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Abstract: Delineating urban growth boundaries (UGBs) by combining the land-use/land-cover
(LULC) change simulation method has become common in recent studies. However, few of the exist-
ing studies have integrated multi-source big data to analyze the driving factors of LULC dynamics
in the simulation. Moreover, most of previous studies mainly focused on the UGBs delineation in
macroscale areas rather than small-scale areas, such as the county area. In this study, taking Xinxing
County of Guangdong Province as the study area, we coupled a system dynamics (SD) model and
a patch-generating land-use simulation (PLUS) model to propose a framework for the LULC change
simulation and UGBs delineation in the county area. Multi-source big data such as points of interest
(POIs), night-time light (NTL) data and Tencent user density (TUD) were integrated to analyze the
driving forces of LULC change. The validation results indicate that the coupled model received high
accuracy both in the land-use demand projection and LULC distribution simulation. The combination
of multi-source big data can effectively describe the influence of human socio-economic factors
on the expansion of urban land and industrial land. The UGBs delineation results have similar
spatial patterns with the LULC change simulation results, which indicates that the proposed UGBs
delineation method can effectively transform the LULC simulation results into available UGBs for
the county area. It has been proven that the proposed framework in this study is effective for the
LULC change simulation and UGBs delineation in the county area, which can provide insight on
territorial spatial planning in the county area.

Keywords: urban growth boundaries (UGBs); LULC change simulation; multi-source big data; SD
model; PLUS model; county area; Xinxing County

1. Introduction

Since the Reform and Opening-Up policy in 1978, China has been undergoing in-
tense urbanization. Urban sprawl that occurs from the fast development of the economy
and population has become a huge challenge for urban planning and urban sustainable
development [1,2]. Similar to other developing countries, in China, the urban sprawl
is also inevitable at the expense of occupying essential ecological resources (farmland,
forestland or grassland) that contributes significantly to the urban environment from devel-
opment [1,3–5]. This phenomenon has become more serious due to the lack of scientific
and efficient approaches for the urban planner to deal with this problem [3]. In order to
manage the disorderly urban expansion, many practical works have been proposed in
previous research [6–9]. Among these, the delineation of urban growth boundaries (UGBs)
is suggested to be an efficient method to assist urban planners to guide the direction of
urban land expansion [10–12]. The initial spatial pattern of the UGBs can be traced back
to the city green belt in the 1930s, which was well-employed in the later urban planning
of London [13]. Jun employed UGBs for the optimization of spatial patterns to restrain
disorderly urban sprawl in Portland [14]. After that, a growing volume of research has
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paid more attention to the use of UGBs to assist the urban planner in constructing scientific
urban land policies, to restrict future urban shapes within predefined boundaries [15–17].

Prior methods to delineate UGBs can be summarized into two major categories,
including the approaches dependent on land-use/land-cover (LULC) suitability evaluation,
and the approaches based on future LULC change simulation [1,18]. The former can be
easily conducted by considering a series of native features (e.g., location, transportation and
natural conditions) and have been largely applied in previous studies [19,20]. Nevertheless,
evaluating the suitability of LULC requires a comprehensive understanding of the research
area, because these factors can implicitly drive urban change at different spatial–temporal
scales in a complex way [16]. Moreover, the determination of the weight of each factor in
the scoring process is mainly based on the personal experience of planners, which may
sometimes lead to a biased conclusion [21]. Hence, some UGBs delineation approaches
based on LULC change simulation models have emerged accordingly. Among them,
cellular automata (CA) models have been employed in many studies for establishing UGBs,
due to the ability to simulate LULC dynamics at each cell by considering the transition rules
and neighborhood effect [22,23]. Nevertheless, the “bottom-up” CA models in previous
studies are incapable of capturing the macro socio-economic effect of urban growth, which
is a kind of “top-down” effect [16,24]. Generally, this macro-effect is related to the future
demand of different kinds of LULCs, which is an important basis for building urban
planning policies for different scenarios.

To overcome this shortcoming, a series of CA models that combine the top-down
quantitative estimation methods have been proposed. These CA models generally start
from the prediction of land-use demand, such as ANN-CA [25], CLUE-S [26], Logistic-
CA [27] and FLUS [1,16,17,28,29]. However, these models have lack the ability to analyze
the contributions of each driving factor in the LULC process and fail to operate the simula-
tion of multiple LULC patches. Recently, the newly proposed patch-generating land-use
simulation (PLUS) model not only maintains the strength of self-adaptive inertia and the
competition mechanism of the existing LULC change simulation models [28], but also
introduces a new data mining framework [30]. In the traditional CA models, it is necessary
to use two phases of data to mine the transition rules and verify the model with new
data [25,27]. However, the PLUS model further developed the CA models by using the
random forest (RF) algorithm to explore the contribution of each driving force to LULC
conversion in two phases of data and to generate the probability of occurrences of land-use
types, enabling the user to analyze the LULC change mechanism and receive higher accu-
racy in the applications of the LULC change simulation [31–35]. However, most previous
studies only considered the conventional LULC change factors such as natural factors,
transportation factors and location factors when simulating LULC change [36,37]. Although
some of the studies have mentioned that human socio-economic factors are non-negligible
driving forces for LULC change [38], few studies have tried to further extend this work due
to the lack of data that illustrates human socio-economic factors. The emergence of multi-
source big data brings new opportunities to explore the influence of human socio-economic
factors to LULC change. Existing studies have confirmed that multi-source big data such
as nighttime light (NTL) remote sensing data and Tencent user density (TUD) data can
reflect human socio-economic activities at fine spatial resolutions [39–42]. Therefore, it is
necessary to integrate such valuable data to the LULC simulation to explore the underlying
driving forces of LULC change, especially the influence of human socio-economic factors.

UGBs delineation by simulating future LULC change under different scenarios has
become common in current research [24,43,44]. Evaluating the influence of how different
planning policies affect the future spatial patterns of urban areas, UGBs examined in
different scenarios can provide the urban planner with useful information about the impacts
of different development policies on urban management [16]. However, in terms of exiting
studies related to UGBs delineation, most of them primarily focus on the large-scale areas,
such as developed cities and provincial- or national-scale areas; few of them consider the
delineation of UGBs in small-scale areas such as the county area.
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In contemporary China, the county is an administrative unit between the urban and the
village area, which works as a bridge to connect the development of urban and rural areas.
Since the 19th Communist Party of China National Congress, the county area has played
an essential role in integrating urban and rural area development. Owing to the support
of government policies and the tide of industrial transfer from big cities, the county area
has gradually become a potential area of urbanization [21,45]. However, due to the lack of
timely scientific methods to manage urban development, the disorderly urban expansion in
county areas may convert essential natural land into construction land, which may lead to
irreversible ecological loss, such as the reduction of biological diversity [46], the weakening
of ecological functions [47] and the instability of the ecosystem structure [48]. Hence, in
order to realize the balance of development and environmental protection in county areas
during urbanization, it is of great significance to delineate reasonable UGBs in advance to
limit the development of unreasonable developing areas, which can effectively alleviate
the increasingly acute conflict between urbanization and natural resource protection.

Therefore, we have proposed a UGBs-delineation framework for the county area by
integrating multi-source big data. In this framework, we coupled the SD model, Markov
model and PLUS model to simulate future LULC change of the county area. The Markov
model and SD model were used to predict the land-use demand, and the PLUS model
was used to simulate the LULC spatial distribution pattern. In addition, multi-source big
data such as nighttime light (NTL) remote sensing images, points of interest (POIs) and
Tencent user density (TUD) big data were introduced to analyze the driving factors of LULC
dynamics. Eventually, based on the LULC change simulation results, the UGBs under
different scenarios were delineated. The proposed framework was applied to Xinxing
County of Guangdong Province. Xinxing County is one of the most rapidly developing
counties in Guangdong Province and is undergoing fast urban land expansion. The goals
of this study were: (1) to use multi-source big data to analyze the driving factors of LULC
dynamics at the county level; (2) to construct a comprehensive simulation framework to
predict the LULC dynamics of the county area from 2020 to 2035 under different developing
scenarios; and (3) to delineate UGBs based on multi-scenarios to provide scientific references
for the UGBs delineation of spatial–territorial planning in county areas of China.

2. Study Area and Data
2.1. Study Area

Xinxing County is located in the southeast of Yunfu City (22◦22′–22◦50′ N, 111◦57′–
112◦31′ E) in the western–central area of Guangdong Province, China (Figure 1). The total
area of the county is 1502.77 km2, of which 89% is forestland and farmland and 6% is
construction land, including urban land and industrial land. Xinxing County is one of
the rapidly urbanizing areas in Guangdong Province, and its economy has developed
rapidly over the last decades. The per capita gross domestic product (GDP) of Xinxing
County grew from 27,688 to 63,868 Yuan RMB (according to the Yunfu Statistical Yearbook,
2020). The urban population grew from 76,846 to 221,905, and the urbanization level
increased from 17.94% to 46.23%. According to the classification of county leading function
types [49], Xinxing County is a leading agricultural county of Yunfu City. With socio-
economic development, the area of urban land and industrial land of Xinxing County has
expanded from 11.92 km2 and 16.63 km2 to 16.33 km2 and 25.62 km2 between 2015 and
2020, which implies an average annual expansion rate of 36.97% and 54.1%, respectively.
However, the fast development of the construction land (urban land and industrial land)
comes at the expense of the decreasing area of farmland and forestland by 2.78% and
1.97%, posing a threat to the sustainable development of food safety and ecological safety.
Hence, delineating UGBs reasonably to control the direction of urban expansion effectively
and protect natural resources are the main goal to be accomplished during the process of
urbanization of Xinxing County.
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Figure 1. Location of the study area.

2.2. Data Sources and Pre-Processing

Several datasets were used in this study according to the different requirements of
the models (Table 1). The data used in the SD model include land-use data and socio-
economic data. The land-use data of Xinxing County for 2015 and 2020 used in this study
were obtained from the Geographical Information Monitoring Cloud Platform. In this
study, we reclassified the original land-use data into seven categories: farmland, forestland,
grassland, water, urban land, rural area and industrial land. The socio-economic data such
as population, GDP and food production were obtained from the Yunfu City Statistical
Yearbook from 2015 to 2020. The land-use data used in the Markov model are the same as
that used in the SD model. The PLUS model mainly requires land-use data, driving factors
data and spatial restricted area data. The land-use data used in the PLUS model are the
same data used in the SD and Markov models. The prime farmland protection areas and
ecologically sensitive areas are the main dataset used for constructing different simulation
scenarios. The former was obtained from the government of Xinxing County, and the
latter was generated by the spatial analysis tool in ArcMap 10.2 [50]. As for the driving
factors data (Figure 2)—other than the conventional natural, transportation and location
factors—we also consider some factors that are related to human socio-economic activities
by introducing multi-source big data. Previous studies have shown that nighttime light
(NTL) remote sensing images have a high correlation with regional economic status [51].
Therefore, we used the NPP/VIIRS (National Polar-orbiting Partnership/Visible Infrared
Imaging Radiometer Suite) data for 2019 to characterize the economic development of
Xinxing County. Moreover, points of interest (POIs) of public facilities and industrial
companies, acquired from the Social Big Data Platform of East China Normal University,
were used to represent the densities of public facilities and industrial companies by the
kernel density tool of ArcMap 10.2. Owing to the features of high spatio-temporal resolution
and relevance to human activity, Tencent user density (TUD) big data has the capability
to reflect the fine-grained urban population information. According to the findings of
Huang et al. [39], annual TUD data can be synthesized by sampling holiday and non-
holiday TUD data. In this study, we used synthesized TUD data for 2019 to characterize
the population density. The spatial data involved above were processed into raster data
with a resolution of 30 m using ArcMap 10.2.
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Table 1. List of the data used in this study.

Category Data Year Data Resource

Land use Land use data of Xinxing County 2015
Geographical information monitoring cloud platform
(http://www.dsac.cn/dataproduct/detail/200804)

(accessed on 1 June 2022)
Land use data of Xinxing County 2020

Statistical Yearbook GDP 2015–2020
Statistics Bureau of Yunfu

(https://www.yunfu.gov.cn/yftjj/gkmlpt/mindex#679)
(accessed on 1 May 2022)

Fixed asset investment 2015–2020
Permanent population 2015–2020

Urban population 2015–2020
Grain production 2015–2020

Restricted area Prime farmland protection area 2020
Natural resources bureau of Xinxing County

(http://www.xining.gov.cn/yfxxzrzy/gkmlpt/index/)
(accessed on 1 May 2022)

Ecological sensitive area 2020 Derived from spatial analysis of ArcGIS

Driving factors Distance to railway 2020 Open Street Map (http://www.openstreetmap.org/)
(accessed on 1 March 2022)

Distance to main road 2020
Distance to highway 2020

Distance to water 2020

Distance to county government 2018 Baidu Map API (http://apistore.baidu.com/)
(accessed on 1 March 2022)

Distance to town government 2018

DEM 2020 Geospatial Data Cloud (http://www.gscloud.cn/)
(accessed on 1 May 2022)

Slope 2020
Aspect 2020

Industrial companies density 2017 Social Big Data Platform of East China Normal University
(http://sdsp.ecnu.edu.cn/sdp)

(accessed on 1 March 2022)Public facilities 2017

Economic development 2019
Earth Observation Group of NOAA

(https://eogdata.mines.edu/products/vnl/)
(accessed on 1 March 2022)

Population density 2019 Huang et al. [39]

Figure 2. Spatial driving factors of LULC change simulation.

http://www.dsac.cn/dataproduct/detail/200804
https://www.yunfu.gov.cn/yftjj/gkmlpt/mindex#679
http://www.xining.gov.cn/yfxxzrzy/gkmlpt/index/
http://www.openstreetmap.org/
http://apistore.baidu.com/
http://www.gscloud.cn/
http://sdsp.ecnu.edu.cn/sdp
https://eogdata.mines.edu/products/vnl/
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3. Methodology

In this study, we proposed the framework of UGB delineation for the county area. The
framework includes: (1) land-use demand projection, (2) LULC spatial pattern simulation and
(3) future UGBs delineation. The flowchart of the proposed framework is shown in Figure 3.

Figure 3. The flowchart of the proposed framework.

3.1. Land-Use Demand Projection

Different development scenarios will influence the direction of land-use projection.
According to the scenario setting in previous studies [36,37] and specific regional LULC
characteristics, we set up three different scenarios, which include a natural development
(ND) scenario, farmland protection (FP) scenario and ecological protection (EP) scenario
(Table 2). Since the LULC of the ND scenario is only affected by the law of historical LULC,
we used the Markov chain model to predict the land-use demand of this scenario, while
the land-use demand of the other two scenarios would be predicted by the SD model.

Table 2. Scenario setting.

Scenarios Scenarios Description Simulation Constraints

Natural development (ND)

This scenario does not consider any policy constraints on land
development. The development of future demand would follow the
historical law of LULC change. Therefore, the results of this scenario

can be used as a reference for the simulation results of other scenarios.

No constraint.

Farmland protection (FP)

Protecting the quantity and quality of prime farmland is crucial to
maintaining regional food security. Thus, it is necessary to limit land

conversion in the prime farmland area to prevent the rapid loss of
prime farmland owing to uncontrolled urban expansion.

Taking prime farmland protection area
as the restriction and prohibiting the

farmland in this area from conversion.

Ecological protection (EP)
Ecological security is essential for the maintenance of biodiversity and

regional environmental quality. Hence, the protection of ecological
security pattern should receive attention.

Taking the ecologically sensitive areas as
restricted area where the LULC within it

is unable to be converted.
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3.1.1. Markov Chain Model

As for the state of the objective in the Markov chain model, its current state is only
determined by the previous state [52]. In this study, the demand at t + 1 of the ND
scenario relied on the land use at t. During the prediction, the long-time series information
was abandoned, and two recent periods (2015 and 2020) of land-use data were used for
forecasting. The rule is as follows:

A(t+1) = P(i) × A(t) (1)

where A(t+1) and A(t) are the amounts of land-use type k at time t + 1 and t, and P(i) refers
to the transfer probability matrix of land-use type k at different times.

3.1.2. SD Model

The SD model is capable of predicting both the liner and non-linear relationships
between land-use demand and socio-economic factors [36]. We define seven types of land
use as the horizontal variables in this model. In addition, several socio-economic factors
were selected as auxiliary variables. Finally, depending on the historical law of auxiliary
variables change, the future land-use demand of the FP and EP scenarios were projected by
adjusting the annual growth rate of the control variables. The SD model of this study was
constructed using Vensim PLE software (Figure 4)

Figure 4. SD model of land-use demand projection. The symbols of + and − indicates the influence
of the former to the latter, respectively positive influence and negative influence.

3.2. Future LULC Change Simulation

LULC simulation is the basis for the future UGBs delineation. In this study, we
employed the PLUS model as the tool to simulate future LULC. The PLUS model includes
two important modules: land expansion analysis strategy (LEAS) and a CA model based
on multi-type Random Seeds (CARS) [30]. The LEAS module determines the development
probability of each land-use type by using the random forest (RF) algorithm to calculate
the influence of driving factors on the expansion of each land-use type. The CARS module
is a CA model that integrates the impacts of macro “top-down” land- use demand and the
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micro “bottom-up” simulation on the land system. It incorporates an innovative multi-type
random seeds generating mechanism to simulate micro-land-use competition to drive the
current land-use amounts to meet the macro-demand under the comprehensive influence
of self-adaptive inertia coefficient, neighborhood effect and development probability. For
detailed information about the PLUS model, please refer to [30]. The overall probability
OPd=1,t

i,k of the development for land-use type k is shown below.

OPd=1,t
i,k =

 Pd=1
i,k × (r× uk)× Dt

k, I f Ωt
i,k = 0 and r < Pd=1

i,k

Pd=1,t
i,k ×Ωt

i,k × Dt
k, all others

(2)

where Pd=1
i,k represents the probability of land-use type k being developed at pixel i, which

can be obtained from the LEAS module; Dt
k represents the self-adaptive inertia coefficient

of land-use type k, which depends on the difference between the current amount of, and
future demand for, land-use type k. Ωt

i,k represents the neighbourhood effect of pixel i,
which is determined by the proportion of land-use of type k in the neighborhood of pixel i
and the neighborhood weights. When the neighborhood effect of type k land-use is zero,
the multi-type random seeds generating mechanism will generate random seeds of each
land-use type through the Monte Carlo method.

Additionally, r is a random value ranging from 0 to 1, and uk is the threshold for the
generating of new land-use patches of type k. To avoid the uncontrolled growth of land-use
patches, CARS integrates a decreasing threshold. If the new land-use type c wins a round
of competition, a decreasing threshold τ is used to assess whether the pixel i converts to
this candidate land-use type.

I f
N

∑
K=1

∣∣∣Gt−1
c

∣∣∣− N

∑
K=1

∣∣Gt
c
∣∣ < Step, Then j = j + 1 (3)

{
Change, Pd=1

i,c > τ and TMk,c = 1
Not Change, Pd=1

i,c < τ and TMk,c = 1
(4)

where
∣∣Gt−1

c
∣∣ and

∣∣Gt
c
∣∣, respectively, denote the difference of land-use amount between

the (t− 1)th iteration and future demand and (t)th iteration and future demand. Step is
the step size required to approximate future land-use demand; δ is the decay factor of the
decreasing threshold τ, with a value range of 0 to 1; r is a normally distributed stochastic
value with a mean value of 1, which ranges from 0 to 2; j represents the decay step size.
TMk,c is conversion matrix that decides whether land-use type k can convert to land-use
type c. In the CA model, the pixels with higher overall potential are more likely to convert,
but after integrating the decreasing threshold mechanism in the CA model, it allows the
random land-use patches to grow freely and spontaneously under the restriction of growth
probabilities, which improves the accuracy of multi-type land-use simulation.

3.3. Delineating UGBs by Morphological Method

Generally, some small and scattered construction land patches with low compactness
are not suitable to designating UGBs. Hence, in this study, two morphology operators,
including dilation and erosion, were used to eliminate these small patches and produce
UGBs by opening and closing operation. In the open operation, the dilation step will be
operated first to keep most of the boundary pixels without noise. Then, the erosion step
will eliminate the isolated patches [16]. The opening operation can be shown as below:

X ◦ B = (X⊕ B)	 B (5)

In contrast, the close operation is a dilation step followed by an erosion step, which
can be expressed as below:

X · B = (X	 B)⊕ B (6)



Land 2022, 11, 1598 9 of 18

The opening and closing operations are usually applied for edge smoothing and
internal filling on areas for images based on the morphological way. In this study, both of
the two operations were used to process the simulated construction land patches (urban
land and industrial land) to generate available UGBs.

4. Results
4.1. Model Validation

Only when the models used were validated could their results be considered credible.
In this paper, the SD model and PLUS model were employed to the land-use demand
prediction and land-use spatial simulation, respectively. The relative error index and
kappa coefficient were used to validate the results, respectively. According to Table 3, the
differences between the simulated results and the actual land-use demand are relatively
small: the average value of relative error is 1.3%, and the highest value is less than 4%. When
the value of error is less than 6%, it means a high accuracy of the model [26]. Additionally,
the comparison between the actual land-use data and the simulated result generated by the
PLUS model are shown in Figure 5. It is easy to find that there is lots of similarity in the
spatial pattern between the simulated result and the actual data. The kappa coefficient is
0.92, and the overall accuracy is 96.03%. Generally, when kappa > 0.75%, it indicates good
consistency of the simulation. Based on this fact, the closer the kappa value is to 1, the higher
the accuracy of the simulation. Hence, both models received relatively high accuracy in the
validation, which indicates that they could be applied to future LULC change simulations.

Table 3. Comparison between projected areas and actual areas of 2020 (km2).

Farmland Forestland Grass Land Water Area Urban Land Rural Area Industrial Land

Actual area 329.78 1003.64 55.62 24.29 16.33 47.49 25.62
Simulated area 330.75 1004.89 55.21 23.48 15.77 46.15 25.98
Relative error 0.3% 0.12% 0.74% 3.36% 3.43% 1.38% 0.04%

Figure 5. The comparison between the simulated LULC and the observed LULC in 2020.

4.2. Analyzing the Underlying Driving Forces of the LULC Change

By adopting the LEAS module of the PLUS model, it is more convenient to analyze the
driving factors for LULC change. As mentioned in Section 2.1, the urban land and industrial
land of Xinxing County has undergone evident expansion from 2015 to 2020, which has
led to a lot of farmland and forestland being encroached upon. Here, we selected natural
factors, transportation factors, location factors as well as human socio-economics factors to
analyze the underlying driving forces of the expansion of urban land and industrial land in
Xinxing County from 2015 to 2020. Figure 6 presents the variable importance that illustrates
the contribution of each driving factor to the growth of urban land and industrial land.
Figure 7 shows the LULC of 2015 and 2020. Two sub-regions with evident LULC change
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were selected to reveal the dynamic change of these two land types, in which subregion 1
is the central part of Xincheng Town where the government of Xinxing County is located,
and subregion 2 is the main location where most of ceramic industries of Xinxing County
are located, including Rencun Town and Shuitai Town. From Figure 6, it is obvious that
the distance to the county government has the most significant contribution to the growth
of urban land, and economic development also plays an important role in influencing the
expansion of urban land. From the perspective of spatial location, we found in subregion 1
of Figure 7 that the new-growth urban land was mainly distributed around the central
region of Xinxing County. Thus, it can be inferred that the urban land of Xinxing County is
more likely to expand to the regions close to the county government with a well-developed
economy. In terms of the expansion of industrial land, its expansion is mostly influenced
by natural conditions, such as elevation and the proximity to water. Except for these
two significant factors, human socio-economic factors such as the density of population
and industrial companies also have evident contribution to the growth of industrial land.
It is easy to discover from subregion 1 and subregion 2 that the new-growth industrial
land is mainly located in the areas with low elevation and short distance to water, as well
as dense population and industrial companies. This suggested that the combination of
multi-source big data can effectively reveal the influence of human socio-economics factors
on the growth of urban land and industrial land.

Figure 6. The contribution of each driving factor to the growth of urban land and industrial land.

Figure 7. The LULC change map of 2015–2020.
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4.3. Multi-Scenario LULC Simulation

For future LULC simulation, firstly, we predict the future land-use demand of different
scenarios of Xinxing County in 2035 by the Markov chain model and SD model; then, the
PLUS model was used to allocate the projected land-use demand to simulate the LULC
change at different scenarios to support the territorial–spatial planning in Xinxing County.

4.4. Multi-Scenario LULC Simulation
4.4.1. Future LULC Demand Projection

The projection results of land-use demand under different scenarios are shown in
Table 4. We found that both the FP scenario and EP scenario have the same area of water
(24.76 km2), urban land (23.72 km2) and industrial land (29.84 km2); the area of farmland
(326.16 km2) and forestland (1004.89 km2) would be the maximum, respectively, in these
two scenarios. In addition, although the ND scenario has the largest areas of urban land
(27.52 km2) and industrial land (46.06 km2), it is worth noting that this scenario will lose
the most farmland and forestland, which demonstrates that more attention should be paid
to protect the farmland under the current trend of LULC change.

Table 4. Land-use demand projection of 2035 under different scenarios (km2).

Type
Markov System Dynamics

ND Scenario FP Scenario EP Scenario
2020 2035 2035 2035

Farmland 329.79 307.36 326.16 320.01
Forestland 1003.64 991.57 999.26 1004.89
Grassland 55.62 57.09 53.52 54.41
Water area 24.29 25.08 24.76 24.76
Urban land 16.33 27.52 23.72 23.72
Rural area 47.49 48.1 45.52 45.15

Industrial land 25.62 46.06 29.84 29.84

4.4.2. Future LULC Distribution Simulation

The results of the LULC change simulation under different scenarios are shown in
Figure 8. Under the ND scenario, the major features of LULC change were the rapid
expansion of urban land and industrial land, and reduction of farmland and forestland,
in which prime farmland areas and ecologically sensitive areas will be reduced by 1.73%
and 2.51%. However, this phenomenon alleviates in the FP and EP scenarios due to the
spatial restricted areas. In subregion 1 of the ND scenario (Figure 8b1), it is obvious that
the new-growth patches of urban land and industrial land will expand and occupy a large
portion of surrounding farmland and forestland. In the EP scenario, due to the restriction of
the ecologically sensitive area, the distribution pattern of the industrial land in subregion 1
(Figure 8c1) remained almost the same as in 2020. At the same time, due to the EP scenario,
which had the highest demand for forestland, some small patches of forestland appear in
the north of subregion 1. In contrast to the EP scenario, some new patches of industrial
land were generated in the left of subregion 1 of the FP scenario (Figure 8d1), but the area
of these patches is less than that of the ND scenario. In subregion 2, the simulation result
of the ND scenario (Figure 8b2) presents the most significant increase of industrial land
along with the existing industrial land, as well as a small portion of farmland converted
into rural area and water area at the south of this region. Under the EP (Figure 8c2) and FP
(Figure 8d2) scenarios, the growth of industrial land was restricted to reduce the decrease
of farmland and forestland. Furthermore, under the EP scenario, some patches of grassland
and forestland were predicted to appear in subregion 2.
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Figure 8. Simulated LULC patterns in 2035 and land expansion maps from 2020 to 2035 under
different scenarios.

4.4.3. UGBs Delineation

The simulated LULC distribution results obtained from the PLUS model are frag-
mented and discrete, and the manual identification of the UGBs in this case is prone to
misjudgment. Morphological methods, including dilation and erosion algorithms, were
used to produce the UGBs based on the simulated LULC results. Then, the raster-formatted
UGBs were converted into vector-formatted UGBs by GIS software, and some small patches
with an area of less than 3 km2 were removed.

The UGBs delineation results of the ND, EP and FP scenarios are presented in
Figure 9a1, 9b1 and 9c1, with an area of 78.7 km2, 51.76 km2 and 54.31 km2, and a growth
rate of 87.6%, 23.38% and 29.48%, respectively.

In subregion 1, under the history law, the UGBs delineation result of the ND scenario
has the biggest scope, and the edge of the UGBs is the smoothest among the UGBs of other
scenarios. In the west of the Xincheng Town, since the restriction of ecologically sensitive
area, there is little expansion of construction land in the EP scenario (Figure 9b2); instead,
there is evident conversion of forestland to construction land in the ND (Figure 9a2) and
FP scenarios (Figure 9c2). At the same time, due to the constraints of the ecological area
and prime farmland protection area, the edges of UGBs result in the EP and FP scenarios
are more irregular than that of the ND scenario.
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Figure 9. UGBs delineation results of Xinxing County in 2035 under different scenarios. The a2,
b2, c2, d2 show the UGBs delineation of sub-region1, the a3, b3, c3, d3 show the UGBs delineation
of sub-region2.

In subregion 2, the scope of the UGBs of the ND scenario is 21.25 km2 (Figure 9a3),
which is obviously bigger than the UGBs scope of the EP scenario (8.79 km2) (Figure 9b3)
and FP scenario (7.53 km2) (Figure 9c3); however, the evident expansion in this scenario
would lead to a big portion of forestland and farmland being encroached upon. In addition,
the UGBs results in the EP and FP scenarios have a very similar spatial pattern and scope
under the constraints of the ecologically sensitive area and prime farmland protection
line. From the UGBs delineation results of the multi-scenario above, it is easy to find
that these UGBs delineation results retain the same spatial distribution characteristics of
the simulated LULC patterns under different scenarios, which indicates that the UGBs
delineation method can effectively transform the LULC change simulation results into
available UGBs for the county area.

5. Discussion
5.1. Delineating UGBs with and without “Three-Line Coordination”

In the LULC change simulation, the goals of setting the simulation scenarios of EP
and FP were to prevent ecologically sensitive areas and prime farmland resources from
encroachment during urbanization. These goals can be achieved at the same time by
following the rule of “Three-line Coordination” when delineating UGBs. The concept of
“Three-line” refers to the prime farmland protection line, ecological red line and UGBs [53].
In the new Chinese territorial–spatial-planning system, the “Three-line Coordination” is
an essential standard to measure the relationship between urban development and the
protection of agricultural land and ecological resources, which is necessary for promoting
sustainable development. In the practical work of UGBs delineation, the realization of the
UGBs delineation under the “Three-line Coordination” scenario can be the intersection area
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of the UGBs delineation results between the EP scenario and FP scenario, which indicates
that this intersection area can be developed without encroaching on prime farmland and
ecologically sensitive areas. This can help the urban planner to deal with the contradic-
tion between urban development and the protection of primary farmland and ecological
land use.

The UGBs delineation result of the “Three-line Coordination” scenario is shown in
Figure 9d1: the area of the UGB is 48.93 km2, with an increase of 16.63% compared with
2020. In terms of the LULC conversion, some of the forestland and farmland that is not
included in the restriction area would be converted into new construction land. Compared
with the UGBs delineation results of other scenarios, although the UGBs delineation result
of the ND scenario presents the biggest developing area in the future, without the spatial
restriction, however, a large portion of prime farmland and ecologically sensitive area
would be encroached upon. In addition, in the EP and FP scenarios, due to the constraints
of the ecologically sensitive area and prime farmland protection area, the development
of UGBs in these scenarios can effectively prevent their occupation. However, it is still
inadequate to solve the conflict between urban development and natural resource protection
by employing any single constraint. This indicates that the “Three-line Coordination”
scenario can help to realize the development of construction land while protecting the
prime farmland area and ecological area, which is meaningful to supplement the UGBs
delineation on territorial–spatial planning.

5.2. Urban Planning Suggestion

“Three-line Coordination” explains the relationship between urban development
and natural resource protection, which can guide Chinese territorial–spatial planning in
a more scientific and valid direction. However, in terms of the urban development of
Xinxing County, there still exist some shortcomings that need to be solved. Owing to the
long-established urban–rural dualistic structure in China, there is a general emphasis on
the urban area rather than the rural area during the urbanization of the county area [45],
which leads to the imbalance of development between urban and rural areas. According
to the LULC change simulation results, an evident imbalance phenomenon exists in the
development of urban land in Xinxing County, where new-growth urban land mainly
appears around the central region of Xinxing County, while few appears at other towns.
Xinxing County has rich tourism resources in other towns, such as Liuzu Town and Taiping
Town, whose major regions are not included in the prime farmland protection area and
ecologically sensitive area. However, it would be difficult to exploit such valuable tourism
resources in these towns if the current development trend of Xinxing County continues.
Based on the analysis result in Section 4.3, factors such as administrative location and
economic development are vital in determining the expansion of urban land. In addition,
the distribution of public facilities also has an important contribution to the expansion of
urban land in Xinxing County. Hence, in the future, the development of public facilities
should be strengthened in Xinxing County, especially the development of transportation
service facilities, which can fully take advantage of the rich tourism resources, so as to
further promote the development of Xinxing County.

5.3. Limitations and Future Research Prospects

Despite the merits of this study, we have to acknowledge some limitations which need
to be addressed in future research. First, in terms of a future LULC change simulation,
revealing the driving mechanism of each land-use type can help to understand the law of
LULC change. However, only the land-use types with expansion were considered in this
study, such as urban land and industrial land, while other land-use types with decrease
were not considered—for example, farmland, forestland, grassland, water areas and rural
areas. Hence, in future studies, it is necessary to explore the driving mechanism of each
land-use type more comprehensively in the LULC change simulation, to further explore
the law of LULC change. Second, policy direction plays an important role in the LULC
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change in the county area. However, due to the lack of relevant planning materials, the
driving factors selected in this study may be imperfect to reveal the driving mechanism of
each land-use type. In addition, the lack of relevant planning materials would also lead
to the incomplete verification of the UGBs delineation result in this study, which can only
verify the UGBs delineation result from the spatial perspective. Thus, it is expected that
the effectiveness of the proposed UGBs delineation method can be further verified from
the perspective of amount control by integrating more planning documents. Third, due to
the lack of ecological red line protection data, we used the existing spatial datasets, such
as DEM and NDVI (normalized difference vegetation index), to evaluate the ecologically
sensitive area of the research area [50]. Therefore, relevant spatial data about ecological red
line protection should be adopted in future.

6. Conclusions

Currently, the contradiction between people and land urban sprawl has become more
and more serious due to the rapid urban sprawl. Delineating UGBs by simulating a future
multi-scenario LULC is effective for serving urban planning and to deal with the existing
conflict between urban development and natural resource protection. However, few of the
previous LULC change simulation studies have tried to integrate multi-source big data to
explore the driving factors of LULC dynamics during the simulation. In addition, most of
the existing UGBs delineation studies mainly focused on the macro-scale area, and few of
them have paid attention to the UGBs delineation in the county area. Hence, this study
proposed a framework for the UGBs delineation in the county area. In this framework, the
SD model and PLUS model were coupled to simulate a future multi-scenario LULC, and
several multi-source big data that can related to human socio-economic characteristics in
the micro-scale were introduced to explore the contribution of the driving factors to LULC
dynamics. Finally, the morphology methods, including dilation and erosion algorithms,
were employed to generate the UGBs of different scenarios based on the simulated LULC
results. The proposed framework was applied to the UGBs delineation in Xinxing County,
a rapidly urbanizing county area in Guangdong Province. The validation of the LULC
change simulation result indicates that the coupled SD and PLUS model can accurately
simulate LULC dynamics in the county area. After analyzing the driving factors of LULC
dynamics, we can infer that the administrative location and human socio-economic factors,
such as economic development and public facilities, are vital for the expansion of urban
land. In terms of the expansion of industrial land, in addition to the important influence
of environmental factors (DEM and distance to water), the density of population and
industrial companies also have an evident contribution. Hence, we can conclude that the
introduction of the multi-source big data can effectively reveal the influence of human
socio-economic factors to the growth of urban land and industrial land.

In the 2035 LULC change simulation results of different scenarios, the main charac-
teristics of LULC dynamics in the ND scenario was the rapid expansion of urban land
and industrial land, which leads to evident encroachment on farmland and forestland. In
the EP and FP scenarios, this phenomenon would alleviate due to the spatial restricted
areas. At the same time, the UGBs delineation results have similar spatial patterns with the
LULC change simulation results, which further proves the efficiency of the proposed UGBs
delineation framework in county area.

Comparing the UGBs delineation results of the “Three-line Coordination” scenario
with the ND, EP and FP scenarios, the UGBs result in the ND scenario has the biggest scope,
but a large portion of prime farmland and ecological resources would be encroached upon
during the expansion of construction land. Moreover, in either the EP or FP scenarios, it is
still not enough to deal with the conflict between urban development and natural resource
protection by employing any single constraint during future UGBs delineation. Instead,
the UGBs delineation result under the “Three-line Coordination” can effectively deal with
the conflict between construction land expansion and natural resource protection, which is
meaningful to supplement the UGBs delineation on territorial–spatial planning.



Land 2022, 11, 1598 16 of 18

Author Contributions: Conceptualization, S.L.; methodology, Z.L., J.C. and C.C.; resources, S.L., F.W.
and Z.W.; writing—original draft preparation, Z.L.; writing—review and editing, S.L. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Key-Area Research and Development Program of Guang-
dong Province (2020B0202010002) and the National Natural Science Foundation of China (41871290,
42271467, 42071262).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhang, D.; Liu, X.; Lin, Z.; Zhang, X.; Zhang, H. The delineation of urban growth boundaries in complex ecological environment

areas by using cellular automata and a dual-environmental evaluation. J. Clean. Prod. 2020, 256, 120361. [CrossRef]
2. Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global Change and the Ecology of Cities.

Am. Assoc. Adv. Sci. 2008, 319, 756–760. [CrossRef]
3. Chigbu, U.E.; Schopf, A.; de Vries, W.T.; Masum, F.; Mabikke, S.; Antonio, D.; Espinoza, J. Combining land-use planning and

tenure security: A tenure responsive land-use planning approach for developing countries. J. Environ. Plan. Manag. 2017, 60,
1622–1639. [CrossRef]

4. Wang, L.; Pijanowski, B.; Yang, W.; Zhai, R.; Omrani, H.; Li, K. Predicting multiple land use transitions under rapid urbanization
and implications for land management and urban planning: The case of Zhanggong District in central China. Habitat Int. 2018,
82, 48–61. [CrossRef]

5. Cui, X.; Li, S.; Gao, F. Examining spatial carbon metabolism: Features, future simulation, and land-based mitigation. Ecol. Model.
2020, 438, 109325. [CrossRef]

6. Zhou, Y.; Huang, X.; Chen, Y.; Zhong, T.; Xu, G.; He, J.; Xu, Y.; Meng, H. The effect of land use planning (2006–2020) on
construction land growth in China. Cities 2017, 68, 37–47. [CrossRef]

7. Wang, L.; Han, H.; Lai, S. Do plans contain urban sprawl? A comparison of Beijing and Taipei. Habitat Int. 2014, 42, 121–130.
[CrossRef]

8. Bidandi, F.; Williams, J.J. Understanding urban land, politics, and planning: A critical appraisal of Kampala’s urban sprawl. Cities
2020, 106, 102858. [CrossRef]

9. Lei, Y.; Flacke, J.; Schwarz, N. Does Urban planning affect urban growth pattern? A case study of Shenzhen, China. Land Use
Policy 2021, 101, 105100. [CrossRef]

10. Ball, M.; Cigdem, M.; Taylor, E.; Wood, G. Urban Growth Boundaries and their Impact on Land Prices. Environ. Plan. A Econ.
Space 2014, 46, 3010–3026. [CrossRef]

11. Tayyebi, A.; Perry, P.C.; Tayyebi, A.H. Predicting the expansion of an urban boundary using spatial logistic regression and hybrid
raster-vector routines with remote sensing and GIS. Int. J. Geogr. Inf. Sci. IJGIS 2014, 28, 639–659. [CrossRef]

12. Mathur, S. Impact of an urban growth boundary across the entire house price spectrum: The two-stage quantile spatial regression
approach. Land Use Policy 2019, 80, 88–94. [CrossRef]

13. Gallent, N.; Bianconi, M.; Andersson, J. Planning on the Edge: England’s Rural—Urban Fringe and the Spatial-Planning Agenda.
Environ. Plan. B Plan. Des. 2006, 33, 457–476. [CrossRef]

14. Jun, M. The Effects of Portland’s Urban Growth Boundary on Urban Development Patterns and Commuting. Urban Stud. 2004,
41, 1333–1348. [CrossRef]

15. Moffett, K.B.; Makido, Y.; Shandas, V. Urban-Rural Surface Temperature Deviation and Intra-Urban Variations Contained by an
Urban Growth Boundary. Remote Sens. 2019, 11, 2683. [CrossRef]

16. Liang, X.; Liu, X.; Li, X.; Chen, Y.; Tian, H.; Yao, Y. Delineating multi-scenario urban growth boundaries with a CA-based FLUS
model and morphological method. Landsc. Urban Plan. 2018, 177, 47–63. [CrossRef]

17. Wu, X.; Liu, X.; Liang, X.; Chen, G. Multi-scenarios simulation of urban growth boundaries in Pearl River Delta based on
FLUS-UGB. J. Geo-Inf. Sci. 2018, 20, 532–542.

18. Ma, S.; Li, X.; Cai, Y. Delimiting the urban growth boundaries with a modified ant colony optimization model. Comput. Environ.
Urban Syst. 2017, 62, 146–155. [CrossRef]

19. Cerreta, M.; De Toro, P. Urbanization suitability maps: A dynamic spatial decision support system for sustainable land use. Earth
Syst. Dyn. 2012, 3, 157–171. [CrossRef]

20. Bhatta, B. Modelling of urban growth boundary using geoinformatics. Int. J. Digit. Earth 2009, 2, 359–381. [CrossRef]
21. Cao, K.; Huang, B.; Wang, S.; Lin, H. Sustainable land use optimization using Boundary-based Fast Genetic Algorithm. Comput.

Environ. Urban Syst. 2012, 36, 257–269. [CrossRef]
22. Li, X.; Chen, G.; Liu, X.; Liang, X.; Wang, S.; Chen, Y.; Pei, F.; Xu, X. A New Global Land-Use and Land-Cover Change Product at

a 1-km Resolution for 2010 to 2100 Based on Human-Environment Interactions. Ann. Am. Assoc. Geogr. 2017, 107, 1040–1059.
[CrossRef]

http://doi.org/10.1016/j.jclepro.2020.120361
http://doi.org/10.1126/science.1150195
http://doi.org/10.1080/09640568.2016.1245655
http://doi.org/10.1016/j.habitatint.2018.08.007
http://doi.org/10.1016/j.ecolmodel.2020.109325
http://doi.org/10.1016/j.cities.2017.04.014
http://doi.org/10.1016/j.habitatint.2013.11.001
http://doi.org/10.1016/j.cities.2020.102858
http://doi.org/10.1016/j.landusepol.2020.105100
http://doi.org/10.1068/a130110p
http://doi.org/10.1080/13658816.2013.845892
http://doi.org/10.1016/j.landusepol.2018.09.011
http://doi.org/10.1068/b31171
http://doi.org/10.1080/0042098042000214824
http://doi.org/10.3390/rs11222683
http://doi.org/10.1016/j.landurbplan.2018.04.016
http://doi.org/10.1016/j.compenvurbsys.2016.11.004
http://doi.org/10.5194/esd-3-157-2012
http://doi.org/10.1080/17538940902971383
http://doi.org/10.1016/j.compenvurbsys.2011.08.001
http://doi.org/10.1080/24694452.2017.1303357


Land 2022, 11, 1598 17 of 18

23. Zhang, D.; Liu, X.; Wu, X.; Yao, Y.; Wu, X.; Chen, Y. Multiple intra-urban land use simulations and driving factors analysis: A case
study in Huicheng, China. GISci. Remote Sens. 2019, 56, 282–308. [CrossRef]

24. Yang, X.; Bai, Y.; Che, L.; Qiao, F.; Xie, L. Incorporating ecological constraints into urban growth boundaries: A case study of
ecologically fragile areas in the Upper Yellow River. Ecol. Indic. 2021, 124, 107436. [CrossRef]

25. Yang, X.; Chen, R.; Zheng, X.Q. Simulating land use change by integrating ANN-CA model and landscape pattern indices.
Geomat. Nat. Hazards Risk 2016, 7, 918–932. [CrossRef]

26. Verburg, P.H.; Soepboer, W.; Veldkamp, A.; Limpiada, R.; Espaldon, V.; Mastura, S.S.A. Modeling the Spatial Dynamics of
Regional Land Use: The CLUE-S Model. Environ. Manag. 2002, 30, 391–405. [CrossRef]

27. Chen, Y.; Li, X.; Liu, X.; Ai, B. Modeling urban land-use dynamics in a fast developing city using the modified logistic cellular
automaton with a patch-based simulation strategy. Int. J. Geogr. Inf. Sci. IJGIS 2014, 28, 234–255. [CrossRef]

28. Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A future land use simulation model (FLUS) for simulating
multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [CrossRef]

29. Liu, X.; Wei, M.; Li, Z.; Zeng, J. Multi-scenario simulation of urban growth boundaries with an ESP-FLUS model: A case study of
the Min Delta region, China. Ecol. Indic. 2022, 135, 108538. [CrossRef]

30. Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-
generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569.
[CrossRef]

31. Li, C.; Wu, Y.; Gao, B.; Zheng, K.; Wu, Y.; Li, C. Multi-scenario simulation of ecosystem service value for optimization of land use
in the Sichuan-Yunnan ecological barrier, China. Ecol. Indic. 2021, 132, 108328. [CrossRef]

32. Gao, L.; Tao, F.; Liu, R.; Wang, Z.; Leng, H.; Zhou, T. Multi-scenario simulation and ecological risk analysis of land use based on
the PLUS model: A case study of Nanjing. Sustain. Cities Soc. 2022, 85, 104055. [CrossRef]

33. Wang, Z.; Li, X.; Mao, Y.; Li, L.; Wang, X.; Lin, Q. Dynamic simulation of land use change and assessment of carbon storage based
on climate change scenarios at the city level: A case study of Bortala, China. Ecol. Indic. 2022, 134, 108499. [CrossRef]

34. Tian, L.; Tao, Y.; Fu, W.; Li, T.; Ren, F.; Li, M. Dynamic Simulation of Land Use/Cover Change and Assessment of Forest Ecosystem
Carbon Storage under Climate Change Scenarios in Guangdong Province, China. Remote Sens. 2022, 14, 2330. [CrossRef]

35. Chen, Y.; Wang, J.; Xiong, N.; Sun, L.; Xu, J. Impacts of Land Use Changes on Net Primary Productivity in Urban Agglomerations
under Multi-Scenarios Simulation. Remote Sens. 2022, 14, 1755. [CrossRef]

36. Chen, C.; Liu, Y. Spatiotemporal changes of ecosystem services value by incorporating planning policies: A case of the Pearl
River Delta, China. Ecol. Model. 2021, 461, 109777. [CrossRef]

37. Wang, X.; Yao, Y.; Ren, S.; Shi, X. A coupled FLUS and Markov approach to simulate the spatial pattern of land use in rapidly
developing cities. J. Geo-Inf. Sci. 2022, 24, 100–113.

38. Li, S.; Liu, X.; Li, X.; Chen, Y. Simulation model of land use dynamics and application: Progress and prospects. J. Remote Sens.
2017, 21, 329–340.

39. Huang, Z.; Li, S.; Gao, F.; Wang, F.; Lin, J.; Tan, Z. Evaluating the performance of LBSM data to estimate the gross domestic
product of China at multiple scales: A comparison with NPP-VIIRS nighttime light data. J. Clean. Prod. 2021, 328, 129558.
[CrossRef]

40. Chen, X.; Nordhaus, W.D. VIIRS Nighttime Lights in the Estimation of Cross-Sectional and Time-Series GDP. Remote Sens. 2019,
11, 1057. [CrossRef]

41. Li, S.; Lyu, D.; Liu, X.; Tan, Z.; Gao, F.; Huang, G.; Wu, Z. The varying patterns of rail transit ridership and their relationships with
fine-scale built environment factors: Big data analytics from Guangzhou. Cities 2020, 99, 102580. [CrossRef]

42. Li, S.; Lyu, D.; Huang, G.; Zhang, X.; Gao, F.; Chen, Y.; Liu, X. Spatially varying impacts of built environment factors on rail transit
ridership at station level: A case study in Guangzhou, China. J. Transp. Geogr. 2020, 82, 102631. [CrossRef]

43. Yi, D.; Guo, X.; Han, Y.; Guo, J.; Ou, M.; Zhao, X. Coupling Ecological Security Pattern Establishment and Construction Land
Expansion Simulation for Urban Growth Boundary Delineation: Framework and Application. Land 2022, 11, 359. [CrossRef]

44. Wang, W.; Jiao, L.; Zhang, W.; Jia, Q.; Su, F.; Xu, G.; Ma, S. Delineating urban growth boundaries under multi-objective and
constraints. Sustain. Cities Soc. 2020, 61, 102279. [CrossRef]

45. Liu, Y.; Yan, B.; Wang, Y. Urban-Rural Development Problems and Transformation Countermeasures in the New Period in China.
Econ. Geogr. 2016, 36, 1–8.

46. Vimal, R.; Geniaux, G.; Pluvinet, P.; Napoleone, C.; Lepart, J. Detecting threatened biodiversity by urbanization at regional and
local scales using an urban sprawl simulation approach: Application on the French Mediterranean region. Landsc. Urban Plan.
2012, 104, 343–355. [CrossRef]

47. Shoemaker, D.A.; BenDor, T.K.; Meentemeyer, R.K. Anticipating trade-offs between urban patterns and ecosystem service
production: Scenario analyses of sprawl alternatives for a rapidly urbanizing region. Comput. Environ. Urban Syst. 2019, 74,
114–125. [CrossRef]

48. Dupras, J.; Marull, J.; Parcerisas, L.; Coll, F.; Tello, E. The impacts of urban sprawling on ecological patterns and processes in the
Montreal Metropolitan Region (Quebec, Canada) between 1966 and 2010. Environ. Sci. Policy 2016, 58, 61–73. [CrossRef]

49. Chen, Z.; Wang, F.; Li, S.; Feng, Y.; Chen, J. Classification of county leading function types and pattern recognition of Its spatial
structure based on multi-source data. J. Geo-Inf. Sci. 2021, 23, 2215–2223.

http://doi.org/10.1080/15481603.2018.1507074
http://doi.org/10.1016/j.ecolind.2021.107436
http://doi.org/10.1080/19475705.2014.1001797
http://doi.org/10.1007/s00267-002-2630-x
http://doi.org/10.1080/13658816.2013.831868
http://doi.org/10.1016/j.landurbplan.2017.09.019
http://doi.org/10.1016/j.ecolind.2022.108538
http://doi.org/10.1016/j.compenvurbsys.2020.101569
http://doi.org/10.1016/j.ecolind.2021.108328
http://doi.org/10.1016/j.scs.2022.104055
http://doi.org/10.1016/j.ecolind.2021.108499
http://doi.org/10.3390/rs14102330
http://doi.org/10.3390/rs14071755
http://doi.org/10.1016/j.ecolmodel.2021.109777
http://doi.org/10.1016/j.jclepro.2021.129558
http://doi.org/10.3390/rs11091057
http://doi.org/10.1016/j.cities.2019.102580
http://doi.org/10.1016/j.jtrangeo.2019.102631
http://doi.org/10.3390/land11030359
http://doi.org/10.1016/j.scs.2020.102279
http://doi.org/10.1016/j.landurbplan.2011.11.003
http://doi.org/10.1016/j.compenvurbsys.2018.10.003
http://doi.org/10.1016/j.envsci.2016.01.005


Land 2022, 11, 1598 18 of 18

50. Han, G.; Zhao, K.; Yuan, X.; Sun, R. Evaluation of Ecological Sensitivity in Mountain Area Based on Spatial Analysis: A Case
Study of Wanyuan City in Sichuan Province. J. Mt. Sci. 2008, 5, 531–537.

51. Levin, N.; Duke, Y. High spatial resolution night-time light images for demographic and socio-economic studies. Remote Sens.
Environ. 2012, 119, 1–10. [CrossRef]

52. Cui, H.; Zhang, J.; Li, H.; Yao, F.; Huang, H.; Weiqing, M. Integration of Multinomial-Logistic and Markov-Chain Models to
Derive Land-Use Change Dynamics. Am. Soc. Civ. Eng. 2014, 141, 05014017.

53. Song, M.; Chen, D.; Woodstock, K.; Zhang, Z.; Wu, Y. An RP-MCE-SOP Framework for China’s County-Level “Three-Space” and
“Three-Line” Planning—An Integration of Rational Planning, Multi-Criteria Evaluation, and Spatial Optimization. Sustainability
2019, 11, 2997. [CrossRef]

http://doi.org/10.1016/j.rse.2011.12.005
http://doi.org/10.3390/su11112997

	Introduction 
	Study Area and Data 
	Study Area 
	Data Sources and Pre-Processing 

	Methodology 
	Land-Use Demand Projection 
	Markov Chain Model 
	SD Model 

	Future LULC Change Simulation 
	Delineating UGBs by Morphological Method 

	Results 
	Model Validation 
	Analyzing the Underlying Driving Forces of the LULC Change 
	Multi-Scenario LULC Simulation 
	Multi-Scenario LULC Simulation 
	Future LULC Demand Projection 
	Future LULC Distribution Simulation 
	UGBs Delineation 


	Discussion 
	Delineating UGBs with and without “Three-Line Coordination” 
	Urban Planning Suggestion 
	Limitations and Future Research Prospects 

	Conclusions 
	References

