300 image
element grid was created in the study area to obtain the grid center points as sample
points, of which there were 3135 in total. Additionally, the values of the dependent and
independent variables in the three periods were factor-probed. The q value represents
the degree of influence of the independent variable on the dependent variable, i.e., the
explanatory power of the spatially divergent characteristics of the RSEI (Table 4). The results
showed that the q-statistics of the factors detected in 2007 were ranked as follows: WET
(0.970) > NDISI (0.823) > LUCC (0.612) > NDVI (0.418) > LST (0.279) > DEM (0.011).The
q-statistics in 2016 were ranked as follows: NDISI (0.900) > WET (0.750) > NDVI (0.611) >
LUCC (0.341) > LST (0.271) > DEM (0.033). The q-statistic ranking in 2020 was as follows:
WET (0.834) > NDISI (0.798) > LUCC (0.655) > LST (0.531) > NDVI (0.364) > DEM (0.129).
WET and NDISI have a greater ability to spatially influence the quality of the ecological
environment, while elevation has a smaller ability to influence the quality of the ecological
environment.

3.4.2. Risk Detection

Risk area detection refers to the degree of influence of each factor on RSEI at different
levels and the results indicate that NDVI and WET positively affect ecological environment
quality, indicating that areas with higher vegetation cover and higher humidity have a
greater influence on the ecological environment quality. Additionally, NDISI and LST have
a negative feedback effect on the ecological environment quality, indicating that the higher
the dryness value and the higher the surface temperature, the higher the ecological pressure
and the poorer the area’s quality. The risk area detection of land use shows that shrubs,
grasslands, water bodies and woodlands play a positive feedback role in ecological quality
and building land plays a negative feedback role. Altitude-specific risk zone detection
shows that areas at sufficiently high or low elevations negatively affect ecological quality.
Conversely, areas at intermediate elevations have a positive feedback effect.

4. Discussion

There are numerous methods for monitoring and evaluating the ecological environ-
ment quality. Li Hailong et al. established an urban evaluation index system from five
target layers: resource conservation, environmental friendliness, economic sustainability,
social harmony, economic sustainability and social harmony [37]; Peng Tao et al. established
an ecological evaluation system for coastal wetlands including 17 specific indicators such as
population density, degree of eutrophication of water bodies, biodiversity and awareness
of wetland protection [38]. In recent years, national and regional government agencies
have also established some ecological evaluation index systems, such as the ecological
environment status index (EI) proposed by the Chinese Ministry of Environmental Pro-
tection in 2006. Remote sensing images are used to select indicators as well as to evaluate
the ecological environment quality of heritage sites so as to visualize and analyze them
spatially. With the development of remote sensing data, the development of large-scale
remote sensing satellites, medium-scale UAV monitoring and small-scale ground moni-
toring stations provides a multi-scale, multi-data source approach for the monitoring of
the ecological environment quality of heritage sites. Many scholars also obtained spatial
data of ecological environment in cities, economic circles and mining areas by remote
sensing technology, selected indicators of natural environmental conditions, environmental
quality, natural landscape pattern and urbanization impact and assimilated environmental
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pollution monitoring data and socioeconomic statistics by using GIS spatial analysis tech-
nology to make a comprehensive evaluation of the ecological environment status [39–41].
Currently, the RSEI is mainly applied to the evaluation of ecological environment quality
in urban and mining areas. There are fewer applications in karst areas. It is challenging
to apply RSEI to monitor and evaluate the ecological quality of karst areas with a fragile
ecological background, unique hydrogeological dichotomy development and particularly
contradictory human-land relationship.

In this study, the monitoring and evaluation of the ecological environment quality of
Shibing Karst WNHs was carried out using the RSEI index model, the indicators of heat,
humidity, dryness and greenness were selected as evaluation indicators and the weight was
determined by the contribution rate of each indicator to the first principal component, which
was found to be above 80% by measurement. This indicates that PC1 concentrates most of
the information of the four indicators. The selection of indicators and the determination
of weights are more reasonable. An analysis of Table 4 reveals that the greenness index
and humidity index are the preferred factors affecting the ecological environment quality
of the heritage site, which is strongly related to the vegetation cover and precipitation
of the Shibing Karst WNHs and increases in temperature and precipitation are favorable
to the growth of vegetation. This finding is also consistent with the relevant studies of
Wangguo-Qing et al. [42] and Chen-Juan et al. [43]. In this paper, satellite images were
used to invert surface temperature instead of air temperature and humidity to represent
precipitation, which were used to analyze the effects of changes in air temperature and
precipitation on ecological environment quality.

The Shibing Karst has the properties of a WNHs and a Scenic Area for conservation
and heritage display as one of the important functions [44] and is mainly concentrated in
the heritage showcase area, including the Sugimu River and Yuntai Mountain scenic areas
in the southern part of the nominated site. The ecological environment in this area is well
maintained, the geological and geomorphological features are outstanding, the Science and
Research development is in its early stages and the conditions for carrying out science and
education tourism are relatively mature. As Shibing belongs to a karst region, its fragile
ecological environment is vulnerable to the natural environment and human activities.
However, this study reveals that since the listing of Shibing Karst as a World Heritage
Site, the heritage management departments at all levels of government have protected
and managed the site in accordance with the law and the local aboriginal village rules
and regulations and the ecological quality of the site has been well preserved, in line with
the sustainable heritage tourism advocated by UNESCO. Karst is mainly composed of a
special topography developed in carbonate rocks and related ecosystems [45]. In this study,
lithological data were not used as the main evaluation index due to the high vegetation
cover in the Shibing Karst WNHs and the surface morphology of the peak canyon and
peak valley in the Shibing Karst WNHs and thus elevation was used as an important index
to study its spatial differentiation. In this paper, we considered that there are only a few
human activities in the heritage site, all of them are at the junction of the heritage site
and the buffer zone and most of them involve tourists and tourism employees, Because
the study year was 2020, the development of the tourism industry was suspended due to
the impact of the COVID-19 epidemic and thus the population and economic data were
not used as evaluation indexes [46]. Unlike other regions, there is not only surface loss
but also subsurface leakage of soil and water in karst areas [47]. Therefore, in the future
environmental monitoring of the Karst World Natural Heritage, we should focus on the
above-ground and below-ground monitoring in the field, in order to protect the ecological
environment of the heritage sites more comprehensively. Remote sensing images were
used to select indicators as well as to evaluate the ecological and environmental quality
of heritage sites so as to visualize and analyze them spatially. With the development of
remote sensing data, large-scale remote sensing satellites, medium-scale UAV monitoring
and small-scale ground monitoring stations have been developed to provide a multi-scale,
multi-data source approach to monitoring the ecological and environmental quality of
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heritage sites. In future ecological environment quality monitoring, full consideration
should be given to UAV monitoring as well as ground monitoring stations to give full play
to the synergy of sky–ground integration [48,49] and provide effective solutions for the
conservation and sustainable development of WNHs.

5. Conclusions

The proposed method for karst-like heritage sites using RSEI and the geo-detector
model, combined with GIS spatial analysis and statistical methods, provides a quantifiable
and visualized method with large temporal and spatial scales for assessing and monitoring
the ecological environment quality, which can be used for monitoring the ecological envi-
ronment quality of WNHs, especially karst-like WNHs with a more fragile ecology. The
evaluation of ecological environment quality is important for the management, conserva-
tion and sustainable development of heritage sites. This study uses remote sensing data
and geospatial analysis methods to evaluate the ecological environment quality of karst
heritage sites, taking the pre-application, post-application and current conditions of the
heritage sites as the temporal research scale. The study found that:

(1) In the evaluation of the ecological environment quality of the three phases of the
Karst Heritage Site in Shibing, the contribution of the PC1 principal component eigenvalues
reached more than 80% and the RSEI was applicable to the ecological environment quality
assessment of the karst WNHs.

(2) The proportion of the areas with good and excellent ecological quality rose from
88.24% in 2013 to 91.82% in 2020, while the proportion of areas with poor RSEI grades de-
clined period by period, from 1.15% in 2013 to 0.04% in 2020, showing a significant decline.

(3) The ecological environment quality shows a positive spatial correlation and the
Moran index value is steadily increasing. The ecological environment quality has significant
spatial aggregation characteristics, generally showing that the west side of the heritage site
is more aggregated than the east side of the heritage site. The high–high aggregation is
mainly distributed in the heritage site and low–low aggregation is mainly distributed in
the buffer zone.

(4) The results based on the geo-detectors model show that WET and NDISI have
greater explanatory power for the spatially divergent features of ecological environmental
quality in single-factor detection and are the dominant factors of environmental quality in
Shibing WNHs. NDVI and WET were found to play a positive feedback role in ecological
environmental quality in terms of risk area detection and NDISI and LST play a negative
feedback role in terms of ecological environmental quality.
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