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Abstract: An urban development boundary is an effective means to guide urban development and
restrain unplanned expansion of urban space. Scientifically-based delineation and control of the
boundary can help with sustainable use of land resources and better spatial planning. This study
took land use data from 2000, 2010, and 2020 for the central urban area of Zhengzhou and predicted
the land use pattern in 2035. We used auto-logistic selection of driving factors, future land use
simulation, and system dynamics models to delineate the development boundary of the central urban
area. We complemented and optimized the boundary using agricultural and ecological perspectives.
The results indicated the following: (1) The ROC values of land driving factors were greater than
0.75 in the regression test, and the Kappa and OA were greater than 0.92 in the accuracy test of land
simulation results. (2) The boundary range initially delineated based on morphology was 2319 km2.
There was a clear overall development trend of the central urban area to the east and southeast, which
included the historical urban area of Zhengzhou and the new government planning area. (3) The
optimized boundary of the central district area was 2209 km2, the ecological land control area was
136 km2, and the basic farmland protection area was 54 km2. The Yellow River, the airport, and the
western, southern, and eastern areas were already formed. The study concluded that the delineated
boundary was in line with the scientific concepts of ‘rigid’ and ‘flexible’ factors, which have positive
effects on the protection of arable land resources and ecological land, as well as meeting the needs of
urban development. The level of sustainable development of the region was effectively improved.

Keywords: land use planning; urban development boundary; FLUS model; SD model; central district
of Zhengzhou

1. Introduction

Since the 21st century, China’s urbanization has entered a rapid development stage
and the spatial scale of cities has expanded, with many cities spreading in a ‘pancake’ style,
which is an inefficient use of land resources and disorderly construction [1]. The unplanned
growth of land for construction has led to the erosion of the ecological base of cities and
a serious imbalance between urban and rural development [2]. An urban development
boundary (UDB), also known as an urban growth boundary, is an important means to
balance the social, economic, and ecological environment; optimize the structure of land
use; and achieve sustainable development [3]. A UBD can effectively prevent a series
of problems including environmental damage and traffic congestion caused by ‘big city
disease’ [4]. For China, the scientific definition of the UDB and the coordination of land for
ecological protection, basic agriculture, and construction and development are important
issues to be solved in the spatial planning of national land allocation [5].

The UDB concept originated from Howard’s ‘idyllic city theory’ in the 19th century. By
the 1930s, the British Greater London District Plan used the urban periphery green belt as a
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physical boundary to limit urban sprawl [6]; this was the initial exploration of boundary
delineation. The concept of boundaries was then formally introduced in the United States
under the ‘New Urbanism’ school of thought to limit the scale of spatial expansion by
delineating suburban and urban boundaries [7]. At the end of the 20th century, theories of
compact cities and smart growth were proposed [8], and the link between urban boundaries
and land expansion began to be strengthened [9].

It is always a critical goal to achieve urban renewal and curb urban sprawl in all
developed or capitalist countries. The original cities experiencing urban sprawl were the
US’s central and western emerging cities. This urban sprawl pattern expanded rapidly
to Latin America, then Asia, and eventually became a global phenomenon [10]. On the
other hand, most European cities had developed differently from those in America and
Asia, generally adhering to a monocentric growth pattern with an apparent hierarchy
of centers and sub-centers, with expansion gathered around a dense historical center
and its commercial and business expansion. There is an obvious political–administrative
fragmentation in Italy’s urban system [11]. Each city still designs its spatial development
program independently, showing distinct social fragmentation, and significantly reducing
social interaction and learning. In Spain, the distribution and expansion of cities led to a
more considerable concentration of population, high heterogeneity of sprawl, and more
dispersed industrial sites, etc. [12]. In France, the decentralization rate decreased with urban
growth, but the commuting distance of residents of polycentric areas did not systematically
decrease, and the average distance from households to the city center increased [13].

Moreover, many North American policies, such as the revitalization of urban centers,
mixed-use urban regeneration plans for inner cities, and controlled sprawl growth bound-
aries, found their counterparts in European and especially British planning policies. The
concepts of compact cities and controlled urban sprawl were a focused and growing topic
of discussion among the British and European commentators on planning. Undoubtedly,
the urban sprawl in the UK was strictly controlled, performing particularly effectively in
major northern cities such as Liverpool [14]. However, the population density in the UK
will decrease due to housing costs and demand, which could increase the social isolation
between the compact urban core and the expanding suburbs/periphery. In Germany, urban
sprawl was most likely a product of specific legislative and political circumstances [15].
The urban sprawl generally occurred with a shrinking population (some of them due to the
shrinking economy), which implies that enhanced state intervention could guide the spatial
development with the most remarkable capacity. However, this may lead to a widespread
‘perforation’ of German cities, as only those selected urban areas, particularly the most
successful inner cities of the urban areas, are most likely to experience stabilization and
further improvement.

Urban sprawl in Europe is influenced significantly by public policy and the public
sector. Whether the policies can further promote compact and enclosed cities without
adverse social consequences depends partly on whether housing costs follow the changes
in housing demand [16]. However, urban renewal has been used in some North Amer-
ican and Europe countries as a compromise with the ‘real estate boom’ under capitalist
interference [17]. Real estate development is a considerable economic influence that has
terribly impacted wage-earning class communities and the essential availability of housing.
Capitalism drives and forces people into those emerging cities where houses cannot be
considered homes but just boxes where people can barely survive and work [18]. This type
of urban sprawl significantly increases social inequality and has horrible effects on the
sustainable urban development of a country or region.

In 2006, China promulgated the Measures for the Preparation of Urban Planning [19],
which first proposed studying the spatial development boundary of central urban areas.
Following this, many studies have examined the delineation of the UDB. Nowadays, the
main delineation types are stable control, accelerated integration, and comprehensive
coordination [20]. The stable control approach concentrates on the bottom-line protection
of urban ecology and arable land. The analysis focuses on the distribution of farmland [21],
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landscape pattern [22], and habitat quality [23,24], and it uses an ‘anti-planning’ idea to
define the scope of construction land development [25]. Accelerated integration is based
on ecological protection, regulating the spatial competition between rural land and urban
land [26], and using population and economic data to identify the expansion intensity and
direction of construction land [27]. Comprehensive coordination focuses on the balance
between urban development and the ecological bottom line, mostly using the method of
setting ‘flexible’ boundaries in the development reserve area and ‘rigid’ boundaries in the
ecological red line area [28], which provides a hierarchical and classified analysis of the
‘demolition’ or ‘retention’ of construction land.

The delineation of the UDB based on the predictive simulation of land use patterns
is a common method in Chinese and international studies. Among the analytical models
for land use/cover change (LUCC), the most common are CLUEs [29], cellular automata
(CA) [30] and artificial neural networks (ANNs) [31]. The most common land demand
forecasting methods are gray system models [32], Markov chains [33], and system dynamics
(SD) [34]. The future land use simulation (FLUS) model is also widely used in many
studies [35–38]. Its adaptive inertia mechanism for roulette selection of land patches can
simulate the coupled complexity of human social activities and the natural environment
to identify future land use patterns with high accuracy [39,40]. The FLUS model can also
be coupled with the morphological expansion and the erosion method (MED) to delineate
the boundaries of land classes in different neighborhood windows based on the simulation
results. Currently, in studies of UDB delineation at the municipal scale [27,36,41], the scope for
expansion owing to rigid intra-city demand cannot break through the fixed administrative
boundaries. Thus, small-scale land simulations differ greatly from the actual land class
competition and policy directions. This results in ongoing conflict between boundary
delineation results and the maintenance of land planning trajectories. By excluding the
constraining influence of administrative scope on urban expansion and defining the variable
relationship of land competition, a level of objectivity and planning can be brought to the
delineation of the UDB.

Zhengzhou is the capital city of Henan Province with a population of hundreds of
millions; its urban spatial expansion is essential for economic development and accessibility.
A UDB can effectively help the management of the spatial structure and smart growth of
Zhengzhou to prevent the unplanned expansion of urban land, highlight the risk factors of
‘big city disease’, and promote the ecological protection and rational development of the
Yellow River basin. On this basis, the current study took the whole city of Zhengzhou as
the unit of analysis and focused on the concept of upper-level design guiding lower-level
planning to delineate the development boundary of the central district to balance peripheral
expansion and region-wide coordination. The land use data for three time points (2000,
2010 and 2020) were selected, and an auto-logistic model was used to screen the correlation
of driving factors, an SD model was used to calculate the demand for different types of
land development, and the FLUS model was used to predict the future land use pattern
under the comprehensive development scenario. Finally, the MED method was applied to
delineate and optimize the development boundary.

Therefore, the following sub-objectives of this paper are proposed: (1) to conduct
a linear regression analysis of the driving factors that promote land or urban land use
change, and this analysis enables the study to consider the influence of physical geography,
location conditions, and socio-economic factors, which provides driving circumstances for
the simulation prediction of subsequent research and improves the comprehensiveness
and rigor of results; and (2) to conduct a simulation and prediction of future land use
patterns. The reasonable results of future construction land prediction will be an important
reference for delineating the UDB. With the method combining the historical land patterns
and future changes, the degree and direction of urban expansion were expressed in a
spatial form. It provided a scientific basis for urban renewal and boundary delimitation.
(3) Delineate the UGB of the core zone of Zhengzhou and optimize the limited urban
expansion by analyzing the interference of the ecological environment and agricultural
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production on the boundary to permit urban expansion within a specific reasonable range
to achieve the optimal sustainable development. The paper mainly provides a systematic
process for delineating the UDB: driving force action, land simulation prediction, and
boundary definition and adjustment. The research system and theory breaks through the
obstacles of public policies on urban development, which not only meet the rigid demands
of residents but also realize the renewal and further development of the city and do not
violate the law of natural growth. This study provides a technical reference for delineating
the development boundaries of global cities, urban agglomerations, and even larger scales.
It provides a vital basis for those urban decision-makers to allocate public service resources
and realize the prospective development of construction land.

2. Study Area and Material
2.1. Study Area

Zhengzhou is located in the transition zone between the middle and lower reaches of
the Yellow River and the northeastern flank of the Funiu Mountains to the Huang Huai
Plain (112◦42′−114◦14′ E, 34◦16′−34◦58′ N) (Figure 1). Zhengzhou is an important national
hub for railroads, airlines, postal services, and electrical power. It is the capital of Henan
Province, the core city of the Central Plains City Cluster, and one of the nine national central
cities in China. It has six municipal districts, five county-level cities, and one county under
its jurisdiction. The spatial area of the city is 7446 km2, of which the built-up area of the
city is 1181 km2 and the built-up area of the central district is 651 km2. The gross domestic
product (GDP) of Zhengzhou in 2020 was USD 179 billion, the resident population was
12.6 million, and the urbanization rate was 78%. The ecological protection and high-quality
development strategy of the Yellow River Basin has led to additional requirements for
the development of Zhengzhou; therefore, the scientific delineation of the development
boundary of the central urban area is important for weighing local economic development
and ecological protection.
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Figure 1. Geographical location of the central district of Zhengzhou.

2.2. Data and Preprocessing

The research data in this study included land use, topography and geomorphology,
nature, society, and location. The specific sources are shown in Table 1, where points of in-
terest (POI) data include shopping malls, hotels, hospitals, banks, parks, squares, residential
areas, educational institutions, and public facilities. The original land use data were divided
into six categories: cultivated land, woodland, grassland, wetland, water area, and artificial
surface. Night light data were corrected for intensity saturation. The raster data used in the
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study were all unified at 30 m × 30 m resolution, the geographical coordinate system was
GCS_WGS_1984, and the projected coordinate system was WGS_1984_UTM_Zone_49N.

Table 1. Information on data sources.

Data Attribute Data Name Data Source

Basic data

Administrative divisions of
Henan province and

Zhengzhou City

Resource and Environment Science and
Data Center (http://www.resdc.cn/,

accessed on 1 August 2021)

Land use data of
Zhengzhou (30 m)

GlobeLand30
(http://globallandcover.com/,

accessed on 5 August 2021)

Topography

DEM (30 m)
Geographical Information Monitoring
Cloud Platform (http://www.dsac.cn/,

accessed on 5 August 2021)

Slope Slope is calculated by DEM and
ArcGIS tools

Natural factors

Soil texture
Resource and Environment Science and

Data Center (accessed on
5 August 2021)

Mean annual precipitation
China Meteorological Administration
(http://www.cma.gov.cn/en2014/,

accessed on 5 August 2021)

Social factors

Night light

National Centers for Environmental
Information

(https://www.ngdc.noaa.gov/,
accessed on 10 August 2021)

Population, GDP density

Zhengzhou city bureau of statistics
(http://tjj.zhengzhou.gov.cn/, accessed
on 12 August 2021)Statistical Yearbook

of CNKI (https://www.cnki.net/,
accessed on 12 August 2021)

Geographical
factors

Road network (provincial road,
national road, highway, city road) Open Street Map

(http://www.openstreetmap.org/,
accessed on 15 August 2021)Bus routes

The rail network

River, water surface Resource and Environment Science and
Data Center (accessed on

15 August 2021)
Residential areas

POI

3. Methodology
3.1. Selection of Auto-Logistic Drivers

Logistic regression models are a categorical statistical method used to measure the
nonlinear relationship between dependent and independent variables. The results indicate
the probability size of the relationship, but they require a normal distribution in the
mathematical sense, and they cannot show the drivers brought by the spatial expansion
and geographical elements [42]. Therefore, this study established an auto-logistic model
with spatial attributes by assigning a spatial autocorrelation weight function and combining
the homogeneity and independence of the logistic model. The formula is as follows:

Pro(Re fn = 1|α0, α, a) =
exp α0 + α

′
1βn + a ∑ Wmn

1 + exp α0 + α
′
1βn + a ∑ Wmn

(1)

http://www.resdc.cn/
http://globallandcover.com/
http://www.dsac.cn/
http://www.cma.gov.cn/en2014/
https://www.ngdc.noaa.gov/
http://tjj.zhengzhou.gov.cn/
https://www.cnki.net/
http://www.openstreetmap.org/
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where pro is the probability of event occurrence; Refn is the reference variable; α is the
probability of event occurrence; βn is the independent variable; a is the covariate coefficient;
and Wmn is the weight function of spatio-temporal points m and n. The weight value in
this study is the reciprocal of the distance between two pairs of points (Lmn) and is taken as
1/Lmn when the distance between m and n is less than the set distance threshold, and 0 in
other cases.

In the current study, a total of 15 land use drivers (Figure 2), including a digital eleva-
tion model (DEM), slope, night light, population density, GDP density, POI, railways, main
roads, public transport lines, river systems, airport location, population center, industrial
parks, soil texture, and mean annual precipitation, was selected for binary auto-logistic
regression analysis with reference to related studies [43–45].
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3.2. FLUS Model Land Pattern Simulation

The FLUS model can be spatially simulated based on the ANN and CA algorithms [39]
using the following elements: (1) A spatial overlay of the driving factors created by the
ANN module, which trains and evaluates the development probability of each class to
form a multi-band land development probability file. (2) Thresholds for land demand
projections, expressed in the form of raster quantity constraints, which allow the simulation
results to be approximated gradually towards the desired target. (3) The probability of land
conversion, inter-cell interaction, and the development trend of the whole study area, which
is combined in the CA module to achieve the adaptive inertia competition mechanism of
the model by adjusting the number of iterations, neighborhood size, acceleration factor,
penetration route, conversion cost, and neighborhood weights. The CA model finally
derives the overall land conversion probability and dynamic simulation results. (4) To
ensure the reliability of the prediction results, the historical land change is used to calculate
the simulation accuracy.

The FLUS model is able to rigorously handle the neighborhood and uncertainty of
land conversion under the joint influence of the human–land relationship and form a global
spatial development model that is constrained at the top and bottom and which is well
recognized in land use simulation, land expansion, and UDB delineation studies [25,35–37].

3.2.1. BP–ANN Land Development Probability

The ANN predicts the maximum development possibility of each class in multiple
training metadata [31], resulting in a corresponding development probability for each type
of land within the suitability constraints (Figure 3). In this study, a multilayer feedforward
neural network (BP–ANN) was selected to measure the land development probability. This
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network was evaluated by adjusting the sampling pattern, the number of samples, the input
layer, the hidden layer, and the output layer for training using the following expression:

DP(q, l, t) = ∑
i

φi,l × sig
(
netj(q, t)

)
= ∑

i
φi,l ×

1
1 + e−neti(q,t)

(2)

where DP(q, l, t) is the suitability probability of l land classes at time t, grid q; φi,x is the
weight between the hidden layer and output layer; sig( ) is the excitation function from the
hidden layer to the output layer; and neti(q,t) is the probability of the j hidden layer at q
the signal value of the grid at time t. The sum of land suitability probabilities output by
BP–ANN is constant to 1.
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3.2.2. CA Simulations to Predict Land Use Patterns

Faced with a complex spatial nonlinearity problem, CA can use the adaptive inertia
coefficient to make a differentiated comparison between land demand and historical land
use, set the iterative succession of a single meta-cell systematically, and assign adaptively
expanding land classes to the cell grid based on the total probability of land class develop-
ment [30]. Thus, CA develops the land use pattern to gradually approach the target plan.
The formulas for the inertia coefficient and total probability are as follows:

Intt
l =


Intt−1

l

∣∣∣Dt−2
l

∣∣∣ ≤ ∣∣∣Dt−1
l

∣∣∣
Intt−1

l × Dt−2
l

Dt−1
l

0 > Dt−2
l > Dt−1

l

Intt−1
l × Dt−1

h
Dt−2

l
Dt−1

l > Dt−2
l > 0

(3)

TProt
q,l = DP(q, l, t)×Mt

q,l × Intt
l × (1− scx→l) (4)

Mt
q,l =

∑m×m con
(

ct−1
l = h

)
m×m− 1

×Wl (5)

where Intl
t is the adaptive inertia coefficient of land class l at t iterations; Dl

t–1, Ml
t–2 is

the difference between the simulated number of land class l and the demand threshold
at moments t − 1 and t − 2; TProt

q,l is the total probability that grid q is converted into
land class l at time t; scx→l is the cost value of the initial conversion from class x to class
l land, and 1 − scx→l is the degree of iteration difficulty; Mt

q,l is the Moore field density;
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∑
m×m

con(c t−1
l = h) denotes the number of raster cells of land class l at the end of t − 1

iterations within a Moore window of m× m of the raster; and Wl is the neighborhood factor
of each land class.

After several simulations and debugging, the final model was set with 300 iterations,
a Moore neighborhood of 3 × 3, an acceleration factor of 0.1, and a penetration route of 6.
Based on references from previous research results [35–37,39], the simulation conditions
of protecting basic farmland, controlling construction land, and prioritizing ecological
protection were integrated into a comprehensive development scenario to increase the
influence of factors such as arable land resources and the ecological environment on the
expansion capacity of land types. The neighborhood influence factor indicated the weight
of such land to expand into surrounding land classes, where values closer to 1 indicated a
stronger ability to expand. The land conversion cost indicated the ease of land conversion
from the base to the target following the principle of irreversible conversion of low-level
land classes to high-level land classes (Table 2).

Table 2. Land conversion cost matrix and neighborhood influence factor parameters.

2000–2035 Cultivated Land Woodland Grassland Wetland Water Area Artificial Surface

Cultivated land 1 1 1 1 1 1
Woodland 0 1 1 1 1 0
Grassland 0 1 1 1 0 1
Wetland 0 1 1 1 0 0

Water area 0 0 1 1 1 0
Artificial
surface 0 0 0 0 0 1

Wl 0.35 0.25 0.45 0.55 0.7 1

3.2.3. Simulation Accuracy Verification

The overall accuracy (OA) is the ratio of the model’s correct predictions to the overall
number in all test sets [38]. The Kappa coefficient can be based on a land confusion
matrix, to test whether the predictions agree with the actual total number of surface image
elements [46], using the following expression:

Kappa =
Pa − Pb
Pc − Pb

(6)

where Pa is the proportion of the correct number of simulated elements, Pb is the proportion
of the simulated elements in the random state, and Pc is the proportion of the correctly
numbered simulated elements in the ideal state. The Kappa coefficient is in the range of
0–1, where values closer to 1 indicate higher simulation accuracy.

3.3. SD Model Land Demand Forecast

The SD model is a causal mechanism model based on the feedback control theory
within the system that is used to establish the causal relationship of relevant subsystems
and to study the structure, function, and dynamic relationship of the system through
simulations [34]. The SD model expresses the ‘bottom-up’ results for horizontal variables
by dealing with the nonlinear relationship between velocity variables and covariates. The
feedback flow diagram of the SD model is shown in Figure 4.
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3.4. Boundary Neighborhood Window Selection

The boundary delineation was based on the projected scale capacity of land use, and
the elasticity of the transformation of non-building land to urban development land was
constrained [36]. After simulating and predicting the land use pattern in 2035, the MED
method was used to reduce the fragmented noise points, and the original CA results with
high fragmentation were subjected to boundary smoothing and internal filling operations.
To filter the optimal boundary results, four window sizes of 3 × 3, 5 × 5, 7 × 7d and 9 × 9
were compared (Figure 5). The 3 × 3 window still retained the fragmentation caused by
the expansion of the CA simulation. The 5 × 5 window has more ‘enclaves’ and ‘islands’
but could not meet the overall scope of the UDB delineation and ruling. The 9 × 9 window
ignored the delineation of special boundaries, such as agricultural land and ecological areas,
in the marginal area. The result was smoother and neater looking but lacked consideration
of the actual land demand. Therefore, this study selected the 7 × 7 window that had a
smooth boundary and low fragmentation index and fitted the spatial planning of land in
Zhengzhou for boundary optimization research.
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4. Results
4.1. Driving Factors and Simulation Accuracy Tests

The following factors—DEM (X1), slope (X2), night light (X3), population density (X4),
GDP density (X5), POI (X6), railways (X7), main roads (X8), public transport lines (X9), river
systems (X10), airport location (X11), population center (X12), industrial parks (X13), soil
texture (X14) and mean annual precipitation (X15)—were subjected to binary auto-logistic
regression analysis. The validity of the model was evaluated using ROC curves (Table 3).
The results showed that the ROC values of all land types except cropland were greater
than 0.8, which indicated that the identified drivers had good explanatory power over the
spatial pattern of land use. The ROC value of cultivated land was 0.76, mainly because the
study area was located on a plain, and the expansion of cultivated land was subject to less
restrictive conditions. Other factors had lower impacts on the spatial distribution.

Table 3. Auto-logistic regression analysis.

Number
Cultivated Land Woodland Grassland Wetland Water Area Artificial Surface

Beta Exp (B) Beta Exp (B) Beta Exp (B) Beta Exp (B) Beta Exp (B) Beta Exp (B)

Constant 1.76247 5.82683 3.44335 31.29174 −16.18646 9.34 × 108 0.78541 2.19332 24.68294 5.24 × 1010 5.15264 1.73
X0 0.00066 1.00066 0.00322 1.00322 0.13006 1.1389 −0.18683 0.82958 −0.17698 0.8378 0.0762 1.07918
X1 0.00401 1.00402 −0.00614 0.99388 −0.00278 0.99722 - - 0.01733 1.01748 0.00935 1.00939
X2 0.0784 1.08156 −0.11901 0.8878 −0.06124 0.9406 - - −0.03576 0.96487 0.04845 1.04964
X3 0.08524 1.08898 0.51686 1.67675 - - - - 0.05685 1.0585 −0.08538 0.91817
X4 - - - - 0.00158 1.00158 - - −0.00117 0.99883 - -
X5 - - - - 0 1 0.00002 1.00002 0.00001 1.00001 0 1
X6 0.00015 1.00015 −0.00018 0.99982 −0.00018 0.99982 −0.00034 0.99966 - - 0.00078 1.00078
X7 - - - - 0.00006 1.00006 - - - - −0.00006 0.99994
X8 0.00006 1.00006 −0.0001 0.9999 - - - - - - - -
X9 0.00004 1.00004 - - −0.00016 0.99984 - - 0.00006 1.00006 - -
X10 −0.00005 0.99995 - - −0.00013 0.99987 0.00073 1.00073 0.00021 1.00021 −0.00005 0.99995
X11 0 1 - - 0.00003 1.00003 - - −0.00008 0.99992 −0.00002 0.99998
X12 −0.00003 0.99997 - - 0.00019 1.00019 - - −0.00014 0.99986 0.00007 1.00007
X13 −0.00004 0.99996 0.00007 1.00007 −0.00009 0.99991 0.00029 1.00029 - - - -
X14 - - 0.00272 1.00273 - - - - −0.00972 0.99033 - -
X15 −0.00052 0.99948 0.00019 1.00019 0.00237 1.00237 - — −0.00203 0.99797 −0.00049 0.99951

ROC 0.76 0.94 0.90 0.99 0.88 0.83

Note: X0 is the spatial autocorrelation weight. See main text for an explanation of the numbered variables.

A comprehensive accuracy test was conducted using the historical land change pat-
terns (Table 4) to screen the optimal demand threshold of the SD model on the one hand,
and to test the simulation effect of the FLUS model on the other hand. The result showed
that the Kappa accuracy was above 0.96 in both periods, and the accuracy of land classifica-
tion simulation was also high. The OA accuracy was above 0.92 in both periods, and the
overall land quantity measurement showed good conformity.

Table 4. Accuracy tests.

Time
Precision Type

Kappa OA

2000−2010 0.98 0.94
2010−2020 0.96 0.92

4.2. Predicted Land Use Pattern Simulation

The evolutionary characteristics of the land use pattern from 2000 to 2035 was derived
with the interaction of multiple driving factors (Figure 6). In general, the composite land
use index showed a stable growth trend, increasing from 2.96 to 3.34 between 2000 and
2035 (Table 5), with small fluctuations in all land areas. Artificial surfaces gradually became
the main expansion category. The simulation results provided the basis for weighting the
scope, type, and boundary of urban expansion. From 2000 to 2020, the central district
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of Zhengzhou had a clear development trend to the west, east, and south. By 2035, the
expansion to the west and southeast was particularly prominent, with the area of artificial
surface increasing to 3903 km2 (Table 6), of which 3248 km2 was from cultivated land
with an annual movement of 15.31% (Table 7). The large areas of woodland in the west
increased by 180 km2 by 2035, while grasslands showed a significant increase after 2020.
Wetland and water areas were mainly located along the Yellow River in the north and
contained small lakes, rivers, canals, and artificial reservoirs in the urban area. From 2000
to 2035 wetland increased from 24.63 km2 to 53 km2, and the water area decreased from
168 km2 to 136 km2 with overall fluctuations between −4% and 5%. The cultivated land
was gradually encroached upon by other land types, and the annual dynamic attitude was
always below 0. The main sown farmland was still concentrated along the Yellow River
and in the southwest.
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Table 5. Land area and comprehensive index of land use from 2000 to 2035.

Land Area from 2000 to 2035 (km2) 2000 2010 2020 2035

Cultivated land 6026 5360 4621 2356
Woodland 650 662 655 830
Grassland 100 99 111 302
Wetland 24 14 39 53

Water area 168 210 89 136
Artificial surface 613 1236 2066 3903

Comprehensive index of land use from
2000 to 2035 (km2) 2.96 3.03 3.15 3.34
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Table 6. Land use transfer matrix from 2000 to 2035.

2000–2035
(km2)

Cultivated
Land Woodland Grassland Wetland Water

Area
Artificial
Surface

Cultivated
land 2272.57 270.64 118.41 34.93 80.04 3248.82

Woodland 0.87 538.62 102.77 0.01 0.32 8.30
Grassland 0.13 20.49 76.19 0.01 0.18 3.62
Wetland 8.08 0.02 0.77 7.18 7.73 0.68

Water area 60.17 0.74 3.55 10.83 46.81 46.17
Artificial
surface 14.75 0.45 1.15 0.06 1.07 595.88

Table 7. Annual land use dynamics from 2000 to 2035.

2000–2035 (km2) 2000 2010 2020 2035

Cultivated land - −1.11 −1.17 −1.74
Woodland - 0.18 0.03 0.79
Grassland - −0.10 0.54 5.76
Wetland - −4.30 2.94 3.29

Water area - 2.52 −2.33 –0.54
Artificial surface - 10.16 11.84 15.31

4.3. Central District Development Boundary Delineation and Optimization

With the large variability in land use changes over the whole area of Zhengzhou
from 2000 to 2020, the delineation of the UDB needed to consider the spatial and temporal
development changes within the central urban area, as well as to analyze the radiation
impact brought by land expansion to the surrounding areas. Therefore, this study included
the whole of Zhengzhou City in the analysis scope and considered the full expansion
impact of the region as a whole with the dynamic change of land from a global perspective.
The aim was to delineate the development boundary of the central district area.

Table 8 and Figure 7 show that the central urban area of Zhengzhou developed
quite compactly around the districts of Zhongyuan, Erqi, Guancheng, and Jinshui during
2000−2010, and the Zhengzhou Airport District, which was established in 2007, also
occurred in the initial expansion. After 2010, the boundary area of Shangjie District, which
was far from the central urban area, began to grow substantially, and a large number of
enclaves appeared. By 2020, the small enclaves were widely scattered and formed a large
contiguous area of 633 km2, which continued to expand in all directions. According to the
2035 land simulation, the development boundary of the central urban area covered an area
of 2319 km2, with a significant reduction in the scattered enclaves, including the historical
urban area of Zhengzhou, the south and east areas, the new city along the Yellow River and
the Xinzheng–Airport Subcity. A large area of land in downtown Xingyang, Zhongmou
County, and the northern part of Xinzheng City was included in the boundary, and the
airport area formed a contiguous spatial scope with the central urban area.

Table 8. Area of the central district boundary before optimization.

Land Use and Scope Area (km2)

Central district development boundary in 2000 185
Central district development boundary in 2010 479
Central district development boundary in 2020 633
Central district development boundary in 2035 2319
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Inside the boundary, nature reserves, national forest parks, and river and lake areas
were combined as the ecological land control boundary (Figure 8), which covered 136 km2

(Table 9). After combining Landsat 8 OLI_TIRS remote sensing images for 2013–2020 and the
contents of local planning texts, high-quality arable land suitable for further development
was manually selected to delineate the basic farmland protection boundary, covering a
total area of 54 km2. The optimized development boundary of the central district area
covered an area of 2209 km2. The optimized boundary coupled the rigid development
restrictions with flexible and suitable expansion rules, weighting the unique spatial layout
of production, living, and ecological land, and implementing the concepts of intensive
development, spatial increment guidance, and ecological protection (Figure 9).
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Table 9. Comparison of the development boundary of the central district area before and after optimization.

Land Use and Scope Area (km2)

Before optimizing the development boundary
of the central district 2319

After optimizing the development boundary of
the central district 2209

Ecological land control boundary 136
Basic farmland protection boundary 54
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5. Discussion and Conclusions
5.1. Discussion

As an advanced technique and policy instrument, the UDB is still in the process of
exploration and application testing in China and abroad. Compared with some studies [47,48]
in Southeast Asia, weights were assigned as the change factors influencing the land drive.
The UDB in this study introduced an auto-logistic model with geospatial attributes in
the analysis of land driving factors, correlating the mathematical calculations and spatial
statistics in the form of ‘entry and exit’ and enabling the allocation of driver impacts and
the factors affecting the change of spatial units of land use. The delineation of the UDB
through the land simulation was conducted using a scientific approach through spatial
representation, in accordance with some ideas used in the European case [49,50]. Building
sites’ extents, traffic arteries’ aggregations, and spatial filtering were explored. However,
the set of variables in this paper focused more on the control of macro land quality and
micro spatial patterns, which was achieved through the control of land demand, following
the concept of boundary definition in Asia [33,42]. The improvement of the UDB in the
Portland greater metropolitan area in America mentions the increased resilient space,
considering the destruction of forests and farmlands due to urban sprawl [51]. This was
similar to the UDB optimization approach of this study, namely, controlling the ecological
and agricultural reserves.

Most studies [26–28,47–50] of the UDB delineation in most urban expansions around
the world paid attention to the rigid constraints of ecological and agricultural land. How-
ever, this study used the concept of ‘counter-planning’ to add ecological land control and
agricultural land protection boundaries to the central area and adjacent areas. This step
realized the integration and optimization of rigid and flexible boundaries. This delineation
overcame the obstacles of the inability of spatial expansion to break through the admin-
istrative boundaries in most studies [36,52] in China and provided practical references
on the future evolution and actual direction of spatial expansion in urban planning. The
variable relationship of land competition combined the influence of population, economy,
and other social attributes and improved the rationality and practicality of land layout
planning, met the development demand of different parts of the city, and indicated practical
policy guiding significance. The boundary delineation method via the driver quantification
and future space simulation can prevent urban development’s unplanned sprawl, weigh
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the spatial relationship between ecological, agricultural, and urban land, and provide
theoretical implications for constructing a high-quality urban spatial planning system.
The establishment and analysis of this system, which included the role of drivers, land
simulation prediction, boundary definition, and adjustment, provided new thinking for
theoretical research on ‘top-down’ and ‘bottom-up’ sprawl simulations of the global urban
UDB delineation space.

However, currently, there are limitations to this study. For example, there were few
policy guidelines for the study area’s south and northwest, and the expansion pattern
could only be analyzed in terms of economic potential, historical patterns, and natural
circumstances. The extent to which the policy influenced the orientation of boundary
changes was unclear. The demand for flexible white-space land for strategic development
was not discussed in detail in this study, and it is a worthy topic that needs to be analyzed
in the following research. Since the official sources did not publish the spatial distribution
of urban flexible white-space land, this paper did not provide a systematic analysis, which
affected the study’s comprehensiveness.

Nowadays, cities worldwide focus on setting the UDB, a valuable opportunity to
enhance the theoretical research of planning management and spatial governance. Based on
the research of this paper and the research process of this theory, the author has some ideas,
as follows: the connotation of the UDB extends from the boundary of urban expansion to the
comprehensive management of urbanization control line, green space control line, coastal
zone protection line, and historical and cultural protection line. The region’s allocation
and growth intensity of various land and spatial resources should be coordinated with
sufficient control and management in different scales and planning stages. This is a further
advancement of the theoretical promotion of the future UDB delineation system, and
its inherent relationship involves various aspects such as planning science, government
management, and software development.

5.2. Conclusions

This study took the whole of Zhengzhou City as a case study. We adopted the concept
of ‘top-down’ and ‘bottom-top’ exploration, auto-logistic regression was used to screen and
identify land drivers, and FLUS and SD models were used to simulate the future land use
pattern in 2035. We used MED and other methods to delineate the development boundary
of the Zhengzhou central district. The main conclusions were as follows:

(1) In the 2035 land use simulations, the ROC impact test values of the 15 drivers on land
were all greater than 0.75. The Kappa coefficients of the land use pattern simulations
were all greater than 0.96, and the OAs were all greater than 0.92. The projection
results were highly accurate. The spatial simulations were built using comprehensive
development scenarios with joint control of multiple objectives used as the theoretical
reference for the discussion of land driving factors and the construction of spatial
prediction system.

(2) The development boundary of the central district of Zhengzhou before optimiza-
tion was 2319 km2, which included the six original districts of Zhongyuan, Erqi,
Guancheng, Jinshui, Shangjie, and Huijie, in addition to the urban area of Xingyang in
the west, the county district of Zhongmou in the east, the northern part of Xinzheng
City and the airport area. The external enclaves were significantly reduced compared
with those in the historical situation, and the trend of the boundary as a whole showed
a clear continuing expansion to the southeast. Government departments should con-
trol the speed and extent of land expansion in the southeast to avoid problems such
as low traffic mobility and loss of natural resources caused by urban sprawl.

(3) The elasticity of the optimized development boundary of the central district was
slightly reduced, covering an area of 2209 km2, while the ecological land control
boundary covered 136.67 km2, and the basic agricultural land protection boundary
covered 54 km2. The outline of the Yellow River area, the airport area, the western
area, the southern area, and the eastern area within the boundary were already formed.
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The urban elastic space created by ecological and agricultural space was the further
improvement of UDB optimization theory. For the actual urban development, it was
more consistent with the planning principle of sustainable development.
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