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Abstract: Baseflow is an essential component of runoff, which is the dominant water resource for the
dry season. To better manage water resources, it is vital to investigate the links between the multiple
influencing factors and the baseflow for better prediction in light of global changes. Previous studies
have seldom separated these influencing factors in the analysis, making it difficult to determine their
effect on the baseflow. In this study, based on the analysis datasets generated by the Soil and Water
Assessment Tool (SWAT) model, the control single variables, correlation analysis, and multiple linear
regression (MRL) methods were firstly combined to analyze the influences of the chosen factors (land
use, topography, and soil type) on the baseflow. The findings revealed that the ability of precipitation
to replenish the baseflow was better in areas with a higher slope. The ability of precipitation to
recharge the baseflow for different land uses was ranked as “forest land > grass land > agricultural
land > urban land”; land use factors should be added to the baseflow prediction equation. The
hydrological group is the main property of soil affecting the baseflow recharge. A regression model
established using publicly acquired remote sensing data had a good performance (R2 = 0.84) on
baseflow prediction on an annual scale. As a result of this information, relevant government officials
and environmentalists may better manage water supplies in drought years. In addition, this regression
model frame has the potential to be used for a baseflow inquiry inside an ungauged zone for a better
ecological assessment.

Keywords: baseflow; land use; soil property; SWAT model; control variable method; MRL analysis

1. Introduction

Water resources are an important component of the ecological environment, which
have changed during human development [1–3], further affecting the ecological environ-
ment [4,5]. Many types of studies have been conducted to investigate the variation in
water resources due to anthropogenic activities and climate change [6–9], for better water
resources management, ecological balance and sustainable development. Baseflow is an im-
portant portion of water resources, which plays an important role in the dry seasons [10,11],
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and is vital for the biosphere [12], ecology [13,14], agriculture [15,16], and human develop-
ment [17]. It is of great significance to investigate the influencing factors of the baseflow for
a better understanding of the baseflow in light of global changes.

The definition of baseflow is controversial. Some scholars regard subsurface return
flow and lateral flow as baseflow [18,19], while other researchers only use the subsur-
face return flow as the baseflow [20]. In addition, the influencing factors of the baseflow
are complex, including land use, topography, climate, geology, anthropogenic activities,
etc. [10,21–23]. At present, the most used methods in investigating the baseflow change
mechanisms are statistical methods, hydrological similarities, and hydrological models [24];
several studies have analyzed the explanation for baseflow changes in many regions from
various aspects in recent years. However, the lack of a unified definition and complex
influencing factors result in discrepancies in the relevant research results. Previous studies
have revealed that land use change is an important influencing factor for baseflow vari-
ations. Ahiablame et al. [23] and Ayers et al. [25] found that the baseflow increased with
the increase in agricultural land, while Charlier et al. [26] and Huang et al. [27] evidenced
that the increases in agricultural land led to a decrease in the baseflow. Most studies
have found that forests increase baseflow compared to non-forest regions [28,29]; how-
ever, one scholar obtained the inverse results [27]. In addition, some studies have found
that urbanization [30], and anthropogenic agricultural activities (i.e., drainage tiling [31]
and agricultural management [13]) affect baseflow significantly. Apart from land use, the
baseflow response varied with the geomorphic and hydrogeologic settings [32,33], and the
precipitation and antecedent wetness affected the baseflow significantly with a different
changing trend [34,35]. Most scholars have indicated that baseflow is a complex process
affected by the interaction of land use, topography, geology, climate, anthropogenic activi-
ties, and other unknown factors [23,34,36]. In general, the change mechanism of baseflow
varies in different regions.

To reveal the interaction between these driving factors and baseflow, some scholars
have used statistical methods to analyze the relationship between these factors and base-
flow [37,38], and some scholars have developed regression models to predict baseflow
based on various driving factors [22,35]. However, these studies could not distinguish the
influence of different driving factors on the baseflow nor control the variables well. The
Soil and Water Assessment Tool (SWAT) model [39] is a physical-based semi-distributed
hydrological model, widely used in hydrology investigation [8,40–42] and in baseflow
investigation [18,21]. In previous studies relevant to baseflow, the SWAT model was used
as a hydrological series generator by simulating the hydrological processes under different
scenarios. The SWAT model separates watersheds into several sub-watersheds, which are
further divided into Hydrological Response Units (HRUs) based on land use, soil, and
slope combination [39]. Benefitting from this simulation mechanism of the SWAT model, it
is a good tool to realize the control variables (land use type, slope, and soil properties) to
analyze the baseflow response to various driving factors, which could avoid the interaction
effect of different driving factors on the baseflow. However, studies using the SWAT model
to carry out such analysis based on the control single variable method have not been
previously reported.

Baseflow is the guarantee for the balanced development of the watershed’s ecology
and the most basic source of water resources [14]. It plays an important role, particularly
in an agricultural watershed. The Xixian watershed (XXW), located at the source of the
Huaihe River Basin, China, is an agricultural watershed, where agricultural land occupies
55% of the total area [43]. Farmers within XXW plant rice, corn, and winter wheat across
the whole year, which need water resources for agricultural irrigation. Baseflow is an
important water source for local anthropogenic activities and ecological balance, especially
during the non-flood season. Understanding the driving factors of baseflow within the
watershed is of significant importance for better water resource management. Based on
this, XXW was chosen as the study region. The main purposes of this paper are (1) to
use correlation analysis and the control single variable method to analyze the baseflow
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response with selected driving factors based on the HRU output of the SWAT model;
(2) to use multiple linear regression (MLR) to analyze the baseflow response with selected
driving factors at the HRUs scale and sub-watershed scale; (3) to combine the results from
these two methods and analyze the effects of the chosen driving factors on baseflow, to
better predict baseflow.

2. Materials and Methods
2.1. Study Area

Xixian watershed (XXW) is located in the upper area of the Huaihe River Basin
in China, with an area of 10,229 km2, between 112◦ and 121◦ E and 31◦ and 35◦ N
(Figure 1). XXW originates from Tongbai Mountain, with an elevation between 0 (lowest)
and 1138 (highest) m upper sea level. The watershed is located in the transition region
between the warm temperate zone and the northern subtropical zone [44], with diverse
terrain (containing mountains, hills, and flat areas). Within XXW, the annual average
temperature is about 11–16 ◦C, and the average annual precipitation is about 950 mm and
varies from 800 to 1000 mm across this area [42]. The rainy season ranges from May to
October, with about 60% of the total annual precipitation.
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Figure 1. Description of the Xixian watershed. DPL, CTG, and XX represent Dapoling, Changtaiguan,
and Xixian hydrological stations, respectively. The CFSR stations are the Climate Forecast System
Reanalysis climate stations.

The dominant land use of XXW is agricultural land and forest land, which occupy
about 55.3% and 35.9% of the total area, respectively; urban land, water area (containing
lakes, rivers, and reservoirs, etc.), and grass land occupy about 4.7%, 3.2%, and 0.9%. The
main agricultural patterns are paddy farming and dry farming, across the whole year. A
large amount of water is needed for irrigation and to guarantee the production of crops. The
uneven precipitation distribution results in the main irrigation water for dry season crops
being the baseflow; hence, investigation into the effects of the relevant driving factors on
baseflow is needed for agricultural water management, environmental protection, drought
prevention, etc.
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2.2. Research Approach

To achieve our purposes in this research, our research approaches were as follows and
as shown in the workflow in Figure 2:
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(1) The filtered smoothed minima baseflow separation (FUKIH) method [45] was used
to examine the baseflow ratio of the XXW and to guarantee the proportion of baseflow
and surface flow was simulated appropriately in the SWAT model. (2) The SWAT model
was built to simulate the hydrological process for different underlying surface conditions.
(3) Some driving factors were selected to analyze their effects on the baseflow. (4) Two
statistical methods (correlation analysis and multiple linear regression) were used to analyze
the relationships between the driving factors and baseflow. (5) We compared the results
with two statistical methods and found a comprehensive relationship between these driving
factors and baseflow, which can better predict baseflow.

2.3. Data Descriptions

XXW was chosen as the study area, data within XXW were used including the
digital elevation model (DEM), land use maps, soil maps, weather data, daily precip-
itation series, and long-term continuous streamflows. The DEM was obtained from
the Geospatial Data Cloud (http://www.gscloud.cn, accessed on 5 May 2022), with a
resolution of 30 m. The land use map was obtained from the Resource and Environ-
ment Science and Data Center (https://www.resdc.cn, accessed on 5 May 2022), its
resolution was 30 m, and was separated into five categories: agricultural land, forest
land, grass land, water area, and urban land (Figure 3). The soil map published by
the Food and Agriculture Organization (Harmonized Word Soil Database v 1.2) was
used in this study, with a resolution of 30 arc-second, further resampled into 30 m, to
have the same resolution as the DEM and land use map (Figure 3). Weather data dur-
ing 1979–2013 were downloaded from Climate Forecast System Reanalysis (CFSR, https:

http://www.gscloud.cn
https://www.resdc.cn
https://climatedataguide.ucar.edu/climate-data/climate-forecast-system-reanalysis-cfsr
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//climatedataguide.ucar.edu/climate-data/climate-forecast-system-reanalysis-cfsr, ac-
cessed on 5 March 2020), and 14 stations were selected to calculate the weather generator
parameters for the SWAT model, including precipitation, temperature, wind speed, humid-
ity, and solar radiation. Continuous measured daily precipitation series from 1980 to 2012
were obtained from 42 precipitation stations supplied by the Hydrologic Bureau of Huaihe
River Commission. The long-term continuous streamflow for three hydrological stations
(Streamflow series of XX station were from 1980 to 2012, while DPL and CTG were from
1985 to 2012) were obtained from the Hydrologic Bureau of Huaihe River Commission.
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Figure 3. Distribution of land use, slope, and soil type within the XXW. Numbers (1–31) with circles
indicate subwatershed numbers. The number after the soil type code indicates the soil texture. “ATc”,
“CMd”, “CMe”, “FLc”, “Fle”, “Gle”, “GLk”, “LPe”, “LVh”, “PLd”, “PLe”, “RGc”, “RGd”, “RGe”,
“VRd”, “VRe”, and “WR” represent cumulic anthrosols, dystric cambisols, eutric cambisols, calcaric
fluvisols, eutric fluvisols, eutric gleysols, calcic gleysols, eutric leptosols, haplic luvisols, dystric
planosols, eutric planosols, calcaric regosols, dystric regosols, eutric regosols, dystric vertisols, eutric
vertisols, and water bodies, respectively.

https://climatedataguide.ucar.edu/climate-data/climate-forecast-system-reanalysis-cfsr
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2.4. Baseflow Separation

Hydrologists have developed a series of separation methods to divide the surface
runoff and the baseflow; these methods can be broadly divided into three groups:
(1) graphical methods, (2) filtering methods, and (3) mass balance methods [19,38].
The filtered smoothed minima baseflow separation (FUKIH) method [45] combines the
advantages of the minimum algorithm and filter algorithm and can separate natural
runoff appropriately.

First, the continuous daily runoff is divided by the smooth minimum method for the
first time, and then the result of the division is filtered forward by the digital filter method.
This method has been applied to many studies and obtains satisfactory results due to its
simplicity [46–48]. More details on this method can be found in Aksoy et al. [45]. The
definition of the baseflow index (BFI) is the ratio of the baseflow to the total streamflow,
which is widely used to describe the characteristic of the baseflow. The BFI of the XXW was
0.3069, which was calculated by continuous daily runoff records from 1980 to 2012 from
Xixian hydrological station.

2.5. The SWAT Model

The SWAT model was developed by the Agricultural Research Center of the United
States Department of Agriculture (USDA), one of the most widely used semi-distributed
hydrological models. The SWAT model divides the watershed into several sub-watersheds
based on sub-catchment regions calculated from the DEM and further separates them into
HRUs based on land use, soil type, and slope belt. It can directly express the differences in
spatial attributes in different sub-watersheds, even in HRUs. Benefitting from these features
of the SWAT model, many researchers have adopted it to investigate the hydrological
responses to land use and climate change to obtain satisfactory results. The SWAT model
was used in this study due to its unique combination of land use, soil type, and average
slope in each HRU. More details about the SWAT model can be found in Wei et al. [40].

The XXW was divided into 31 sub-watersheds, and further separated into 911 HRUs.
Because the response of the baseflow is not as sensitive as surface flow, the analysis of this
study was carried out on a monthly scale. To ensure the simulation results were reasonable
in space, the measured streamflow (1987–2012) at three hydrological stations (DPL, CTG,
and XX) were used to calibrate and validate the SWAT model. The years of 1985–1986,
1987–2002, and 2003–2012 were chosen as the warm-up period, calibration period, and
validation period, respectively.

The SWAT-CUP [49] was chosen as the tool to analyze the sensitivity of the parameters
and calibrate the sensitive parameters. We used the one-at-a-time method to evaluate the
sensitivity of the parameters, and the SUFI-2 algorithm was used to calibrate the sensitive
parameters. The Nash-Sutcliffe coefficient (NSE), Percent Bias (PBIAS), and the ratio of
the root mean square error to the standard deviation (RSR) were chosen to evaluate the
performance of the SWAT model; further descriptions of these indicators are given in
Moriasi et al. [50].

The calibrated SWAT model was performed during 1987–2012, which obtained the
baseflow series during this period. The monthly and annual output of the SWAT on the
HRUs and subwatershed scale were used in the analysis in Sections 3.2–3.4.

2.6. Driving Factor Selection

The SWAT model was the main tool to obtain the series to carry out the analysis,
which separated watersheds into sub-watershed and further divided these into HRUs.
Each HRU generated by the SWAT model consisted of a unique combination of land use,
soil, and slope within the sub-watershed, and the precipitation in the HRUs was different
in different months or years. The Hydrology Group is an index proposed by Staff [51];
the soils were separated into different hydrology groups (A, B, C, and D) based on their
infiltration character, and these were used in the SWAT model. The infiltration capability
decreased from A to D when the soil reached its full water content. Hence, land use
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type, soil type, hydrology group, average slope, area, and precipitation were chosen as
the driving factors for baseflow analysis at the HRU scale. For the sub-watershed scale,
some land use indicators (the agricultural land area ratio, forest land area ratio, and urban
land area ratio) and terrain indicators (average elevation) were added to the previous
driving factors. The agricultural land area ratio, forest land area ratio, and urban land area
ratio represented the percent of agricultural land, forest land, and urban land within the
XXW, respectively.

2.7. Statistical Methods

Correlation analysis is a statistical analysis method that investigates the correlation
between two or more random variables in the same position, and it has been widely used
in hydrology research [52,53]. The XXW lacks alpine snowmelt; hence, its groundwater
is mainly fed by precipitation. Therefore, the effects on the baseflow from other driving
factors are mainly reflected by the changes in the relationship between the precipitation
and the baseflow. Correlation analysis and linear regression analysis were carried out
between the precipitation and baseflow with different combinations of land use, soil type,
and slope based on the HRU output to obtain the regression coefficient (RC, the “a” in the
equation “Baseflow = a × Precipitation + b” established for each combination mentioned
before). The change in the RC represents the changes in the ability of the precipitation to
replenish the ground water. In addition, Pearson’s correlation coefficient (PCC) was used to
evaluate the accuracy of the regression equation for each combination. In this way, we could
investigate the impacts of these driving factors on the relationship between precipitation
and baseflow; further, we could analyze the effect of these driving factors on baseflow
recharge. These analyses based on the correlation analysis and linear regression analysis are
conducted in Section 3.2.

Multiple linear regression (MLR) is widely used in investigating the relationship
between some factors of the baseflow, many of these investigations established an empirical
equation for these factors to predict the baseflow [34,35,37]. On the HRU scale, MLR
was performed for the independent variables (average slope, area, and precipitation) and
dependent variable (baseflow) with different combinations of land use and soil/hydrology
group; while on the sub-watershed scale, MLR was performed for the independent variables
(area, agricultural land area ratio, forest land area ratio, urban land area ratio, average
slope, average elevation, and precipitation) and the dependent variable (baseflow). The
regression formulations are shown in Table 1; the coefficient of determination (R2) was
used to evaluate the accuracy of these formulations. The analyses based on the MLR and
the equation formulation in Table 1 are described in Sections 3.3 and 3.4.

Table 1. MLR formulations with different scales.

Driving Factors Model Formulation Spatial Scale

Average slope (as), area (ar),
precipitation (pr)

Baseflow = a * as + b * ar + c *
pr + d HRUs

Area (ar), agricultural land
area ratio (agr), forest land

area ratio (flr), urban land area
ratio (urr), average slope (as),

average elevation (ae),
precipitation (pr)

Baseflow = e * ar + f * agr + g *
flr + h * urr + I * as + j * ae + k

* pr + l
Sub-watershed

Note: “a”, “b”, “c”, “e”, “f”, “g”, “h”, “i”, “j”, and “k” are the regression coefficient for different independent
variables in the MRL equation, and “d” and “l” are the constant terms in the MRL equation. The “*” represents
multiple sign.

3. Results
3.1. Performance of the Established SWAT Model

The most sensitive parameters within the XXW were the CN2 (initial SCS runoff
number for moisture condition II), the ESCO (soil evaporation compensation factor), and
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the REVAPMN (threshold depth of the water in the shallow aquifer for “revap” to occur),
followed by the EPCO (plant uptake compensation factor), the GW_DELAY (ground water
delay), the RCHRG_DP (deep aquifer percolation fraction), the SOL_AWC (available water
capacity of the soil layer), the ALPHA_BF (baseflow alpha factor), the SOL_Z (depth from
the soil surface to the bottom of the layer), and the CANMX (maximum canopy storage).
These 10 sensitive parameters were calibrated, and the performance of the fittest parameter
sets was evaluated as shown in Table 2, the measured and simulated runoff values were
shown in Figure 4.

Table 2. Evaluation indicators for SWAT model calibration.

Period Time Station NSE PBIAS RSR

Calibration 1987–2002
DPL 0.93 −4.5 0.26
CTG 0.91 −2.0 0.29
XX 0.88 −6.4 0.34

Validation 2003–2012
DPL 0.92 1.2 0.28
CTG 0.93 −0.4 0.26
XX 0.89 −0.5 0.33

Note: The NSE ranges from −∞ to 1 (a better value), the PBIAS ranges from 0 (a better value) to ∞, and the RSR
ranges from 0 (a better value) to +∞.
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As seen in Table 2, the NSE, PBIAS, and RSR for all stations ranged from 0.88 to
0.93, −6.4 to 1.2, and 0.26 to 0.34, respectively. As recommended by Moriasi et al. [50],
when 0.75 < NSE < 1.0, PBIAS < ±10, and 0 < RSR <0.5 for monthly streamflow, these
indicate the SWAT model’s performance is very good. As seen in Figure 4, the simulated
runoff was consistent with the measured runoff in most months, with several high val-
ues overestimated. For most low flow months, the simulated and measured runoff had
good consistency, which indicated that the months that were dominated by the baseflow
were simulated appropriately. In addition, the parameters were manually adjusted after
automatic calibration, so the BFI of the simulation results was consistent with the actual
values. Finally, the BFI simulated ((lateral flow + shallow groundwater)/total streamflow)
in the SWAT model was 0.3095 for the whole XXW, and the BFI separated from measured
streamflow data was 0.3069 by FUKIH. Thus, we concluded that the simulated baseflow
was consistent with the actual baseflow, and the simulation results of the SWAT were used
in this study.

3.2. Correlation Analysis at HRU Scale

As shown in Figures 5 and 6, the PCC and RC of the precipitation and baseflow were
changed with different combinations of land use, soil type, and slope both on a yearly and
monthly scale. The range of the PPC of the precipitation and baseflow for agricultural land,
forest land, grass land, and urban land was 0.73–0.96, 0.92–0.98, 0.89–0.96, and 0.59–0.94,
respectively, on a yearly scale. The range of the PPC of the precipitation and baseflow for
agricultural land, forest land, grass land, and urban land was 0.32–0.83, 0.64–0.86, 0.64–0.84,
and 0.22–0.81, respectively, on a monthly scale. The range of the RC of the precipitation
and baseflow for agricultural land, forest land, grass land, and urban land was 0.09–0.41,
0.27–0.76, 0.19–0.64, and 0.04–0.4, respectively, on a yearly scale. The range of the RC of
the precipitation and baseflow for agricultural land, forest land, grass land, and urban
land was 0.02–0.3, 0.12–0.51, 0.08–0.46, and 0.01–0.27, respectively, on a monthly scale.
These results indicated that the ability to replenish the baseflow was ranked as “forest land
> grass land > agricultural land > urban land” for almost all combinations of soil type
and slope belt within the XXW. The PPCs on the annual scale were higher than that on
the monthly scale, which may be caused by the lag time during the replenishment of the
baseflow by precipitation. The results of the RC were similar to that of the PCC, which
further supported this conclusion. In addition, the variation ranges in the PCC of the
precipitation and baseflow for each land use were smaller for a high slope belt than that for
a low and middle slope belt. With the increase in the slope, the PCCs of the precipitation
and baseflow were increased for several soil types.

We divided the soil types into three categories based on their hydrology group. As
shown in Table 3, the PCC and RC of the precipitation and baseflow all decreased from
hydrology A to C. The PPC (RC) of the agricultural land, forest land, grass land, and
urban land decreased from 0.796–0.915 (0.266–0.434), 0.826–0.952 (0.462–0.778), 0.822–0.968
(0.367–0.598), and 0.780–0.956 (0.230–0.392) to 0.226–0.664 (0.001–0.009), 0.546–0.850
(0.073–0.180), 0.146–0.760 (0.003–0.022), and 0.239–0.762 (0.001–0.011), respectively. This
shows that the replenishing ability of the precipitation on the baseflow decreased when the
hydrology group of the soil changed from A to C.
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Figure 6. The RC between the precipitation and baseflow for different land uses, soil types, and
slopes. The RC is the “a” of the equation “Baseflow = a × Precipitation + b” for each combination of
land use, soil/hydrology group, and slope. The low slope, middle slope, and high slope represent the
slope ranges 0–10, 10–25, and 25–40, respectively. “Year” and “month” mean the data of the samples
were on a yearly and monthly scales, respectively. The soil type name of each soil type code is defined
in Figure 3.
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Table 3. The PPCs and RC for precipitation and baseflow for different combinations of
land use, hydrology group, and slope range. a and b are the coefficient of the equation
“Baseflow = a * Precipitation + b” established for each combination of land use, hydrology group,
and slope range.

Land Use
Hydrology

Group
Slope
Range

Yearly Monthly

a (RC) b PCC a (RC) b PCC

Agricultural
land

A
0–10 0.434 −141.421 0.874 0.266 3.511 0.796

10–25 0.434 −137.781 0.875 0.270 3.407 0.805
25–40 0.416 −55.293 0.915 0.318 6.007 0.868

B
0–10 0.125 −78.288 0.775 0.038 0.734 0.422

10–25 0.122 −71.327 0.773 0.039 1.026 0.445
25–40 0.143 −54.456 0.836 0.072 2.185 0.650

C
0–10 0.004 −1.067 0.574 0.001 0.162 0.226

10–25 0.009 0.522 0.664 0.004 0.388 0.584
25–40 - - - - - -

Forest land

A

0–10 0.778 −372.645 0.952 0.462 −4.526 0.826
10–25 0.739 −322.630 0.939 0.468 −4.299 0.835
25–40 0.733 −306.760 0.938 0.489 −5.269 0.855
40+ 0.676 −207.193 0.939 0.514 −3.172 0.877

B

0–10 0.391 −188.497 0.913 0.214 −1.057 0.738
10–25 0.408 −197.325 0.920 0.223 −0.770 0.745
25–40 0.415 −186.592 0.925 0.243 −0.638 0.781
40+ 0.407 −163.330 0.921 0.255 −0.059 0.804

C
0–10 0.180 −105.720 0.850 0.074 −0.100 0.548

10–25 0.177 −100.679 0.847 0.073 0.221 0.546
25–40 - - - - - -

Grass land

A

0–10 0.585 −231.359 0.946 0.367 −2.961 0.822
10–25 0.575 −223.634 0.948 0.372 −2.908 0.829
25–40 0.568 −203.355 0.943 0.391 −3.241 0.853
40+ 0.598 −256.778 0.968 0.383 −3.820 0.830

B

0–10 0.240 −122.548 0.876 0.122 −0.821 0.681
10–25 0.257 −130.583 0.882 0.129 −0.424 0.691
25–40 0.254 −111.104 0.875 0.139 0.206 0.731
40+ 0.250 −77.114 0.882 0.161 1.621 0.786

C
0–10 0.022 −9.971 0.502 0.003 0.536 0.146

10–25 0.021 −8.002 0.515 0.003 0.677 0.153
25–40 0.021 −3.114 0.760 0.004 0.942 0.245

Urban land

A
0–10 0.390 −172.609 0.913 0.230 −0.444 0.780

10–25 0.390 −167.537 0.913 0.237 −0.678 0.798
25–40 0.392 −134.221 0.956 0.300 −1.194 0.918

B
0–10 0.081 −54.042 0.666 0.024 0.169 0.359

10–25 0.080 −48.492 0.674 0.026 0.417 0.403
25–40 0.118 −50.774 0.798 0.063 0.957 0.681

C
0–10 0.005 −1.657 0.624 0.001 0.194 0.239

10–25 0.011 −0.063 0.762 0.005 0.406 0.637
25–40 - - - - - -

Among all combinations of land use and hydrology group, in most cases, the PCC and
RC of the precipitation and baseflow increased with the increase in the slope, especially for
hydrology group C. For example, for the combination of agricultural land and soil with
hydrology group C, the RC (PCC) increased from 0.226 to 0.584 on the monthly scale. This
indicates that the replenishing ability of the precipitation on the baseflow increased with
the increase in slope.
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In addition, the increase in the PCC of the precipitation and baseflow was more
significant for agricultural land and urban land compared to forest land and grass land.
This may indicate that the replenishing ability of the precipitation on the baseflow would
be more easier affected by the hydrology group and slope when the land use is agricultural
land and urban land, compared to that of forest land and grass land.

3.3. MLR Analysis at the HRU Scale

The MLR was performed for different combinations of land use and soil type, accord-
ing to the formulation shown in Table 1 on a monthly and yearly scale, and the results are
shown in Figures 7 and 8. On the yearly scale, the range of the R2 of each MLR formula-
tion for agricultural land, forest land, grass land, and urban land was 0.56–0.92, 0.85–0.94,
0.81–0.92, and 0.41–0.88, respectively. On the monthly scale, the range of the R2 of each MLR
formulation for agricultural land, forest land, grass land, and urban land was 0.13–0.69,
0.42–0.75, 0.42–0.7, and 0.07–0.65, respectively. The R2 for different land use was ranked as
“forest land > grass land > agricultural land > urban land” for most soil types.
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The effect of the soil type on the R2 of the MLR equation for the forest and grass land
was less than that of agricultural and urban land. The R2 of the MLR equation was higher
on the annual scale compared to that on the monthly scale, but the changing trend of the
R2 was similar on an annual and monthly scale. Overall, these differences in the R2 of the
MLR equation for different land use for different soils showed that the soil type could affect
the relationship between the precipitation and baseflow.

In different months, the variation of the R2 was obvious for different soil types for all
land uses. The R2 of the MLR formulation, established by the mixed datasets was lower
than that for most of the MLR formulations established by the datasets for each single soil
type. For almost all land uses, the R2 was higher in February, March, August, and October,
while it was lower in January, September, and December. This may indicate that the effect
of soil type on the baseflow varied in different months, which may result from the growth
of different land covers.

The MLR analysis was also performed for different combinations of land use and
hydrology group, and the results are shown in Table 4, The R2 for all land uses decreased
from hydrology A to C on the yearly scale. As for the monthly scale, the R2 for agri-
cultural land and urban land retained the trend of the yearly scale; however, for the R2

for the agricultural land and urban land, the rank for the different hydrology groups
was “A > C > B”. The R2 for hydrology group A was much higher than other hydrology
groups, with the ranges 0.85–0.9 and 0.65–0.72 for all land use on a monthly and yearly
scale, respectively. These results further show that the effect of the hydrology group on the
baseflow exists, and the relationship between the driving factor and the baseflow was more
easier established when the hydrology group was A.
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Table 4. The R2 of each formulation for different combinations of land use and hydrology groups.

Land Use Hydrology Group
R2

Yearly Monthly

Agricultural land
A 0.792 0.658
B 0.651 0.239
C 0.608 0.345

Forest land
A 0.888 0.716
B 0.854 0.585
C 0.722 0.300

Grass land
A 0.905 0.702
B 0.803 0.510
C 0.328 0.038

Urban land
A 0.846 0.646
B 0.510 0.187
C 0.700 0.371

3.4. MRL Analysis at the Sub-Watershed Scale

As shown in Table 5, the R2 of the MLR formulation at the sub-watershed scale was
higher than that at the HRU scale. The agricultural land area ratio, forest land area ratio,
urban land area ratio, and average elevation were added into the independent variables
to establish the MLR formulation at the sub-watershed scale, which expressed the land
use and topography characteristics within the regions. On the yearly scale, the R2 of the
MLR formulation at the sub-watershed and HRU scales were 0.84 and 0.32, respectively;
on the monthly scale, the R2 of the MLR formulation at the sub-watershed and HRU scales
were 0.52 and 0.27, respectively. As seen in Figure 9, the R2 of the MLR formulation at the
sub-watershed was higher than that at the HRU scale almost in all months. The range of
the R2 of the monthly MLR formulation at the sub-watershed and HRU scales was 0.32–0.7,
and 0.18–0.44, respectively.

Table 5. MLR formulation for different spatiotemporal scales and the R2 of these formulations. The
monthly results were analyzed based on all months; the meaning of the variables is defined in Table 1.

Scale Time Scale MLR Formulation R2

HRUs
Year Baseflow = 4.19 * sl + 0.19 * ar + 0.23 * pr−176.76 0.32

Month Baseflow = 0.37 * sl + 0.02 * ar + 0.13 * pr−6.09 0.27

Sub-watershed
Year Baseflow = −0.03 * ar−665.61 * agr−526.59 * flr−721.55 *

urr + 6.35 * as−0.2 * ae + 0.22 * pr + 429.98 0.84

Month Baseflow = −0.001 * ar−65.22 * agr−53.57 * flr−69.82 * urr
+ 0.67 * as−0.02 * ae + 0.13 * pr + 49.65 0.52

Note: The “*” represents multiple sign.

These results indicate that land use and elevation are important factors affecting the
baseflow. In the MLR formulation on the sub-watershed scale, the driving factors relevant
to land use and elevation were taken into consideration compared to that on the HRU scale.
In this case, the performance of the MLR formulation improved obviously both on the
annual and monthly scale. It is useful to consider the land use component and elevation
when establishing a baseflow prediction model, which proved to have an obvious effect on
the baseflow recharge.
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4. Discussion
4.1. Impacts of Land Use Type, Soil Type, and Slope on the Baseflow

In our study, the chosen factors were each changed in turn to investigate their influence
on the baseflow, based on the various scale outputs of the SWAT model. By the control-
ling variables method, we found that the PCC and RC of the precipitation and baseflow
were different for different land use, soil type, and slope (and). From Table 3, we found
that the PCC and RC of the precipitation and baseflow for different hydrology groups
were different. The supplemental ability of the precipitation on the baseflow for different
land uses ranks as “forest land > grass land > agricultural land > urban land”. These
results indicated that these factors (land use type, soil type, and slope) change the supple-
mentation of the precipitation to the baseflow. Some studies have also shown that when
forest land was converted into other land use types, the baseflow decreased [54,55], and
afforestation increased the baseflow [28]. Price [30] indicated that the baseflow decreased
under urban land due to the increase in the impervious surface coverage. These findings
coincide with ours.

Apart from the land use type, the supplementation ability of the precipitation on the
baseflow was changed obviously for different soil types, and these changes had a similar
trend to that for different hydrology groups. The soil types that belonged to the same
hydrology group, had a similar infiltration capacity when the soil state was completely
wet [51]. This result indicates that the infiltration capacity is an important factor for the
soil’s effect on the recharge of the baseflow. In some theoretical research, the results re-
vealed that intensive soil compaction and an increase in the impervious surface would
decrease the infiltration rate and ground water storage recharge, further decreasing the base-
flow [56,57]. It is essential to further investigate the effect of soil properties on baseflow by
physical experiments.

From Table 3 and Figures 5 and 6, we found that the PCCs and RCs between the
precipitation and baseflow on the yearly scale were all better than that on the monthly
scale, especially for hydrology B and C. This phenomenon may indicate that the recharge
function of the precipitation on the baseflow has a lag time. The PCC was decreased when
the land use, soil type, and slope changed, which may indicate that these factors could
change the lag time of the recharge function of precipitation on the baseflow. Muñoz-Villers
et al. [22] found that the average slope and the infiltration at the soil–bedrock interface were
the main factors that influenced the lag time of the baseflow. Some studies denoted that the
lag time of the baseflow varied in different locations, ranging from tens of days to more
than a year [58–60]. In our study area, according to the high PCCs between precipitation
and baseflow on the yearly scale, the lag time of the baseflow was mostly within a year and
might differ for the different underlying surfaces. This hypothesis needs to be verified in
future studies.
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4.2. Baseflow Predicts Regression Model

In previous studies, scholars used agricultural intensity, slope, and meteorological
factors (i.e., precipitation, antecedent wetness, and temperature) to predict the base-
flow [34,35], further investigating the change mechanism of the baseflow when these
factors changed [37,61]. They ignored the soil properties and other land use factors in
their baseflow prediction model. In our correlation analysis results, the PCCs between the
precipitation and baseflow changed obviously for different land uses and soil types, which
indicated that these could significantly affect the baseflow in the watershed.

The MLR analysis was performed for different combinations of land use and soil type
on monthly and yearly scales (Figure 8). The performance of the MLR equation for different
land uses ranks as “forest land > grass land > agricultural land > urban land” for most
cases. These findings may indicate that it is possible to improve the baseflow prediction
capacity by adding some driving factors relevant to land use. The results obtained from
Figure 7 also indicate that the soil type affected the performance of the MLR equation
significantly, the performance of the MLR for all soil types was lower than most MLRs for a
single soil type. This also further proves that the baseflow mechanism is different for the
different underlying surfaces.

On the sub-watershed scale, some land use factors (agricultural land area ratio, forest
land area ratio, and urban land area ratio) and average elevation were added into the inde-
pendent variables, and MLR analysis was performed with the baseflow as the dependent
variable. The R2 of the MLR equation was 0.84 and 0.52 for the yearly scale and monthly
scale, respectively; which was higher than that on the HRU scale (a value of 0.32 and
0.27 for R2 on the yearly and monthly scale, respectively). The results indicate that the
land use factors and elevation are important for baseflow prediction. The mean R2 for
the statistical model in the U.S. Midwest was 0.49 on the monthly scale according to
Ayers et al. [34], and the performance of our MLR equation on the sub-watershed (R2 = 0.52)
scale was higher than the mean performance level of the previous study. Zhang et al. [35]
used the regression approach to predict the BFI in the long term, adding more land use
factors may improve the performance of the prediction model. Apart from the factors
chosen in this study, some meteorological and climate factors might also have an important
effect on baseflow prediction, which have been mentioned in other research [62–64]. In
the future, a series of comprehensive prediction models could be established for baseflow
considering all aspects of the influence factors in different climate zones, for better water
resource prediction and water management.

4.3. Uncertainties, Deficiency, and Potential Applications

Hydrological modeling has been used to analyze the impact of different factors on
hydrology processes [24,27,35], especially distributed hydrological models, which simu-
lated hydrology processes based on physical mechanisms. In this study, the SWAT model
was adopted as a tool to investigate the relationships between the chosen factors and the
baseflow. Though the SWAT model built in this study had a good performance on runoff
and a suitable BFI compared to the actual situation, as stated by Moriasi et al. [50], there still
exist some errors introduced by the original data, model mechanism, and equifinality for
different parameters [65,66]. However, it is also a suitable tool to investigate the effects of
the driving factors on the hydrological components and has been widely used in previous
research [18,35,67].

The land use, soil type, and slope were all identified as key factors that influence
baseflow, however, there still exist some deficiencies in our results. The number of soil
types taken into consideration was low, the slope was separated into four categories, and
the results were obtained in a single watershed. More soil types and watersheds need
to be taken into consideration in the future, to obtain the universal relationship between
these factors and baseflow for most regions. In addition, a smaller slope interval should
be used to investigate the relationship between slope and baseflow. Finally, the methods
adopted in this study to analyze the effect of the different driving factors on baseflow were
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correlation analysis, linear regression analysis, and MLR analysis, which only reveal the
linear relationship between several variables. However, these driving factors and baseflow
may have a nonlinear relationship; hence, nonlinear regression analysis methods should be
applied to address this hypothesis.

Our results indicate that it is better to consider more land use factors when establishing
the baseflow prediction equation. In our study, the MLR equation fitting on the sub-
watershed had good performance on the yearly scale, with an R2 of 0.84. The baseflow is
the main water resource within the watershed in drought years [68], and the watershed
would risk a drought if the precipitation and baseflow were lacking at the same time [57].
It is meaningful to predict the baseflow accurately on a yearly scale, in order to be better
prepared for the lack of water for water resource management. The driving factors of
this study (area, agricultural land area ratio, forest land area ratio, urban land area ratio,
average slope, average elevation, and precipitation) were obtained from remote sensing
data. This is a good way to measure the baseflow in an ungauged area, for obtaining a
universal equation for different climate zones. For example, the target of this study, XXW,
is an agricultural watershed. The MLR equation established at the sub-watershed scale
performed well in the baseflow simulation and is beneficial in understanding the condition
of the local baseflow. It is significant for local water management in a drought year. In
addition, this study has revealed that the land use component has an obvious impacts on
baseflow, and in this case, the local government could adjust the land use structure based
on these results for better water conservation.

5. Conclusions

The SWAT model established in XXW performed well in the streamflow simulation
and could simulate the proper proportion of baseflow. The correlation analysis and MLR
analysis were performed to analyze the effects of land use, soil type, and slope on the
baseflow. In our results, the PCC between the precipitation and baseflow changed obvi-
ously for different combinations of land use, soil type, and slope, and the selected factors
all affected the baseflow significantly. The infiltration ability was a key property of soil
that affected the baseflow, the PCC between the precipitation and baseflow ranked as
“A > B > C” for most conditions. The PCC between the precipitation and baseflow was
higher on the yearly scale than that on the monthly scale, which was caused by the lag
time effect of the precipitation on the baseflow. The PCC between the precipitation and
the R2 for the MLR equation for different land use was ranked as “forest land > grass
land > agricultural land > urban land”, and land use is an important factor for the
recharge process of baseflow. The performance of the MLR equation established on the
sub-watershed scale was better than that on the HRU scale, showing that adding land
use factors is a good way to improve the performance of the MLR equation in baseflow
prediction. In our study, the independent variables of the MLR equation established at
the sub-watershed scale on the yearly scale were all obtained from the remote sensing
data and have a good performance (R2 = 0.84) in baseflow prediction on a yearly scale.
It is meaningful for understanding the situation of baseflow, and for better local water
management in a drought year.
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