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Abstract: Public health emergencies are characterized by significant uncertainty and robust transmis-
sion, both of which will be exacerbated by population mobility, threatening urban security. Enhancing
regional resilience in view of these risks is critical to the preservation of human lives and the stability
of socio-economic development. Network resilience (NR) is widely accepted as a strategy for reduc-
ing the risk of vulnerability and maintaining regional sustainability. However, past assessments of
it have not sufficiently focused on its spatial effect and have overlooked both its internal evolution
characteristics and external threats which may affect its function and effectiveness. Therefore, we
used the Yangtze River Delta Region (YRDR) as a case study and conceptualized an integrated
framework to evaluate the spatial pattern and mechanisms of NR under the superposition of the
COVID-19 pandemiv and major holidays. The results indicated that the topology of a population
mobility network has a significant effect on its resilience. Accordingly, the network topology in-
dexes differed from period to period, which resulted in a decrease of 17.7% in NR. For network
structure, the Shanghai-Nanjing and Shanghai-Hangzhou development axes were dependent, and
the network was redundant. In the scenario where 20% of the cities were disrupted, the NR was
the largest. Furthermore, the failure of dominant nodes and the emergence of vulnerable nodes
were key factors that undermined the network’s resilience. For network processes, NR has spatial
effects when it is evolute and there is mutual inhibition between neighboring cities. The main factors
driving changes in resilience were found to be GDP, urbanization rate, labor, and transportation
infrastructure. Therefore, we propose a trans-scale collaborative spatial governance system covering
“region-metropolitan-city” which can evaluate the uncertain disturbances caused by the network
cascade effect and provide insights into the sustainable development of cities and regions.

Keywords: network resilience; interrupt simulation; spatial effect; regional governance; Yangtze
River Delta region

1. Introduction

Network resilience refers to the ability to withstand shocks and to restore, maintain,
or improve the characteristics and critical functions of a system, as well as providing an
important supporting role to each unit within a region [1,2]. As COVID-19 continues to
spread throughout the world, it is having a significant impact on economic and social
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development [3,4]. Since it is extremely transmissible, restricting the mobility of the
population has allowed the spread of the disease to be effectively contained while also
reducing urban connectivity [5,6]. The “blocking cities” measures have reduced external
risks [7]. Meanwhile, the incident has had an adverse effect on regional connections as
well as routine operations [8]. The global spread of COVID-19 was an unconventional
disaster. As such, it may be hypothesized that urbanization will increase vulnerability [9].
When not supported by a healthy and safe environment, such an event can even produce
long-term “shock” and “aftereffects” within a short period of time [10]. With innovations
in risk management, such as dynamic adaptation, comprehensive promotion, and multi-
stakeholder collaboration, urban resilience is becoming a hot topic in disaster prevention,
risk mitigation, and urban planning. To promote better regional sustainable development,
it may be beneficial to make cities more resilient to shocks.

As urbanization is characterized by high density and mobility, it has broken through
static administrative boundaries [11]. The mobility of the population has come to be
characterized by scale, normality, dynamism, and, most importantly, a complexity of
behaviors [12]. There has been a precipitous increase in transmission speed, resulting in
an increased risk of security incidents. Therefore, it is important to explore population
mobility using the theory of mobility space and from a network perspective in order to
assess the regularity of spatial movement at a city or regional scale, as well as the dynamic
characteristics of inter-city spatial connections. Urban network resilience can be used to
evaluate regional resilience, which refers to the ability to maintain, improve, or restore the
original performance and function following a shock [13]. Research in this field can be put into
one of the following categories: concept and connotation, assessment of network structures,
and simulations of shock resistance. Urban network systems can resist the impacts of acute
external shocks while also adapting to internal pressures by improving the strength and agility
of social, economic, ecological, engineering, and organizational relationships [14,15].

Much empirical research has been conducted on global and regional networks from
the perspectives of enterprise location, information networks, and traffic connections.
A great deal of literature has been produced about population mobility, especially the
characteristics of intercity travel during specific periods, such as May Day, National Day,
and the Spring Festival [16–19]. Network analysis has become the main method by which to
study population mobility, and it has become a paradigm of how networks are represented.
Moreover, the COVID-19 pandemic has led to more and more attention being paid to
network resilience [20,21]. Frequent natural disasters and manufacturing emergencies
can interrupt a network and affect the regular operation of the cities, with unpredictable
consequences [22]. Generally, the investigation of targeted and random attacks on city
nodes determines the degree of attenuation, the influencing factors, and the effectiveness
of various optimization strategies for a specific network structure [23]. As a result, many
cities are at risk of disasters or attacks, resulting in disruptions in urban communication.
Thus, scenario simulations of networks under disruption can help predict whether urban
networks will be able to resist potential risk to their operational capacity and capabilities
when a public health emergency occurs.

However, there are also some research gaps in the previous literature, such as the
absence of theoretical exploration. Although empirical studies have been important in
understanding the characteristics and causes of population mobility, there has not been a
unified paradigm of research due to the lack of systematic theoretical studies. Most studies
have focused on economic development or disaster prevention and mitigation, while only
a few have considered spatial relationships and effects. Urban network resilience should
be given enough spatial consideration, which is different from the aforementioned regional
resilience. additionally, we should focus on how to discuss the mechanisms of urban
network resilience in sufficient depth, rather than building a network and analyzing its
characteristics. Network science offers new perspectives on the complex networks in social,
economic, and technological systems [24]. Network robustness and resilience are critical to
the reduction of risk and mitigation of damage. Essentially, network resilience is the ability
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of a system to maintain its essential functions when it faces internal disturbances or external
changes [25]. Complex networks function as a result of the robustness of their structures,
which can maintain connectivity if some nodes or edges are removed. Cities and regions
are complex coupled systems which are characterized by complexity, diversity, nonlinearity,
uncertainty, and multiscale nesting. Evaluations of network resilience offer an analytical
perspective between humans and complex systems that are continually adapting [26].

Thus, we propose an integrated approach which utilizes both complex systems and
spatial modeling analysis to identify the effects of a public health emergency disruption on
regional network resilience. A multi-perspective network based on big data will help to
understand spatial patterns and resilience under disturbance. The aims of our study are to:
(1) conceptualize network resilience from the perspectives of a complex adaptive system
(CAS) and a complex network (CN); (2) evaluate network resilience and its characteristics
under different disruption scenarios; and (3) identify dominant and vulnerable nodes in
urban linkage networks. Such efforts may answer the following scientific questions: What
are the concepts, connotations, and characteristics of network resilience in the context
of CAS and CN? What are the characteristics of population mobility network linkages
over time? What are the main factors that affect network resilience under disruption
due to external shocks? How can we reshape regional spatial structures for sustainable
regional development while improving network resilience? We believe that the results
of our study will provide new insights for policymakers when it comes to considering
regional collaboration and identifying a trans-regional system of coordinated governance.

2. Conceptual Framework of Network Resilience from CAS
2.1. CAS Theory and Its Characteristics

CAS theory was developed by the Santa Fe Institute in the United States in the 1980s.
It focuses on interactions between individuals and the environment, and thus represents a
new means by which to view systems. There is an argument that the complexity of a system
is caused by an individual’s ability to adapt. The system in question will exhibit adaptive
behavior in response to external disturbances. Diverse heterogeneous individuals also
interact in autonomous and diverse ways which affect both their evolutionary paths and
the structure of the system [27]. According to the theory, the transformation, evolution, and
development of an organization are collective outcomes of the subject’s active knowledge
of the outside environment. There is a critical element of adaptive creation complexity,
and one of its most important elements is adaptive subjectivity [28]. System evolution is
fundamentally affected by the constant interactions between adaptive systems and their
environments. Through the interaction process, the adaptive issue is raised to a new level,
exhibiting a more complex structure and behavior [29].

2.2. Complex Network Resilience from CAS

Several articles have introduced assessment methods for resilience based on CAS,
which authors have argued facilitate a better comprehension of the structure and operation
mechanisms of an urban system [30,31]. The use of CAS theory to explore how CNs become
resilient has not been reported in the literature. Thus, we define urban network resilience
first as the dynamic nature of the structural characteristics of a network, as well as the
internal adaptive adjustment process when the regional space system experiences external
shocks (Figure 1). Complexity lies at the core of diversity, and the complexities associated
with network resilience are derived both from the diversity of internal linkages and from the
active adaptation of internal elements. Essentially, it consists of the interconnections among
network nodes and the continuous adaptation of the system to external disturbances.
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Figure 1. Conceptual framework for regional network resilience based on CAS.

When the resilience of a certain regional network is diminished, the function of the
entire regional system will be affected. As a result, a previously stable structure and the
ability to adapt to shocks and impacts will be altered, which will affect the entire regional
network system. Due to structural changes, the existing structure will not have enough
resistance and adaptability, and therefore, its resilience will be weakened in response to
external shocks. In one sense, such a change would improve the overall network resilience
(i.e., by reducing the redundancy of the offset network). On the other hand, such a change
would weaken the resilience of the existing structure due to structural changes. Therefore,
simulations of disruptions to urban networks can assist in predicting the capacity of regional
urban networks to withstand potential risks, thus helping to reduce the adverse impact of
disasters and improve regional resilience strategies.

According to our theoretical concepts, a complex network system is composed of two
fundamental attributes: structure and process. These notions are different but interrelated.
When a network system is subjected to external shocks, the first thing to occur is a change
to its structural characteristics, i.e., the preparatory stages before the interruption. As
a result, the system will experience self-regulation and adaptation, which is known as
process resilience. This represents the adaptability and resilience of the system. Normally,
when an external entity attacks a network node, the nodes and linkages suffer the first
consequences. These network topology characteristics indicate the degree of impact of the
node. After a period of self-recovery, the systems recover or approach their original state
via self-regulation. Therefore, simulations of the topological indexes of network resilience,
before and after an interruption, can reflect both the structural and process characteristics
of the network to reveal the system resilience.

2.3. Characteristics and Mechanisms of Complex Network Resilience

CNs are used to analyze changes in network characteristics, while CASs are used to
provide a qualitative understanding of the adaptation process of a system globally. Combined
with the seven main attributes of CAS theory, the basic elements of the complex adaptive
system are summarized below, and the characteristics of complex networks are deduced.

Aggregation, Flow, Diversity, and Nonlinearity are four basic features in CASs; they
correspond to Centrality, Density, Diversity, and Aggregation in CNs, reflecting the struc-
tural characteristics of network resilience. The term “structural resilience” refers to the
resilience problem caused by the topology of a network, with a particular focus on the
physical and logical connections between network nodes, including the resilience of the
nodes themselves, the resilience of the connections, and the overall resilience of the network.
On the one hand, node and connection resilience emphasizes the destructive ability of
these entities, while on the other, overall toughness emphasizes the ability of a network
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to self-organize and coordinate itself, as well as to coordinate among its dimensions. The
specific correspondence is as follows:

• Aggregation indicates that simpler subjects can emerge with more complex behavior
through interactions among aggregates. The interactions between these subjects can
give rise to higher-level subjects that generate new meta-agents through re-aggregation.
This forms the hierarchy of a CAS. Using complex network centrality as a metric, it
is possible to determine the hierarchy of a network of cities, which enables an urban
network to accommodate a hierarchy of nodes. Generally, cities with high centrality in
a network are highly distinguished, core components which enhance the cohesiveness
and competitiveness of the network, but also increase the vulnerability of the network
structure, since non-core cities are highly dependent on core cities.

• Flow refers to the continuous flow of resources between subjects or between the subject
and the environment, including the flow of information, logistics, and capital. The
nature of the flow will directly impact the evolution of the system. Network density is
an important indicator that precisely reflects the complexity of the overall network.
A higher density of nodes will result in a greater number of interconnections and a
greater degree of mobility.

• Diversity results from the continuous adaptation of a subject; each new adaptation
creates new possibilities for further interactions. Through a continuous cyclical process,
significant differences between subjects occur, which contributes to the diversity of the
system. This is one of the most important features of a CAS. Whenever the elements of
a complex network are adversely affected by external factors, such as shocks, attacks,
etc., in the process of communication through a particular path, the normal operation
of the network can be maintained by quickly choosing other paths of communication.

• Nonlinearity is characterized by the idea that the whole is greater than the sum of
the parts. Interactions between individuals are not simple causal relationships, but
complex relationships based on mutual feedback within an adaptation process. Thus,
CASs exhibit a wide range of properties and states, and nonlinearity is an inherent
source of complexity. In complex networks, nonlinearity is represented by the average
aggregation coefficient i.e., the degree of aggregation between neighboring nodes.
Consequently, the process of aggregation also changes in nonlinear growth as a result
of aggregation in the network, resulting in a complex relationship comprising mutual
feedback among nodes.

Tagging, building blocks, and internal models are all reflections of evolutionary mech-
anisms in CASs; when applied to the interpretation of CNs, they can be characterized as
internal processes of recovery and challenges to a regional network following an external
shock. This aspect of network resilience is more process-oriented, in contrast to the struc-
ture and function that directly reflect the state at a given moment. How to interpret the
true resilience of a network system requires a process of system adaptation and recovery.
Thus, these three mechanisms can be used to analyze the resilience of a system in terms of
its ability to withstand risk and recovering more effectively.

• Tagging is the process of aggregation formation, tagging facilitates the identification
and selection of different subjects or targets and selective interactions. The network
size, i.e., the number of nodes and connections, is used to describe the correspond-
ing network characteristics, which can provide a good explanation of the selection
behavior of subjects when networks are aggregated.

• Building blocks are the main feature of the internal mechanism, i.e., they are closely
related to diversity, which generates complexity due to the diverse combinations
which exist within a CAS. The combination of blocks will be changed by an agent in
response to new circumstances. Using connectivity to represent the building blocks of
a network system reveals that networks are composed of interconnected combinations
of internal nodes and nodes; and the greater the connectivity, the greater the diversity,
i.e., the more complex the internal mechanism.
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• Internal models represent the internal structure of a subject through which the envi-
ronment and behavior of that subject can be inferred. The subject relies on its complex,
unique internal structure and can accumulate experience and learn or predict certain
things to demonstrate that each subject in the system has its own complex internal
mechanisms. The ability to diffuse factor flows in urban networks is portrayed using
transmissibility, which is related to the shortest path between nodes. Higher trans-
missibility means that the urban nodes in a network can achieve faster exchanges of
factors such as information, knowledge, and capital, which promotes inter-city learn-
ing and innovation and enhances the resistance of a region to crises. In response to
shocks, paths with fewer hops are more reliable, and at the same time, can respond to
external changes more rapidly and cope with disruptions more smoothly. Quantitative
assessments of network transportability using the metric of network efficiency are
directly based on the transport functions achieved by the network. They can also
better portray the internal mechanisms of complex networks.

3. Materials and Methods

A technical diagram was derived based on the concept and mechanism of urban
network resilience, consisting of three main steps. The first step is to build the population
mobility network. We constructed the network in different periods using Baidu migration
data, which describes the characteristics of the general network. In the next step, seven
network typological indicators were selected to measure the NR. The third step involved
exploring the attribution of NR. A spatial econometric model was used to analyze the factors
contributing to NR and reveal its evolution processes (Figure 2). Furthermore, dominant
and vulnerable nodes could be identified to enhance the regional network structure and
improve the sustainability of the integrated area.
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3.1. Study Area

The Yangtze River Delta region (YRDR) is located in the east of China (Figure 3). It
is one of the largest urban agglomerations in the world, comprised of Jiangsu, Zhejiang,
and Anhui provinces, as well as the Shanghai municipal government. With a population of
0.227 billion people in 2019 and an area of 358,000 square kilometers, this region accounts
for 3.69% of China’s total land area. Approximately 1/6 of China’s population lives in this
area, and nearly 1/4 of the national economic output is derived from it. It is one of the most
densely populated and economically developed areas in the country. The urbanization rate
in this region reached nearly 75% in 2020.
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Figure 3. The Yangtze River Delta region. (a) The study area; (b) Population and urban ratio change
from 2000 to 2020; (c) GDP and urban ratio change from 2000 to 2020.

With the most active economic development, the highest degree of opening to the
world, and the most substantial innovation ability, YRDR plays an essential strategic
role in national modernization in China. Since 1983, it has been exploring how to break
down administrative boundaries and promote intercity cooperation. Yangtze River Delta
integrated development has been promoted as a national strategy, promulgating the policy
of “Outline of the Regional Integration Development Plan of the Yangtze River Delta” since
2019. This had made the region a focal point for socio-economic development and has
considerably increased the rate of urbanization. As the most integrated region in China,
the YRDR has apparent variations among the different scales. There has been a rapid flow
of population, technology, capital, transportation, and tourism, resulting in the formation
of a polycentric and flat network space [32,33]. However, due to the impact of COVID-19,
inter-city mobility has declined significantly, and some connections have been “weakened”
or even “interrupted”. The urban network structure has also been significantly impacted
by these disruptions.

3.2. Data Sources

(1) Population mobility data. These data come from the Baidu Migration Dataset,
provided by the Baidu Huiyan platform (https://huiyan.baidu.com/products/platform,
accessed on 20 January 2022), which records the intensity of population mobility between
any two cities and visualizes movement during a specific period [34]. Although it cannot
capture all the migratory population based on the availability of smartphones, when
using big data to analyze the spatial characteristics of population mobility, dimensionless
measures and relative indicators of the data are better than those reflected by absolute
values [35]. We collected the daily population mobility data of 41 cites in the YRDR from 19
January to 27 March 2021 and defined a differential ratio indicator to compare the incoming
and outgoing population using the following equation:

r = (∑N
city=i

∣∣∣ innumcity

outnumcity
− 1

∣∣∣)/N (1)

where innumcity and outnumcity are a city’s incoming and outgoing populations and N is
the number of cities. Generally, the ratio of innumcity to outnumcity should be near 1, and r

https://huiyan.baidu.com/products/platform
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should be near 0. Whenever incoming and outgoing flows of cities are not balanced, r is
significantly higher than 0.

According to the “The General Office of the State Council on the arrangement of
holidays in 2021”, the Spring Festival holiday took place from 11–17 February, a total of
7 days, in 2021. As the travel period, we selected days when the daily passenger flow was
higher than the average and the difference was greater than the average. Spring Festival
transport data can be divided into three periods (Figure 4). The first concerns the return
period (3–10 February), when most people return to their hometowns for family reunions.
From 11–17 February, the Spring Festival period, the inter-city population fluctuated to
some extent. The second is the leaving period (from 18–28 February), when people leave
their hometowns to return to the city where they currently live. The “ordinary” period
from 12–24 March was selected for comparison. Due to the impact of the resurgence of
COVID 19 across the country before 2021, the total mobility before the Spring Festival was
significantly less than what was observed subsequently; this was mainly related to the local
policy proposed at that time. Therefore, it was appropriate that we chose this period to
analyze the characteristic of population mobility under a disruption simulation. The data
we used were the sum of daily population movements in each city during the three phases
mentioned above, which illustrated trends in inter-city movements during this time frame.
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Figure 4. Passenger volume from January to March during the Spring Festival in 2021.

(2) Social statistical data. Socio-economic statistics and the transportation and tourism
data of each city, including GDP, per capita GDP, every year resident population, tertiary
industry share data, employment data, and road mileage data of each city, were obtained
from the provincial and municipal statistical yearbooks and statistical bulletins in 2021.

(3) Geographic Information Data. The administrative district boundaries and city
administrative centers were obtained from the National Basic Geographic Information
Center database at a resolution of 1:4 million (https://www.resdc.cn/, accessed on 22
February 2022). All maps were made from the standard map with review No.GS (2020)
4619, downloaded from the standard service website of the National Bureau of Surveying
and Mapping Geographic Information. The distances between cities were calculated using
the latitudes and longitudes of urban administrative centers.

https://www.resdc.cn/
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3.3. Methods
3.3.1. Assessment of Network Resilience

The structures of population migration patterns, with significant correlation and
complexity, can be abstracted as a network. Each city is regarded as a node, and the intensity
of population migration can be summarized as the directed line edge weights between
nodes. The overall structural characteristics of the network are generally investigated
using nodes, density, average path lengths, and clustering coefficients. The individual
structure features of the network are typically characterized by centrality, transmissibility,
and diversity. To reveal and illustrate the features of the network’s topological structure and
the statistical properties of population migration, the following network analysis indicators
were selected:

R(x) = f (D, C, L, S, E, V, A) (2)

where R(x) is a function of network resilience; D represents the characteristic of consistency,
characterized by network density; C represents the characteristic of centrality, which is
represented by the degree of centrality; L represents the connectivity feature of the network,
measured by the average of independent paths; S denotes the size of the network, as
represented by the total number of nodes and edges; network efficiency (E) is used to
measure network transmissibility; the average number of independent paths (V) is used to
measure the network diversity; and finally, the average clustering coefficient (A) represents
the network aggregation. The specific calculation formula is listed in Table 1.

Table 1. Measuring the index of network resilience.

Characteristic Indicators Formula Descriptions

Density Network density (D) D = ∑n
i=1 ∑n

j=1
d(ni,nj)
n(n−1)

n is the number of nodes in the network, d is
the intensity of population mobility

Centrality Degree centrality (C) C = Ki/N − 1 Ki is the degree of node i, and N is the
number of nodes in the network

Connectivity Average network distance (L) L = 1
1/2n(n+1) ∑i 6=j dij

dij is the degree of node i, and N is the
number of nodes in the network

Scale Network size (S) S = n + M M represents the total number of edges, n is
the number of nodes in the network

Transmissibility Network efficiency (E) E = 1
n(n−1) ∑i 6=j

1
Dij

Dij is the shortest path length from node i to j

Diversity Average number of independent paths (V) V = ∑i 6=j nij/n(n− 1) nij is the number of independent paths
between node i and node j

Aggregation Average clustering coefficient (A) A = 1/N ∑n
i

2Ei
ki(ki−1)

Ei is the number of paths between a node
and its Ki neighboring nodes

NR is calculated quantitatively using the resilience formula proposed by Dixit et al. [20].
Additionally, we modified the formula to calculate the NR of population mobility based on
the relationship between seven topology indicators, as shown in (3):

R = L× S× E×V/D× C× A (3)

Using the method of interrupt simulation, changes in network resilience may be
described. The role of each city in the overall network was obtained by comparing our
simulation to real results.

For the quantitative calculation of anti-interference of network resilience, we simulated
changes in the network resilience under disruption due to node failure. Node failure
considers impacts, such as an epidemic, on different cities. As targets of the attack, cities
are removed, one at a time. This means that a change in the overall network reflects the
dynamic processes which determine its degree of resilience, as shown in (4):

Rp = Ra − Rb (4)

where Rp represents the change of network resilience and Ra and Rb are the network
resilience before and after node interruption.
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3.3.2. Scenarios of Nodes Disruption

The robustness and resilience of a network are critical to risk reduction and loss
mitigation. Network resilience describes the ability of a system to maintain its essential
functions in the face of internal disruptions or external changes. To further explore the
network resilience of population mobility, we simulated the disruption of connections in
cities under the impact of a disruption and observed the changes in their topologies. Two
simulation methods expressed the interaction between overall network resilience and city
node failures.

It is possible for the failure of a node within a network to result in the removal of that
node from the original network. This can result in a fundamental change in the character-
istics of the network. Natural disasters such as typhoons, tsunamis, and earthquakes, as
well as random events such as urban isolation caused by public health emergencies such as
epidemics, can be used to simulate the impact of external shocks on nodes and network
connections. Thus, we set the scenario as “node failure”. In this scenario, nodes are ranked
according to their degree of centrality, and failures are simulated sequentially. These urban
nodes are removed from the network in turn to form a new network structure, and the
topological metrics of the network are calculated.

However, in the “node failure” scenario, only the impact of a specific node city’s failure
on the overall network may be known, so it is not possible to quantify the importance
of the node city or the potential to recover to the original level of network resilience.
Changes in network resilience following the failure of different node cities can be attributed
to that node city’s ability to withstand external shocks. According to our theoretical
framework, after a system is hit by an external shock, its internal resistance and defense
are enhanced through adaptive mechanisms. A stable equilibrium is achieved through
recovery and reorganization. Network resilience and recovery must be distinguished from
the resilience of specific features and functions. As a result, we set another scenario, i.e.,
“network recovery”, and calculated the network indexes of different nodes after failure as
the resilience state, S1, of the corresponding nodes. By comparing S1 with S0, we could
determine the impact of urban failure on S1.

Comparing these two scenarios, the essential difference was that in a “node failure”
scenario, node cities disappeared after an attack, and therefore, the overall network evolved
and changed. In contrast, although the node cities in “network recovery” scenario were differ-
ent for each node failure and the network was dynamic, the overall number of connections
remained unchanged. By comparing the relative amount of change in resilience before and
after the failure, the inherent resistance and resilience of the network became the focus.

The essential difference between these two scenarios is that in Scenario 1, node cities
disappear after an attack, resulting in a change in the overall network, while the node cities
in Scenario 2 vary each time they fail and the network is dynamic; as such, the overall
number of connections remains the same. The disruption scenario simulation was designed
to explore the resistance and resilience of the network by comparing the relative changes in
resilience before and after a disruption.

3.3.3. Spatial Econometric Regression Model

(1) Variable selection. We selected network resilience (NR) in the three periods of the
Spring Festival in 2021 as the dependent variable. According to the gravity model, the
strength of inter-city connections is related to the attractive scale of the destination city
(economic scale, population size, etc.) and the cost of transportation (such as transportation
connectivity, travel time, etc.). After reviewing existing research, 10-factor explanations for
the resilience of the urban network were selected. GDP can be interpreted as the measure
of economic development of urban areas. The rate of urbanization and the proportion
of tertiary industry can serve as measures of urbanization. The total population and
total number of employees represent the scale of urban population and employment.
The abundance of tourism resources represents the prevalence of urban tourism. Road,
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Transport and Car represent the transportation infrastructure conditions. After logarithmic
processing, all variables could be used to eliminate dimensional differences (Table 2).

Table 2. Variable selection and descriptive statistics.

Type Name Abbreviations Mean Std. Dev. Min Max

Independent
variable

Changes in network resilience NR
8.142 0.078 8.071 8.485
8.146 0.077 8.054 8.452
8.131 0.083 8.067 8.550

Dependent
variable

Intensity of population mobility 1

Mobility
7.894 0.661 6.595 9.386

Intensity of population mobility 2 6.944 0.752 5.638 8.709
Intensity of population mobility 3 6.997 0.547 5.471 8.012

Gross domestic product GDP 8.266 0.918 6.746 10.564
Total population at the end of the year POP 6.134 0.677 4.753 7.819

Urbanization rate UR 0.664 0.113 0.420 0.893
Total number of employees Lab 4.877 1.232 1.515 6.617

Proportion of tertiary production Is 0.523 0.085 0.423 0.883
Highway mileage Road 9.357 0.484 7.565 10.130

Passenger transport volume Transport 7.862 0.874 6.161 9.951
Motor vehicle ownership Car 4.591 0.856 3.012 6.112

Number of domestic tourists Tourist 8.331 0.810 6.923 10.069

Intensity of population mobility 1–3 during the return, leaving, and ordinary periods, respectively.

(2) Spatial model. Considering the spatial dependence of intercity mobility, we used a
spatial econometric model to explain the influencing factors and detect the spatial effects of
network resilience in the YRDR during the Spring Festival. The spatial error model (SEM)
and the spatial lag model (SLM) are principally used to describe spatial correlations [36].
The SLM supposes that the spatially averaged weight of the adjacent NR partially reduces
the value of NR observed in city i due to spatial interactions. The SLM is expressed as:

lnNRi,t = ρwi,tlnNRi,t + βixi,t + µi + γt + εi,t (5)

The SEM integrates spatial relationships based on the spatial dependence between the
error terms associated with local and neighboring cities. The SEM is defined as:

lnNRi,t = βixi,t + µi + γt + εi,t, εi,t = λwijεt + µi,t (6)

where lnNRi,t stands for the NR of city i at time t; xi,t is the explanatory variable; βi is the
coefficient to be estimated; ρi is the coefficient of spatial autoregressive; λ is the coefficient
of spatial error; εt indicates the impact of the shock on neighboring cities; µi and γt are the
individual and time effects; and µi,t is random error.

4. Results
4.1. Spatial Patterns within Population Mobility Networks

We constructed connection networks and linkages based on the intensity of population
mobility among cities. The degree of centrality of each node was further analyzed, as this
reflects the radiation effect of a city node on others in the network. In our study, a city is
considered a regional central city with a high degree of centrality, strong convergence or
evacuation ability, and high communication ability. The spatial pattern of each connection
network and node degree centrality is presented in Figure 5.
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Figure 5. Spatial patterns of population flow networks and node degree centrality in the Yangtze
River Delta Region.

The intensity of population flow between cities at the first level (43.00–75.74) presented
scattering. Strong linkages existed between the core city and its adjacent nodes, such as
Shanghai–Suzhou, and Hefei–Lv’an. The second level (20.86–42.99) presented an axis of
Shanghai–Suzhou–Wuxi–Changzhou and two clusters around Hangzhou and Hefei. The
third level (9.29–20.85) reflected the association between provincial capital cities and other
cities within the same province. About 83% of all city linkages were at level four (<2.98),
indicating that the intensity of most cities is low, and most city connections are relatively
fixed. In the ordinary period, strong connections between cities in terms of daily population
flow are mainly regional in nature.

During the return period, the top 10 cities were as follows: Shanghai, Nanjing, Suzhou,
Hefei, Hangzhou, Wuxi, Ningbo, Changzhou, Yangzhou, and Fuyang. Spatially, these
cities formed several obvious regional high-value agglomeration areas. In the leaving
period, cities in Jiangsu Province were high-value areas for population mobility. The top
10 cities were as follows: Shanghai, Suzhou, Nanjing, Hangzhou, Hefei, Wuxi, Ningbo,
Fuyang, Changzhou, and Yangzhou. The provincial capital cities became the nodes with
the greatest population flow during this period. At the same time, some traffic node cities
also had a higher degree of centrality than before. In the ordinary period, which was
roughly the same as the leaving period spatial pattern type, the difference was that the
degree of interconnections between cities had weakened.

4.2. Assessment and Characteristics of Network Resilience

Changes in the network topology indexes were diverse in the different periods, so
the network resilience tended to be stable over time. As shown in Table 3, the centrality
and connectivity of the overall network gradually decreased, while the density, size, and
aggregation of the network first increased and then decreased, presenting an inverted “V”
trend. The average daily passenger volume in the return and leaving periods was much
higher than usual.

The centrality and connectivity of the network were enhanced when mobility intensity
was high and tended to be flat when liquidity decreased. This could be verified with the
spatial variation characteristics of the previous network connection pattern. The network
density, size, and aggregation should change, because the increase in population mobility
during the Spring Festival leads to more paths with similar distances. This linkage did not
reveal strong flow intensity, and the spatial pattern did not significantly increase in terms
of the number of strong connections. However, it changed the overall network topology
and increased network redundancy, impacting network resilience.
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Table 3. Network structure resilience.

Topological Index ND NC NL NS NA NE NV NR

Return period 0.214 0.684 2.084 392 0.476 0.763 4.929 4672.070
Leaving period 0.231 0.661 2.004 420 0.518 0.740 4.332 3997.759

Ordinary period 0.210 0.614 1.964 389 0.476 0.824 4.530 3970.058

Trend
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topology index. The network topology indexes showed different trends in three time pe-
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size (NS) are linked to the nodes and edges, so node failure will cause them to decrease. 
Overall, both indices decrease as the node failure rate increases. As the proportion of in-
tentional attacks increases, network centrality (NC) progressively decreases. During the 
return period, when the node failure rate was 0.8, NC was reduced to 0 and the network 
failed. In the ordinary period, the whole network failed after 0.9, implying that the anti-
attack ability of network centrality is more robust in the “normal” period than during the 
Spring Festival. 

The network connectivity (NL) and diversity (NV) indices initially increased and 
then decreased as the degree of node failure increased. Both achieved the highest values 
following the failure of some nodes in connection with the network. The change in net-
work efficiency (NE) also confirmed this, with the difference being that NE increased first 
after node failure decreased. When the attack rate reached about 70%, the network sud-
denly failed and dropped to 0. Network aggregation (NA) decreased and increased, be-
coming invalid in the end. 
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In addition, the transmissibility and diversity of the network decreased first and then
increased, but notably, network transmissibility was the highest in the ordinary period,
i.e., it increased from 0.763 to 0.824. The diversity index decreased from 4.929 to 4.530 at
the end of the Spring Festival. The changes in network diversity were mostly caused by
the decrease of population flow through a decline of physical connections, thus obviously
leading to the deterioration of the fault tolerance of the network. While there was a lot of
population movement during the Spring Festival, this also encouraged connections to the
city, which translated into a slightly higher than usual network connectivity. When a path
was interrupted, other paths could ensure the normal function, thus effectively maintaining
the stable operation of the network. Overall, the level of network toughness gradually
stabilized from 4672.07 in the return period to 3970.058, with no significant change in the
leaving and ordinary periods.

4.3. Network Resilience Changes under Disruption Scenarios
4.3.1. Changes in Overall Network Resilience: “Node Failure”

Figure 6a–g shows the proportion of failed city nodes and the changes in the network
topology index. The network topology indexes showed different trends in three time
periods as the node failure rate increased. Specifically, network density (ND) and network
size (NS) are linked to the nodes and edges, so node failure will cause them to decrease.
Overall, both indices decrease as the node failure rate increases. As the proportion of
intentional attacks increases, network centrality (NC) progressively decreases. During the
return period, when the node failure rate was 0.8, NC was reduced to 0 and the network
failed. In the ordinary period, the whole network failed after 0.9, implying that the anti-
attack ability of network centrality is more robust in the “normal” period than during the
Spring Festival.

The network connectivity (NL) and diversity (NV) indices initially increased and
then decreased as the degree of node failure increased. Both achieved the highest values
following the failure of some nodes in connection with the network. The change in network
efficiency (NE) also confirmed this, with the difference being that NE increased first after
node failure decreased. When the attack rate reached about 70%, the network suddenly
failed and dropped to 0. Network aggregation (NA) decreased and increased, becoming
invalid in the end.

Figure 6h illustrates how the NR changes in a node failure scenario. As network nodes
fail, the NR increases accordingly. With 20% of nodes failing during the leaving period,
the NR reached the highest level, while in the other two periods, the NR was 5% and 12%.
Clearly, the NR maintained a relatively stable rate during the return period. However, the
network collapse was accelerated when nodes failed, as it had greater volatility during the
leaving and ordinary periods.
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4.3.2. Changes in the Resilience of Node Cities: “Network Recovery”

The second simulation method considered the impact of COVID-19 on different city
nodes. We simulated the threat of a public emergency event using the nodes within the
network as the attack object, as well as the interruption of the network every time a node
was lost. The design involved simulated attacks on 41 nodes. Likewise, the topology
indicators and NR were updated. Afterwards, each node was removed or isolated until all
the nodes in the network had been removed.

A positive correlation exists between urban nodes and centrality in the YRDR, showing
the spatial characteristics of the agglomeration along the transport corridor. Network
resilience (NR) and degree of city centrality (NC) were divided into five levels, as shown in
Figure 7. First- and second-level cities, such as Shanghai, Suzhou, Wuxi, Nanjing, and Hefei,
were primarily provincial capitals and regional core cities, forming a distribution trend
along two distinct axes: Shanghai–Nanjing and Shanghai–Hangzhou. With the increase in
population flow, this phenomenon became more pronounced, most notably in the return
period. Thus, development along the Yangtze River Economic Belt axes is key to achieving
the sustainable network in the YRDR.
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4.3.3. Variation of Node Anti-Interference of Network Resilience

Furthermore, different city nodes present different levels of anti-interference between
NRs, which means that the failure of other nodes weakens the resilience of city nodes.
However, only one city typically had the highest levels of resilience when the resilience
of each city was examined under a state of maximum disturbance. As shown in Figure 8,
with the interruption of network nodes, the attenuation degree of node resilience presented
differences. During the return period, Huaibei, Zhoushan, Chizhou, Quzhou, and Lishu
experienced the greatest declines, while Nanjing, Hefei, and Hangzhou saw relatively
little change. The spatial distribution pattern decreased from the periphery to the center.
The situation during the leaving period was similar. Due to the increase in population
mobility, peripheral cities increased their network resilience and were highly vulnerable to
the impact of node failures. In the ordinary period, this phenomenon was more prominent:
the attenuation of network resilience decreased from outside to inside, and the core cities
demonstrated the least volatility.
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Another crucial node related to resilience in the YRDR is called the “vulnerability
node”. The resilience of cities is likely to be significantly attenuated by the failure of
other cities. Vulnerable nodes reduce the resilience of the overall network. The spatial
distribution of vulnerability nodes also showed agglomeration characteristics. Most nodes
with significant declines were in the Anhui and Zhejiang provinces, forming agglomeration
areas with apparent vulnerabilities in the periphery. The cities in Jiangsu Province and
Shanghai demonstrated higher fault tolerance and a more robust ability to resist shock.

4.4. The Mechanism of Urban Networks Resilience

We selected and analyzed factors influencing the resilience of migration networks
in different periods. Firstly, a collinearity test was conducted to eliminate variables with
multicollinearity. Finally, eight independent variables, i.e., GDP, number of employees,
urbanization rate, administrative level, road density, aviation, high-speed rail, and tourism
resource richness, were retained. According to the collinearity diagnosis results, the final
independent variable variance inflation factor (VIF) was less than five, and tolerance was
greater than 0.30, indicating no obvious collinearity between the respective variables. By
comparing the R2, logarithmic likelihood, AIC, and SC values of the three models (Table 4),
it was found that the SLM model had the most significant logarithmic likelihood and the
smallest AIC and SC values, making it suitable for identifying factors which influence
intercity travel.
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Table 4. Spatial econometric model results for network resilience.

OLS SLM SEM

Variables Coefficient Z Value Coefficient Z Value Coefficient Z Value

W_NR −0.029 *** −3.783
Lambda −0.399 * −1.618
Mobility 0.060 ** 2.195 0.084 *** 4.036 0.068 *** 3.226

GDP −0.138 −2.589 −0.178 *** −4.440 −0.146 *** −3.367
POP −0.020 −0.340 −0.022 −0.497 −0.018 −0.374
UR 0.570 ** 2.551 0.692 *** 4.201 0.608 *** 3.435
Lab 0.038 ** 2.731 0.044 *** 4.241 0.035 *** 3.266
Is 0.105 0.528 0.128 0.888 0.134 0.813

Road 0.056 *** 1.835 0.104 *** 4.092 0.104 ** 2.370
Transport 0.026 1.417 0.006 0.427 0.023 1.517

Car 0.046 1.472 0.085 *** 3.427 0.043 1.627
Tourist 0.034 * 1.625 0.032 ** 2.115 0.029 ** 1.840

Constant 7.088 *** 22.167 6.905 *** 29.216 7.083 *** 25.535
R2 0.685 0.766 0.701

LogL 70.620 76.774 71.087
AIC −117.241 −127.547 −118.174
SC −96.678 −105.271 −97.611

W_NR is the coefficient of spatial autoregressive; Lambda is the coefficient of spatial error. The symbols ***, **,
and * denote the significance at 1%, 5%, and 10%, respectively.

The spatial lag coefficient of W_NR was−0.029; this result passed the 99% significance
test, indicating that urban network resilience has noticeable spatial spillover effects. The
degrees of network resilience of adjacent cities influence each other. Overall, if the resilience
of a node city increases by 1%, those of the surrounding adjoining node cities will decrease
by 0.029%. This shows that network resilience has strong regional linkages, and the
cascading effect between nodes reduces the overall resilience.

According to the results of the SLM, five independent variables, i.e., the mobility of the
urban population (mobility), urbanization rate (UR), the total number of employees (lab),
road density (road), and the tourism (tourist), passed the significant level test, and all were
positively correlated with urban resilience. The scale of urban population flow (mobility)
indicated the population migration situation during the period; the higher the value, the
greater the interconnection between cities. When mobility between cities increased, the
resilience of the city network was the highest. The coefficient of the urbanization rate
(UR) was the largest at 0.570; this result passed the 5% significance test. Cities with higher
urbanization levels have advantages in terms of infrastructure and emergency support
and have played a significant role in enhancing urban resilience. The total number of
employees (lab) reflects the labor force in each city. The return of the labor force after the
Spring Festival is the main reason for population migration. Its coefficient was 0.038; this
result has passed the 5% significance level test. The increase in the number of laborers
returning to their hometowns during the Spring Festival also improved the ability of the
network to cope with more uncertain risks. The “road” and “tourist” variables passed the
1% and 10% significance level tests, respectively.

On the one hand, this shows the essential supporting role of intercity transportation
connectivity. Traveling abroad during the Spring Festival holiday will also affect network
resilience. On the other hand, the impact of this is relatively small, indicating that people
will reconsider travel risks due to restrictions against the background of the normalization
of epidemic prevention and control.

5. Discussion
5.1. Identifying Dominant and Vulnerable Nodes

It is important to understand how the failure of a dominant and vulnerable city node
in the YRDR affects the resilience of the network structure. The process of identifying
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this node is based on the comprehensive distribution of NR over different time periods.
Four dominant nodes and seven vulnerable nodes, each heavily influencing the network
structural resilience in the YRDR, were found. Nanjing, Suzhou, Hangzhou, and Hefei are
the four dominant node cities with high levels of centrality and control. Each of these has a
relatively high degree of economic development and a comprehensive transport center.

There were seven vulnerable nodes (Huaibei, Tongling, Huangshan, Quzhou, Lishui,
Taizhou, and Zhoushan) that showed specific agglomeration distribution characteristics
in space, i.e., mostly peripheral or border cities in the YRDR. Spatial aggregation leads to
a regional lock-in effect. When a node reduces in scope, it does not significantly impact
the larger regional environment. This could result in insufficient resource replenishment,
unbalanced supply and demand, and uneven development in small areas. Most such nodes
were far away from provincial capital cities or at the junctions between provinces. Limited
by inadequate administrative barriers and transport infrastructure, such cities may become
“dead cities”.

5.2. Optimization for Improvement of Resilience

When a dominant node is paralyzed during a crisis, it interferes tremendously with
the resilience of the network structure. Meanwhile, vulnerable nodes are the best indicators
of network resilience. Uncertainty about the global spread of COVID-19 persists. Various
phenomena have made us realize that the coordinated management of public health
emergencies in the YRDR still needs to be strengthened [37]. Therefore, we propose a cross-
scale collaborative spatial governance system, the “Region-Metropolitan-City” (Figure 9).
Through multi-level linkages, this approach can address the uncertain disturbances caused
by the network cascading effect and improve the resilience of a regional network.
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Figure 9. Optimization of network resilience framework.

Diverse and frequent elemental flows can lead to regional perturbations or collapses
due to the strengthening of regional negative externalities. Current territorial spatial plan-
ning focuses on urban resilience; its attention to regional resilience is by no means sufficient.
Regional networks need to demonstrate resilience to external disruptions to ensure re-
gional coordination, stability, and sustainable development [38,39]. Hence, the regional
integration of various elements (urbanization, industry, transportation, infrastructure, and
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socioeconomic) and different scenarios (disruption and external shocks) should be consid-
ered in future spatial planning. The failure probability of node cities can be reduced by
increasing the abilities of nodes to resist risks. At the same time, by building a cross-scale
collaborative management system to ensure the overall security, this integrated approach
will greatly enhance the resilience of city nodes and regions. Therefore, node improvement
and system optimization are two important pathways to enhance regional resilience.

5.3. Limitations and Further Works

While we have analyzed network resilience from the perspectives of CAS and CN,
there are still some limitations that could be further investigated, including the following:
We were not able to obtain population mobility data in the YRDR for 2020 or 2022, so this
paper could not verify the difference in the impact of the COVID-19 on urban network
resilience through comparisons with historical periods. We only simulated the spatial
characteristics of regional network resilience under disruption based on data, which may
have some effects on our policy implications. Due to the suddenness and randomness
of public health emergencies, we did not consider random combinations of different city
failures. Rather, we just simulated changes in network resilience under the cumulative
failure of each node city, along with the decline in resilience under each node failure,
to better understand which cities were the most vulnerable points and how they could
be managed more effectively. Additionally, we did not consider how network resilience
changes under different combinations of city failures, which should be the subject of a
future study. Our objectives were to introduce a complex perspective for the evaluation of
network resilience and to assess whether neighboring nodes have a mutual influence on
network resilience. As a result, the groundwork has been laid for the next combination of
scenarios and network cascade effects under random disruption in different cities within
the network.

The promulgation of the Yangtze River Delta Integration Policy has injected new vital-
ity into regional interconnectivity and social-economic development. We could consider
incorporating regional resilience improvement and vulnerability governance in future
planning practices, which could be improved in the following ways: (1) through exhaustive
studies of the risk response capabilities of non-core cities and quantitative analyses of other
modes of population flow when non-core cities are disturbed; (2) by comprehensively
assessing changes in the resilience of population mobility networks and the spread of
epidemics, disaster risks, and government control measures; and (3) by discussing in more
detail how long it takes the system to recover from a disturbed state to a steady state and
the degree to which different policies influence this transition.

6. Conclusions

This paper proposes a conceptual framework for network resilience using complex
adaptive systems in combination with complex network analysis. In contrast with previous
studies, the theoretical model was applied to an actual analysis through a network resilience
evaluation of population mobility in the Yangtze River Delta region, demonstrating the
rationality of the theoretical assumptions. Using node failure simulation and spatial
effect analysis, we also proposed a governance strategy to optimize and improve network
resilience in the region. The major conclusions are as follows:

First, the intensity of travel during the Spring Festival in 2021 had obvious charac-
teristics over time. Due to restrictions related to the COVID-19 pandemic, the population
mobility before the holiday was less than after the holiday. Second, the network resilience
in the YRDR was greatly affected by its topological characteristics, which are closely related
to urban connections. The network structure was found to be unstable, and the interruption
caused responsiveness and resilience to synchronous decline. NR showed a dependence on
transportation corridors, and the urban nodes that significantly interfere with the overall
resilience of the network structure were mainly concentrated on axes that were consistent
with the Shanghai–Nanjing and Shanghai–Hangzhou development axes. Third, disruption
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simulations can be used to further identify critical elements that affect the resilience of
network structures. With the failure of node cities, network resilience first rises and then
declines; in the YRDR, population mobility has a certain degree of redundancy. Finally, the
network resilience in the YRDR has a negative spatial spillover effect. The factors which
affected NR during the Spring Festival included urban scale such as urbanization rate
and labor force, as well as traffic connectivity. Tourism attractiveness and population size
gradually decreased as a result of the COVID-19 pandemic. Generally, the most effective
means to increase the resilience of regional networks are the acceleration of urbanization
and the enhancement of local transportation infrastructure.

Overall, our research contributions are mainly reflected in the following aspects: at the
methodological level, we propose a method by which to assess regional network resilience
using disruption scenario simulations and spatial effects analyses to identify vulnerabilities
and key influencing factors; at the theoretical level, we present a theoretical framework
for measuring regional complex network resilience, which enhances the potential of theo-
retical analyses of regional and urban network resilience. Specifically, our method treats
network resilience as a system structure, rather than as a collection of characteristics and
relationships. The findings of this study also demonstrate that via the construction of
a cross-scale collaborative spatial governance system, uncertainty disturbances caused
by network cascading effects can be resolved and insights can be gained regarding the
sustainability of other regions.
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