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Abstract: The likelihood and uncertainty of severe rains and flooding in the middle basin of the
Yangtze River have grown due to global warming and growing urbanization. A flood risk assessment
index system is built based on resilience theory to assess community flood risk in a significantly
changing environment, with communities serving as the primary body to manage flood risk in cities.
The flood risk level of communities in Wuhan from 2011 to 2020 was assessed using the Analytic
Hierarchical Process (AHP) and Dempster-Shafer (DS) evidence theory, utilizing an example of the
typical Wuhan community. The findings indicate that: (1) The weight of hazard-causing factors
is the largest and has the greatest influence on the risk of flooding in the community. (2) When
looking at time series, the risk of hazard-causing factors gradually rises, while the risks associated
with systemic governance, protective works, and community vulnerability steadily decline. Building
resilient communities and enhancing flood risk management capability should be priorities for the
government, local communities, and citizens.
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1. Introduction

Extreme precipitation occurrences are prevalent in the Yangtze River’s middle basin
against the backdrop of global warming. Extreme rainfall continues to be more widespread
and intense than ever before. Large-scale human activity has increased the density of
residential buildings as urbanization picks up speed, which has reduced the amount of
greenery on the surface. The capacity of the surface to absorb water has been weakened
due to the rise in the impervious area of concrete paving. When it rains heavily, the time
it takes for rainwater to confluence is shortened, and surface runoff and river runoff both
increasing. The damage caused by heavy rain and flooding will also be made worse by
extensive land use, underlying structures, and anthropogenic changes to the local terrain.

Wuhan, Hubei Province’s and China’s central metropolis, has a total size of 8494.41 square
kilometers. It is located in the Yangtze River’s middle basin. The Han River, the Yangtze
River’s major tributary, and the Yangtze River itself flow through the city’s core. Wuhan has
a subtropical monsoon climate, which means that during the summer, when precipitation
is concentrated and river flow is substantially higher, it is influenced by the southeast
monsoon. Since Wuhan is located in the eastern portion of Jianghan Plain, where there
is low topography and restricted drainage, floods are a possibility there. As a result,
the frequency of heavy rain and floods have become a pressing concern for community
risk management in Wuhan. In this study, the community is used as the fundamental
unit to evaluate community flood risk in Wuhan. Besides, communities are becoming
more vulnerable to various disaster occurrences on account of the large concentration of
community inhabitants and changes in how community residents interact with one another.
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Climate change has made community risk governance a research hotspot that fre-
quently has a high priority both domestically and internationally. The publication of the Pi-
lot Program for the Construction of Climate Resilient Cities, NDRC Climate [2016] No. 1687,
amply demonstrates the government’s high priority for urban development and commu-
nity adaptation to climate change risks as well as the pressing need for localities to increase
their capacity for managing climate risk [1]. The ability for risk governance and community
resilience also plays a role in the assessment of flood risk within communities. As a new
urban research direction, the ability to face climate change threats is the essence of resilience.
As communities are the smallest organizational units of internal urban management, eco-
nomic capacity, risk awareness, early warning capabilities, systemic governance have a
significant relationship with the severity of community disaster. As a result, assessing the
flood risk of communities is indispensably relevant to developing resilient communities.

Current methods for determining community flood risk include Analytic Hierarchical
Process (AHP), Geographical Information System, and Indicator-Based Methodology. For
instance, Bajracharya Sagar Ratna et al. used qualitative and quantitative methods to
assess the Ratu River’s neighborhood flood early notice system [2]. Emmanuel Mavhura
et al. evaluated the flood risk of riverside villages in the Mbire district using a weighted
5-point Likert scale [3]. Greater emphasis is placed on communities’ capacity for adaptation,
organizing, and learning in order to design a more appropriate indicator system because
there is a dearth of research on community resilience in the assessment of community
flood risk. Additionally, determining the danger of flooding in a community involves a
complex system with many quantitative and qualitative parameters. The split of risk and
the determination of each component are not based on a single standard, and there is a
significant amount of uncertainty. The creation of a reliable mathematical evaluation model
is hampered by these problems.

One of the most significant aspects of risk management and disaster risk reduction is
the assessment of flood risk in local areas [4]. Priority needs, activities, and strategies for
strengthening community resilience to floods can be precisely determined based on the
assessment’s findings. The Dempster—Shafer (DS) evidence theory analysis and research is
used in the community flood risk assessment since it can handle confusing data and some
of the community indicator data may be suspect. AHP may exactly aid decision-makers
in measuring the weight of the indicator system so that they can rapidly understand the
significance of the indicators in order to accurately identify the priority of community risk
governance. The community flood risk assessment is influenced by each indication to
variable degrees. The goal of this paper is to establish a community flood risk assessment
index system from the perspective of resilience, identify the shortcomings and priorities of
community risk governance, and propose targeted strategies to create resilient communities.
It does this by adopting the AHP and DS evidence theory to assess community flood risk.
By improving both the flood risk analysis technique and the flood risk decision-making
theory, it displays considerable theoretical innovation.

2. Methods
2.1. Model Construction

The ability of a material to recover after deformation by external pressures is referred
to as resilience. The term resilience is derived from the Latin word “resillo”, and it was
originally used in the field of engineering mechanics [5]. Since then, ecology and sociology
have introduced and defined the idea of resilience in numerous ways [6,7]. Three phases
are used to describe the idea of “resilience” in planning: prevention and preparedness prior
to a disaster, resilience and reaction once a disaster strikes, recovery and reconstruction
afterwards [8]. Governments are placing more emphasis on community resilience as global
warming worsens [9].

Regional environmental risk assessment is primarily based on three factors, according
to the Recommended Methodology for Risk Assessment of Environmental Emergencies
in Administrative Regions [10]: environmental risk source intensity, environmental risk
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receptor vulnerability, environmental risk prevention and emergency response capacity.
However, there is a dearth of research on community resilience. Therefore, more emphasis
is placed on the learning and recovery capacity of communities in order to build a more
reasonable community flood risk assessment index system. As the analytical framework for
community flood risk assessment, this study uses the four influencing variables of hazard-
causing factors, community vulnerability, protection works, and systemic governance, and
many influencing factors are put under them.

Hazard-causing factor is a naturally occurring factor that affects the community flood
risk. The major indicators are the amount of annual precipitation and flood frequency in
the region where the community is located [11].

Community vulnerability is the main factor influencing a community’s flood risk.
The material security capacity of a community and the social security capacity of its
citizens are influenced by its affordability [12]. High economic levels in communities
imply stable incomes and ample financial resources for disaster relief work., which is
conducive to rapid recovery after disasters. Bringing community effectiveness into full
play can unify community residents, stimulate a sense of shared resilience and interactive
support, and effectively improve the implementation of community disaster response [13].
It can also encourage communities to resolve conflicting goals and uncertainties in flood
prevention plans through widespread participation and consultation. The high proportion
of population aged suggests that they are at high risk of disaster. Additionally, they have
weak ability to escape, mobile and immune. If they are at risk, more health care resources
will be used [14]. The community’s ability to decide whether to stock up on supplies in
advance will depend on access to information [15]. High population density will be fewer
places of refuge and more persons affected in the case of a disaster [16].

The foundation for influencing how communities evaluate flood risk is protective
works. In communities with high plant cover [17], the pooling of surface runoff can
be slowed down to some extent, which helps to lessen the likelihood of flooding. The
community’s storage space is optimized and increased thanks to the drainage network,
which also serves to lessen the risk of flooding [18].

The term “systemic character of governance” describes the entire procedure of proac-
tive prevention, thorough response, and adaptation in the case of flooding [19]. Systemic
governance as a whole is consistent with the meaning of “resilience” in planning sci-
ence. When viewed from the perspective of the entire disaster response cycle, community
resilience consists of three stages.

Firstly, the community entails taking proactive steps to get ready for early warning
and response to disasters before they happened, mobilizing resources to take effective relief
measures to mitigate and avoid events of unexpected disasters. Secondly, comprehensive
post-disaster restoration which emphasizes that community facilities can quickly recover
and return to normal life. Comprehensive post-disaster rehabilitation places an emphasis on
community facilities” ability to bounce back swiftly and carry out regular daily operations
and productive tasks even in trying circumstances. Enhancement of transitional relocation
and aid programs for victims following a disaster to protect their livelihoods and offer
them psychological support. Thirdly, learning from disaster experiences and improving
community risk management are the main focuses of post-disaster learning and adaptation.
Finally, grassroots community will reach risk management and emergency management
capability spiral rise and build resilient community.

Table 1 displays the community flood risk assessment index system along with the
indicators’ sources.
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Table 1. Community flood risk assessment index system in Wuhan.
Obijective Criterion Indicator Metrics Isrsil;gio(;‘fs
Hazard . Annual precipitation (al) Annual precipitation in Wuhan (mm) [11]
afzaillo;csa(uAs)m & Flood fr ney (a2) Number of times in a year with rainfall > 50 mm [11]
ood frequency (a ih24h
. . Proportion of population aged 60 and over to
Proportion of population aged (b1) total population (%) [14]
. . . Number of residents’ self-governing
gomrg}imtyB Community effectiveness (b2) organizations, community committees (number) (13l
C it vulnerability (B) Affordability (b3) Disposable income per inhabitant (yuan) [12]
F?(I;:)Iéull{?slky Accessibility of information (b4) Number of Internet users (million) [15]
Assessment Population density (b5) Population size/area (persons/km?) [16]
Protective Plant cover (c1) Greenery rate (%) [17]
Works (C) Drainage network (c2) Length of drainage pipes (km) [18]
Proactive prevention (d1) Monitoring gpd early warning, [19]
stockpiling supplies
Systemic Universal response (d2) Emergency relief and rapid response [19]

governance (D)

Comprehensive post-disaster restoration,
Learning to adapt (d3) potential hazard identification, lessons learned [19]
and optimal management

2.2. AHP

Analytic Hierarchical Process (AHP), formally proposed by American operations
researcher T.L. saaty [20], is a qualitative and quantitative method that provides a basis
for the selection of the optimal solution by breaking down a difficult issue into several
levels and components, and by comparing the factors to derive the importance weights
of different factors. This method is widely used in the natural sciences because it has
the advantages of being clear, simple and systematic. It can organize and quantify the
decision-making process. It also can analyze the nature of the problem and the factors
involved in the problem more thoroughly.

The basic steps of the Analytic Hierarchical Process are as follows: establish an indica-
tor rating system, decompose each factor concerned into objective, criterion and indicator
from top to bottom according to different attributes. Construct a judgment matrix, compare
the influencing factors of the same level separately and rate them according to their degree
of importance. To calculate the weights and do consistency tests, each judgment matrix
is calculated with its maximum characteristic root and corresponding eigenvector, and
then consistency tests are done using consistency index (CI), random consistency index
(RI) and consistency ratio (CR), and when CR is less than 10%, the above-obtained weight
assignments are reasonable.

2.3. DS Evidence Theory

Dempster-Shafer (DS) evidence theory belongs to the category of multiple-criteria
decision-making (MCDM)and was first applied to expert systems with the ability to handle
indefinite information [21,22]. It provides a forceful tool for the representation and fusion
of indefinite information at the decision level. Applicable to information fusion, expert
systems, multi-attribute decision analysis and risk assessment [23].

The theory consists mainly of the following basic definitions and rules of combination.

Definition 1. Frame of discernment: A complete set of mutually incompatible elementary proposi-
tions that represents all possible answers to a question, but only one of which is correct.
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Definition 2. Mass function/Basic Probability Assignment (BPA): Let P be the identification frame
and a subset of P be called proposition A. The degree of trust assigned to each proposition becomes
the BPA. The mass(A) denotes the degree of trust in A. Then, the function m : 2P — [0, 1] satisfies
the following conditions.

The probability of the improbable event is
mass(@) =0 1
The sum of the basic probabilities of all the elements in 27 is

ZAcp mass(A) =1 )

If the above conditions are satisfied then mass is said to be a basic assignment on 27,
also known as mass function, indicating a basic trust in A.

Combination rules: Dempster synthesis rules.

For A C P, the Dempster synthesis rules for the two mass functions mass;, mass, on
the recognition frame P are

mass(A) = (ma551 @massz>(A) = ﬁ Yoana,—n Massi(Ar)massy(A2)  (3)

where K =} 4, (4,—p mass1(Ay)massy(Az) Kis called the normalization factor and reflects
the degree of conflict in the evidence.

2.4. AHP and DS Evidence Theory

The classical DS theory of evidence fails to address the problem of conflicting ev-
idence. When the normalization factor K — 1, the regularization of highly conflicting
evidence and the regularization of highly conflicted evidence leads to counterintuitive
results, giving rise to the “Zadeh’ paradox. The first view is that Dempster’s rule causes the
counterintuitive result, in particular its discarded treatment of conflicts. The second view
is that the counterintuitive result arises from the source of the evidence rather than from
the rules for combining the evidence and that the evidence should be corrected before it
is combined. The third view is that the counterintuitive result arises from an incomplete
identification framework.

Compared with the approach of amending the body of evidence, altering the combina-
tion rule tends to damage the positive traits of Dempster’s rule itself, such as the exchange
law and the combination law (Han Deqiang) [24]. Therefore, this paper chooses to modify
the body of evidence to cope with the possible highly conflicting evidence combinations
and refers to Murphy [25] and Deng Yong [26] to obtain the basic probability assignment
function after fusion by using the indicator weights derived from hierarchical analysis to
weight the multi-source evidence for multiple fusions using the Dempster combination
rule with multiple confidence functions (Equation (4)). Where the number of fusions is the
number of indicators n — 1.

mass(A) = (massy @ massy; P - - - P massy)(A) =
ﬁ Ya,n.nAp—a Massy(Ay)massy(Az) - - - massy(Ay)

4)

K= ZAlﬁ...ﬂAn:Q massy(Aq)massy(Az) - - - massy (Ay)
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3. Results and Discussion
3.1. Calculation of Indicator Weights

After collecting 13 expert assessment forms, AHP software was used to calculate the
judgment matrices for the objective, criterion and indicator [27]. Experts include Wuhan
emergency management experts and deputy director and associate professor of the China
Emergency Management Research Center of Wuhan University of Technology, etc. Their
research interests include urban public safety, pre-disaster early warning, risk assessment,
urban and rural planning and other fields. Since the AHP is highly subjective, the results
heavily rely upon on the opinions of experts. Indicator weights for community storm
flooding risk assessment are, respectively, shown in Table 2. The following table passes the
consistency test (CR < 0.1).

Table 2. Indicator weights for community storm flooding risk assessment in Wuhan.

Objective

Criterion Indicator

Community Flood Risk Assessment

Annual precipitation (0.45)

Hazard-causing factors (0.34)
Flood frequency (0.55)

Proportion of population aged (0.13)

Community effectiveness (0.25)

Community vulnerability (0.26) Affordability (0.25)

Accessibility of information (0.19)

Population density (0.18)

Plant cover (0.68)

Protection works (0.25)
Drainage network (0.32)

Proactive prevention (0.4)

Systemic governance (0.15) Universal response (0.3)

Learning to adapt (0.3)

3.2. Data Collection

This paper uses the literature survey method by consulting the Wuhan Statistical
Yearbook (2011-2020) to compile the corresponding values of each indicator from 2011
to 2020. The secondary indicators under the risk of hazard-causing factors, community
vulnerability, and protection works are all quantitative indicators, and specific values can
be obtained. By contrast, the systemic governance indicator is qualitative data, and specific
values cannot be obtained. According to expert opinion, it can only be determined that
the systematical governance of the community is showing a better state as the years go
by. The three indicators under the system governance are qualitative data, which can only
be judged as good or bad through artificial judgment, and experts judge the systematic
ability of community governance through survey data and empirical judgment. When
focusing on a specific community, the system governance of a particular community can
be derived through qualitative methods. The DS evidence theory proposed in this paper
has the ability to process uncertain information, and can use mass(abc) to correspond to all
risk levels, indicating that I do not know how to allocate mass, and finally the risk level
results can still be obtained through weighted fusion. Table 3 displays specific information
on the indicators.
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Table 3. Community flood risk assessment indicator data for Wuhan 2011-2020.

Year al a2 bl b2 b3 b4 b5 cl 2
2011 976.3 3 15.9 3093 23,738 249 1180 375 7909
2012 1235.3 2 16.7 3199 27,061 330 1191 38.9 8173.15
2013 1434.2 4 17.7 3111 29,821 388 1203 38.9 9010
2014 1007.2 3 18.8 3152 29,627 3903 1206 39 9102
2015 1432.7 3 19.7 3113 32,478  463.5 1238 39.05 9202
2016 1810 7 20.6 3143 35,383  488.8 1256 39.65 9316
2017 1091.1 1 20.9 3141 38,642 430 1271 39.65 9350
2018 1110.4 1 21.2 3182 42,133 4957 1293 39.8 8240.46
2019 1051.9 2 21.4 3213 46,010 532 1308 40 10,849
2020 2012.4 8 21.2 3236 44,760  553.3 1453 42 11,422

Note: Data sources are Wuhan Statistical Yearbook (2011-2020): al annual precipitation in Wuhan, mm; a2 number
of rainfall >50 mm in 24 h in a year, times; bl proportion of population aged 60 and above to total population, %;
b2 number of residents’ self-governing organizations and neighborhood committees, units; b3 per capita dispos-
able income of residents, RMB; b4 number of internet users, 10,000; b5 number of people/area, persons/ km?;
c1 Greening rate, %; c2 Length of drainage pipes, km.

3.3. Determination of Flood Risk Intervals for Communities in Wuhan
3.3.1. Directional Division of Indicators

The directionality of indicators is a factor in the grading of flood danger levels. Positive
and negative indicators play opposing roles in the assessment of flood risk because they
affect the level of flood risk in different ways [28]. It is widely acknowledged that the
risk of flooding increases with greater values for variables like annual precipitation and
the proportion of population aged, which are negative indicators. The risk of flooding
decreases when factors like community effectiveness and affordability rise, which are
positive indicators. The directionality of the 12 indicators is displayed in Table 4.

Table 4. Direction of indicators.

Indicators Directionality Indicators Directionality
Annual precipitation negative Population density negative
Flood frequency negative Plant cover positive
Proportion of the elderly population negative Drainage network positive
Community Effectiveness positive Proactive prevention positive
Affordability positive Universal restoration positive
Information accessibility positive Learning to adapt positive

For instance, the data supplied for the indicator “Proportion of population aged” is
rated as “low risk” if it is lower than a certain threshold, while the indication “ Afford-
ability “ is rated as “high risk” if it is lower than a certain threshold. Table 4 displays the
directionality of the 12 indicators.

3.3.2. Data Processing

Processing of the indicator data is mostly done for the directional indicators, and the
values of their MAX, MIN, and duration of risk period are found, accordingly [29]. How-
ever, the risk limits and intervals cannot be determined because the systemic governance
indicators do not have specified values. The processing results for the other indicators are
shown in Table 5.



Land 2023, 12,112 8 of 14
Table 5. Indicator data processing results.
Al a2 bl b2 b3 b4 b5 cl c2
MAX 20124 8 0.214 3236 46,010 553.3 1453 0.42 11,422
MIN 976.3 1 0.159 3093 23,738 249 1180 0.375 7909
Deviation A 1036.1 7 0.055 143 22,272 304.3 273 0.045 3513
Risk interval p 259.025 1.75 0.01375 35.75 5568 76.075 68.25 0.01125 878.25
Risk threshold p1 1235.325 2.75 0.17275  3128.75 29,306 325.075 1248.25 0.38625 8787.25
Risk threshold p2 1494.35 45 0.1865 3164.5 34,874 401.15 1316.5 0.3975 9665.5
Risk threshold p3 1753.375 6.25 0.20025  3200.25 40,442 477.225 1384.75 0.40875 10,543.75
Note: Deviation A = MAX — MIN, p = A/4, p1 = MIN + p, p2 = MIN + 2p, p3 = MIN + 3p.
There are 2 risk classification methods according to the indicators’ directionality.
Positive indicators have a low risk interval of (—co, MIN], the medium low risk interval is
(MIN, p1], the medium risk interval is (p1, p2], the medium high risk interval is (p2, p3]
and the high risk interval is (p3, MAX]; Negative indicators have a low risk interval of
(p3, MAX], the medium low risk interval is (p2, p3], the medium risk interval is (p1, p2],
the medium high risk interval is (MIN, p1], and the high risk interval is (—oo, MIN]. The
risk classification method is shown in Figure 1.
Low risk Medium Low risk Medium risk Medium High risk High risk
MIN P1 P2 P3 MAX
a. risk level classification method for positive indicators
High risk Medium High risk Medium risk Medium Low risk Low risk
MAX P3 P2 P1 MIN
b. risk level classification method for negative indicators
Figure 1. Risk level classification method for positive indicators and negative indicators.
Combining the direction of indicators (Table 4) and the processing results (Table 5)
can be obtained according to the risk level classification method to divide the risk level
interval of each indicator data as shown in Table 6, where the risk level interval of systemic
governance cannot be calculated because there is no accurate data.
Table 6. Classification of risk level intervals.
Low Risk Medium Low Risk Medium Risks Medium High Risk High Risk
al <976.3 (976.3, 1235.325] (1235.325, 1494.35] (1494.35, 1753.375] >1753.375
a2 <1 (1,2.75] (2.75, 4.5] (4.5, 6.25] >6.25
bl <0.159 (0.150, 0.17275] (0.17275, 0.1865] (0.1865, 0.20025] >0.20025
b2 >3200.5 (3164.5, 3200.25] (3128.75, 3164.5] (3093, 3128.75] <3093
b3 >40,442 (34,874, 40,442] (29,3006, 34,874] (23,738, 29,306] <23,738
b4 >477.225 (401.15, 477.225] (325.075, 401.15] (249, 325.075] <249
b5 <1180 (1180, 1248.25] (1248.25,1316.5] (1316.5, 1384.75] >1384.75
cl >0.40875 (0.3975, 0.40875] (0.38625, 0.3975] (0.375, 0.38625] <0.375
2 >10,543.75 (9665.5, 10,543.75] (8787.25, 9665.5] (7909, 8787.25] <7909

3.4. BPA Function Generation and Fusion
3.4.1. Creation of the BPA Function

DS evidence theory method called BPA function generation determines the magnitude
of probability values for various indicators for each year. The following two procedures are
followed by the paper for the generation of the BPA function in conjunction with the five
areas of the risk class interval.
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3.4.2. Relationship between Focal Elements and Risk Level

The five degrees of community flood risk are low risk, medium low risk, medium
risk, medium high risk, and high risk in this study. The focal elements of BPA function
must be made up of three elements in order to reflect these five risk categories. Let the
three elements be 4, b, and c¢. Then, mass(a), mass(ab), mass(b), mass(bc), and mass(c)
which correspond to the 5 risk levels, are the focal elements of the BPA function, and their
correlation is illustrated in Table 7.

Table 7. Classification of community flood risk assessment levels.

Risk Level

Low Risk Medium Low Risk Medium Risks Medium High Risk High Risk

Focal elements

mass(a) mass(ab) mass(b) mass(bc) mass(c)

The focal element for each indication can be determined using the indicator data
in Table 3, the risk class intervals in Table 6, and the correspondence between the risk
classes and the focal elements in Table 7. The focal elements for the community flood risk
indicators in Wuhan from 2011 to 2020 are shown in Table 8.

Table 8. Indicators corresponding to focal elements.

Year al a2 b1 b2 b3 b4 b5 cl 2 d1 d2 d3

2011 (a) () (ab) (c) (c) (c) (a) (©) (c) (abc) (abc) (abc)
2012 (ab) (ab) (ab) (ab) (be) (b) (ab) () (be) (abc) (abc) (abe)
2013 ) () (9] (be) () ) (ab) ) () (abc) (abc) (abc)
2014 (ab) ) (be) (b) (b) (b) (ab) () (b) (abc) (abc) (abc)
2015 (b) (b) (be) (be) (b) (ab) (ab) (b) (b) (abc) (abc) (abe)
2016 (c) (c) (c) (ab) (ab) (a) (9] () () (abc) (abc) (abc)
2017 (ab) (a) (c) (b) (ab) (ab) () (b) b) (abc) (abc) (abc)
2018 (ab) (a) (c) (ab) (a) (a) (b) (ab) (be) (abc) (abc) (abe)
2019 (ab) (ab) (c) (a) (a) (a) (b) (ab) (a) (abc) (abc) (abe)
2020 (0) (0) (0) (a) (a) (a) (c) (a) (a) (abc) (abc) (abc)

Note: The focal elements (abc) corresponds to all police limit levels.

Where the focal element (abc) corresponds to all risk levels, indicating that it is not
known how to allocate the focal element. Therefore, all three indicators under Governance
Systematic correspond to the focal element (abc).

3.4.3. Weighted Synthetic BPA Function

The weighted synthetic BPA function means that the indicators are weighted and
averaged according to the weights of each indicator, where the weights of each indicator are
given by the indicator weights obtained from AHP (Table 2). The following is an example
of the weighted synthetic BPA function using the 2011 data to illustrate both.

mass(a) = 0.34 x 0.45 + 0.26 x 0.18 = 0.1998

mass(ab) = 0.26 x 0.13 = 0.0338
mass(b) = 0.34 x 0.55 = 0.187
mass(bc) =0
mass(c) = 0.26 x (0.25 4 0.25 + 0.19) + 0.25 = 0.4294
mass(abc) = 0.15

Similarly, BPA function for the weighted synthesis of data for each indicator for
2011-2020 can be obtained (as shown in Table 9).
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Table 9. Weighted synthetic BPA function for community flood risk indicator data from 2011 to 2020
in Wuhan.

Year Mass(a) Mass(ab) Mass(b) Mass(bc) Mass(c) Mass(abc)

2011 0.1998 0.0338 0.187 0 0.4294 0.15

2012 0 0.4856 0.0494 0.145 0.17 0.15

2013 0 0.0468 0.7382 0.065 0 0.15

2014 0 0.1998 0.6164 0.0338 0 0.15

2015 0 0.0962 0.655 0.0988 0 0.15

2016 0.0494 0.13 0.2968 0 0.3738 0.15

2017 0.187 0.2674 0.3618 0 0.0338 0.15

2018 0.3014 0.388 0.0468 0.08 0.0338 0.15

2019 0.2594 0.51 0.0468 0 0.0338 0.15

2020 0.4294 0 0 0 0.4206 0.15
3.4.4. Fusion of BPA Functions

The indicator system involves 12 different indicators, each with the different impor-

tance of influence on the community’s flood risk, so the weighted generated BPA functions
were fused using the AHP and DS evidence theory described previously, using the Demp-
ster combination rule and fused 11 times. Table 10 shows the results of the 11 fusions of the
weighted generated BPA functions.
Table 10. Results obtained after 11 fusions of BPA function for weighted synthesis.

Year Mass(a) Mass(ab) Mass(b) Mass(bc) Mass(c) Mass(abc)

2011 0.0070 0 0.0047 0 0.9883 0

2012 0 0.0406 0.9584 0 0.001 0

2013 0 0 1 0 0 0

2014 0 0 1 0 0 0

2015 0 0 1 0 0 0

2016 0.0008 0.0001 0.76 0 0.2391 0

2017 0.0448 0.0005 0.9547 0 0 0

2018 0.9423 0.0046 0.0531 0 0 0

2019 0.9584 0.0183 0.0233 0 0 0

2020 0.5457 0 0 0 0.4541 0

3.4.5. Risk Level Determination

By analyzing the data in Table 10, extracting the main focal element, and combining
the correspondence between the risk level and the focal element in Table 7, the risk level
determination results for 2011-2020 are shown in Table 11. The focal element with obvious
advantages in the BPA function is the main focal element among them. In Table 10, the
value used for the five risk levels tending to be “1” is the main focal element.

Table 11. Flood risk rating for Wuhan communities 2011-2020.

Year Main Focus Element Risk Level
2011 mass(c) High risk
2012 mass(b) Medium risk
2013 mass(b) Medium risk
2014 mass(b) Medium risk
2015 mass(b) Medium risk
2016 mass(b) Medium risk
2017 mass(b) Medium risk
2018 mass(a) Low risk
2019 mass(a) Low risk

2020 mass(a) Low risk
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3.5. Analysis of Weighted Findings

The weights are sorted from greatest to smallest within the criterion indicators in
terms of hazard-causing factors, community vulnerability, protective works, and systemic
governance. The primary reason are follows: heavy rainfall and frequent flooding are
uncontrollable natural factors; community vulnerability represents the fundamental charac-
teristics of a community and is highly volatile; protective works are the physical foundation
for flood prevention and drainage in the case of heavy rainfall and flooding; and factors of
systemic governance are more subjective and have less of an impact on community risk
assessment. Systemic governance also has an important impact on community vulnerabil-
ity and protective works. Giving full play to the advantages of systemic governance can
help reduce community vulnerability, stimulate the effectiveness of protection works, and
optimize risk management.

According to an analysis of the secondary indicator weights, affordability and com-
munity effectiveness are given more weight; plant cover is more significant and proactive
prevention has a greater influence on the assessment of community risk of flash flooding.
Therefore, it is crucial to concentrate on preserving people’ capacity for social security,
boosting communal flood capital, and enhancing material security. Focus on the effective-
ness of the community, neighborly cooperation, prompt assistance during emergencies,
and the efficiency of social capital in dealing with emergencies. Adopt new land uses and
diverse green space types or plant species through a variety of greening interventions, such
as constructing green roofs, unsealing parking lots, enhancing vegetation in community
parks, and planting street trees. It also emphasizes the critical role of sustainable drainage
systems, such as pavements, rain gardens, and infiltration ditches, to withstand urban
flooding [30,31]. The indicator of the proactive prevention given more weight should be
referred to from pre-disaster monitoring and early warning, preparation of emergency
plans, construction of emergency teams, and safety drills [32,33]. Pre-disaster monitoring
and early warning is to identify the risk of flooding and warn the community, so that
residents can stay calm when the danger comes. The emergency plan ensures that commu-
nity managers can quickly implement the tasks specified in the plan after the emergency
response is initiated. The community actively publicizes emergency knowledge and or-
ganizes self-rescue and escape drills to equip residents with self-rescue capabilities and
evacuation skills. In addition, communities should have adequate reserves of emergency
supplies to meet the needs of disaster relief and post-disaster recovery. Emergency response
teams include emergency personnel and volunteers in the community who can perform
tasks such as search and rescue work, care for casualties, evacuate people and distribute
supplies after a disaster incident.

3.6. Risk Evaluation Analysis

From the perspective of time series, the flood risk of the community from 2011 to 2020
gradually decreased. However, due to the influence of natural factors, precipitation and
flood frequency suddenly increases at times lead to communities are exposed to the medium
risk. For example, Wuhan City in 2016 due to the intense rainy period of the plum and the
El Nino phenomena, which resulted in extreme torrential rains and floods, exceeding the
city’s historically severe flood conditions, giving Wuhan’s community flood risk assessment
in 2016 a medium risk category. Wuhan will experience similar precipitation and flood
frequency in 2020 as it did in 2016. Fortunately, with the improvement of community risk
management capabilities and protection engineering construction standards, the resilience
of community disaster prevention has gradually improved, so when the community faces
heavy rain and flood again in 2020, it can give full play to the advantages of community
disaster prevention to make the community flood risk assessment show low risk.

Annual precipitation and flood frequency show an increasing trend in Figure 2 and the
risk level shows an increasing trend. The main reasons are global warming, the alternating
El Nino and La Nia phenomena.
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Figure 2. Annual precipitation and Flood frequency from 2011 to 2020 in Wuhan. Note: The m-value
is the risk level corresponding to the indicator for that year.

As Wuhan City’s development level rises, community vulnerabilities are reduced.
For instance, protection works and community governance are getting better and better.
However, serious economic losses and a decline in economic capacity due to the sudden
outbreak of new crown pneumonia in Wuhan in 2020. Additionally, the proportion of
population aged and the risk of population density have shown an increasing trend due
to the rapid urbanization process, demographic changes and the decline in the fertility
rate of Wuhan. These causes and changes have an impact on the assessment of flood risk
in community.

3.7. Analysis of Method

The model combines the AHP and DS evidence theory to determine the flood risk
level of communities in Wuhan from 2011 to 2020. Firstly, the indicators affecting the flood
risk of the community and their weights are determined (Table 2), and then the data of
each indicator is analyzed to delineate the risk level (Table 8). Secondly, the BPA function is
weighted based on the indicator data and the corresponding risk level (Table 9). Finally, the
generated BPA function is fused (Table 10), and the community flood risk is determined
according to the delimited risk level and the fused BPA function (Table 11).

Because of factors such as the man-made or natural environment, the collected data
in the information fusion system frequently contains substantial inconsistencies, and the
traditional Dempster combination rules are incapable of successfully resolving these incon-
sistencies. In this paper, an improved method of the Dempster combination rule (2.4 AHP
and DS evidence theory), namely the weighted evidence synthesis method, is adopted. This
method can effectively deal with interference evidence and has a fast convergence speed,
thereby improving the reliability and reasonableness of fusion results in evidence conflicts.

The model can not only determine the weight of each index, identify the priority and
measure methods of community risk management, but also determine the risk level of each
indicator and the overall flood risk level of the community, which is more conducive to
clearly reflecting the change trend of the indicator and the overall flood risk level of the
community. It enriches the flood risk analysis method and flood risk decision theory, and
shows strong theoretical innovation.

Undoubtedly, the study also has conceptual and methodological limitations. The
application of MCDM techniques makes the method highly subjective and largely relies on
expert judgment.
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4. Conclusions

The rapid increase in precipitation and flood frequency as well as the increased danger
of hazard-causing factors in the context of climate change provide a serious test for com-
munity flood risk management and community resilience. Building resilient communities
in the future will depend heavily on improving community risk management capacities.
One of the crucial components of risk management and disaster risk reduction is assessing
the flood risk in local areas. An information-fusion-based approach for assessing the flood
risk in communities is established by this work. The system’s representation of uncertain
information, the synthesis of various parameter data, and the decision-making process
in an uncertain environment are some of the core technologies that decision science and
information fusion have in common. By improving the flood risk analysis method and flood
risk decision-making theory, its application to the development of a community flood risk
assessment model exhibits substantial theoretical innovation. From 2011 to 2020, the system
applying the AHP and DS evidence theory assesses the flood risk level of communities
in Wuhan. The government should focus on constructing sizable greening and drainage
network projects in metropolitan areas, according to the main figures in community risk
governance. Before, during, and after disasters, communities should be prepared to take
preventative measures, respond properly, and adapt. In order to improve government,
citizens should be able to learn from catastrophe management. Multi-party community
risk management in mid-Yangtze River cities has the potential to improve community risk
management capacities and build more resilient communities.
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