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Abstract: Ecological zoning and green–development assessment at the village–town scale in China are
significant tasks for sustainable planning in China. In this study, we build an index system to calculate
the eco–environmental vulnerability score and divide the results into extreme, heavy, moderate, light,
and slight levels based on evidence from 43,046 villages and towns in China from 2000 to 2015; then,
we build a sustainable–development score calculation criterion to perform sustainability assessments.
The results show that nine indexes (digital elevation model (DEM), slope, net primary productivity
(NPP), total rainfall per year, per capita cultivated land, farmland proportion, grassland proportion,
forestland proportion, and construction–land proportion) are the main factors in the variation in
eco–environmental vulnerability under the conditions of urbanization. The eco–environment is
found to have worsened from 2000 to 2015, and the deterioration areas are mainly concentrated
in Tibet, the eastern area of Xinjiang and the Xing’an Mountains region. Economic growth and
ecological protection can achieve common development when eco–environmental vulnerability
is at light and slight levels, while when eco–environmental vulnerability is fragile, the inhibitory
effect of economic growth is obvious in rural areas. The results can provide useful information for
village–town planning.

Keywords: eco–environmental vulnerability zoning; entropy weight method (EWM); sustainable–
development assessment; village–town scale; economic growth

1. Introduction

In the years since the reform and opening up, China has gone through rapid urban
and economic development. From 1978 to 2016, the urbanization rate of China increased
from less than 20% to 57.35% [1]. With the rapid development of human society in China,
the constraints on resources and the environment have become increasingly tightened, and
threats to ecological security are becoming gradually prominent [2,3].

The eco–environmental problem caused by urbanization is mainly due to the increase
in urban land use and the excessive concentration of the population [4,5]. Since damage
to ecological zones could lead to much natural and societal loss, the identification and
protection of ecological zones are significant tasks for guiding human activities in the
creation of equivalent economic value with lower environmental costs [6], which requires
more approaches and cases to fit various purposes and situations. With the development
of GIS and RS technology, multitemporal datasets [7,8] are applied in eco–environmental–
problem/–hazard studies [9–14]. Liu et al. explored ecological zoning in Bohai Rim by
applying an integrated GIS approach involving multiple factors and provided a basis
for preventing high–quality ecological areas from undergoing rapid human development
in Bohai Rim [15]. Del Carmen Sabatini et al. [16] developed a quantitative method
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for zoning within protected areas by offering many zonation scheme alternatives with
minimum cost, time and effort, which effectively worked in achieving zoning designs more
compatible with biological–diversity protection. Ecological zoning, the identification of
highly important ecological areas, and their protection from anthropogenic interference are
effective measures for regional environmental protection and sustainable development.

Policy implementation has strong influence on future landscape services [17]. China’s
environmental regulation is closely related to its administrative systems, mechanisms,
policies, and other factors, such as economic growth target management, which is an
effective motivational tool for local governments and officials that played a critical role
in China’s rapid economic growth for more than four decades. Its presence can be found
throughout China’s entire political system, at all governmental levels, and within all
administrative departments and Party committees [18–22]. In rural areas, villages have
become established social units because of the connection between people and the land,
historical factors, and sociopolitical relationships (e.g., cultural identity) [23,24]. The
overall planning of urban and rural areas is the focus of municipal administrative area
(MAA) [25,26] planning in the process of economic globalization, and village–town system
planning is the key to the overall planning of urban and rural areas [27]. There is a very close
relationship between urbanization, economic growth, and environmental pollution [28].
Liang et al. [20] explored the interaction between urbanization, economic growth, and
environmental pollution based on 2006–2015 panel data covering 30 provinces and cities
in China and found that environmental pollution had a significant inhibitory effect on
urbanization. Xie et al. (2018) thought that with the improvement in the urbanization
rate, environmental quality was improved [29]. China’s economic development not only
depends on the institutional division of the market economy but also benefits from the
economic stimulus policy enforced by the government. The coupling effect of effective
market and promising government is the core of the socialist market economy with Chinese
characteristics [30]. Therefore, the government holds great practical significance for green
development from the perspective of economic growth targets [31]. Conducting green–
development assessments in MMAs or village–town areas in China holds great significance.
In recent years, especially since 1978, two questions have yet to be successfully answered:
(1) How have rural settlements changed over the last several decades? (2) What are the key
factors influencing the changes in the spatial pattern of rural settlements [32]? Currently,
most previous studies have focused on a certain city or county, and little attention has been
paid to these two issues, especially at the village scale, in rural areas in China.

The sustainability of China’s development is reflected in the sustainability of its
resources and environmental carrying capacities (RECCs), as well as government orga-
nization [33,34]. The RECC concept is considered to be a total description of the maxi-
mum affordability threshold of regional systems in response to external environmental
changes [35]. RECC assessments have been applied at macro–, meso–, and microscale
levels, such as countries, urban agglomerations, regions, provinces, prefecture–level cities,
municipal districts, county–level cities, and even disaster areas [36], with factor analysis
methods, equation decision methods, state space methods, the analytic hierarchy process
and entropy methods [37]. Martire et al. [38] evaluated the forest resource carrying capacity
and eco–environment carrying capacity in alpine mountain areas and discussed them in
order to contribute to face the challenge of energy planning at local scale, which is helpful
for highlighting some challenges in resource planning and use at local scale. Zhou et al. [39]
analyzed types of areas and their development paths in rural China and built a comprehen-
sive index system and measurement model to measure the level of rural development from
the perspectives of resource endowments, the geographical environment, humanistic ele-
ments and the economic level, which can provide a theoretical basis and decision–making
guidance to smoothly promote the rural revitalization strategy.

Learning from the RECC concept and its evaluation method, in this study, we ex-
plore the sustainability of China’s development at the village scale based on evidence
from 43,046 villages and towns from 2000 to 2015. Two main aspects are included: (1)



Land 2022, 11, 1321 3 of 16

eco–environmental vulnerability (ecosystem stability) zoning, i.e., how environmental
vulnerability has changed from 2000 to 2015 and the triggering factors; and (2) sustainable–
development assessment, i.e., under the conditions of environmental constraints, how
China’s economy and society can achieve sustainable development.

2. Materials and Methods
2.1. Study Area

In this study, we focus on the question at the rural–area scale. The study area includes
43,046 villages and towns in China (2020), while data on Taiwan are not included (Figure 1).
Land use variation has a close relationship with the eco–environmental variation in and
the urbanization process of rural areas [4,5]. Land uses in China are divided into 7 different
types: farmland, forest, grassland, water, building area, unused land, and ocean (Figure 2).
From 2000 to 2015, the land use of the 43,046 villages and towns considerably changed
(Table 1), and the main land cover types were farmland, forest, grassland, and unused
land. From 2000 to 2015, the percentages of farmland and grassland decreased by 0.16%
and 3.67%, from 18.96% to 18.8% and from 31.84% to 28.17%, respectively. In contrast, the
percentages of forest, water, building area, and unused land increased by 0.48%, 0.12%,
0.79%, and 2.43, from 23.45% to 23.93%, from 2.77% to 2.89%, from 1.81% to 2.6%, and
from 21.18 to 23.61, respectively. Most grassland degraded to unused land, such as in
northern Tibet.
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Table 1. Land use in 2000 and 2015.

Land Use Type
Area Ratio (×100%)

Variation (×100%)
2000 2015

farmland 18.96 18.80 −0.16
forest 23.45 23.93 0.48

grassland 31.84 28.17 −3.67
waters 2.77 2.89 0.12

building area 1.81 2.60 0.79
unused land 21.18 23.61 2.43

ocean 0.00 0.00 0

2.2. Methods

In this study, we aim to perform ecological–zoning and green–development assessment
at the village–town scale in China, the framework of the study is shown in Figure 3. For
ecological zoning at the rural–area scale, we first need to build an index system from the
perspective of the geographical environment, humanistic elements, resource endowments,
and the economic level, and second, to calculate the comprehensive score and then perform
eco–environmental vulnerability zoning based on the information weight model. Lastly,
eco–environmental vulnerability and sustainable–development assessment are conducted
at the rural–area scale in China.
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2.2.1. Materials and Preprocessing

For generalized ecological elements, all factors that may have any impact on the
environment are classified as ecological elements, such as meteorological conditions, water
resources, vegetation types, topography, soil types, population density, economic density,
industrial structure and layout, land use status, building density, and environmental
pollution conditions. However, most of the factors in rural areas are not available, and
the variability in most factors, such as meteorological conditions, water resources, and
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soil types, is small at the village–town scale. The dataset used in this study are shown
in Table 2. Moreover, there are 13 parameters built for ecological zoning based on the
dataset in Table 2 from the perspective of resource endowments, geographical environment,
humanistic elements, and economic level, as shown in Table 3.

Table 2. Datasets used in the construction of the index system.

Dataset Spatial
Resolution

Temporal
Resolution Time Data Source

Digital elevation model (DEM) 30 m − 2003 SRTM DEM

Net primary productivity (NPP) 500 m Annual 2000, 2015
GLASS pooduct (http://www.
glass.umd.edu/Download.html
(accessed on 10 August 2022))

Landuse 30 m Annual 2000, 2015 Resource and Environment
Science and Data Center (https:
//www.resdc.cn/Default.aspx
(accessed on 10 August 2022))

Rain 1 km Annual 2000, 2015

Population density 1 km Annual 2000, 2015

Aging population City Annual 2020
https://www.sohu.com/a/4767
46607_121106832 (accessed on 10
August 2022)

Road − − 2014 −

GDP 1 km Annual 2000, 2015

Resource and Environment
Science and Data Center (https:
//www.resdc.cn/Default.aspx
(accessed on 10 August 2022))

Table 3. Index system built during dataset preprocessing.

Criteria Indicators Definition Positive (1)/
Negative (2)

Geographical environment

DEM Mean elevation of each rural area 2

Slope Proportion of the area with a slope
greater than 15◦ 2

Broken index of the surface Standard deviation of elevation in each
rural area 2

Net primary
productivity (NPP) Mean value of each rural area 1

Resource endowments

Per capita cultivated land
Ratio between farmland area and whole
population (calculated with population
density and rural area)

1

Total rainfall per year Mean annual rainfall over the years
(1980–2015) 1

Farmland proportion Proportion of farmland area 1
Grassland proportion Proportion of grassland area 1
Forestland proportion Proportion of forestland area 1
Construction–land proportion Proportion of construction–land area 2 [20] *

Humanistic elements Road traffic density Total length of roads per unit area of each
rural area 2

Economic level

Per capita GDP Ratio between GDP and population at
the 1 km scale 1

Agricultural development
advantage degree

The ratio between variation in farmland
area and variation in GDP from
2000 to 2015

1

* The development of infrastructure construction, especially the construction industry, will cause more serious
pollution problems, leading to a negative influence on green development [20].

http://www.glass.umd.edu/Download.html
http://www.glass.umd.edu/Download.html
https://www.resdc.cn/Default.aspx
https://www.resdc.cn/Default.aspx
https://www.sohu.com/a/476746607_121106832
https://www.sohu.com/a/476746607_121106832
https://www.resdc.cn/Default.aspx
https://www.resdc.cn/Default.aspx
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2.2.2. Entropy Weight Method (EWM)

The entropy weight method (EWM) is an information weight model that has been
widely used in decision–making [40,41], such as in assessments of lake water quality [42],
the stress factors and efficiency of water management measures [43], and to study water
characteristics, such as eutrophication, health, and spatial distribution [44]. Compared
with other various subjective weighting models, the EWM improves the objectivity of the
comprehensive evaluation results because it prevents human factors from interfering with
the weight of indexes [45].

In the EWM, we assume that there are m indexes and n samples in the evaluation, and
the measured value of the ith index in the jth sample is recorded as xij.

When analyzing eco–environmental vulnerability, since different indexes have differ-
ent units, the extreme–value method is used to standardize the original data of each index
with Equation (1):

Xij =


(a−b)∗(xij−min(xi))

max(xi)−min(xi)
+ b f or positive indicators

(a−b)∗(max(xi)−xij)
max(xi)−min(xi)

+ b f or negative indicators
(1)

where Xij refers to the standardized value of the ith index in the jth sample, and a = 0.002
and b = 0.996 are the standardized thresholds. The positive and negative information for
each parameter is listed in Table 3.

Then, each specific weight (Pij) of the jth sample in the ith index is calculated:

Pij =
Xij

∑n
j=1 Xij

(2)

Then, entropy value Ei of the ith index is calculated with Equation (3) [46]:

Ei =
∑n

j=1 Pij × ln Pij

ln n
(3)

The range of entropy value Ei is [0, 1]. The larger the value of Ei is, the greater the
differentiation degree of index i is, and the greater the amount of information that can be
derived is. Then, in the EWM, the method of calculating weight ωi [47,48] is defined with
Equation (4):

ωi =
1− Ei

∑m
i=1 1− Ei

(4)

Then, the comprehensive score is calculated with Equation (5):

S = 100×ωi × Xi
′ (5)

Lastly, we normalize the scoring result from 0 to 1.
Because all the indexes are normalized in the positive or negative directions, the

comprehensive score calculated with the EWM can reflect the ecosystem stability, which
means that, the higher the value is, the better the ecological environment is. We use eco–
environmental vulnerability to represent ecosystem stability. In this study, we divide the
comprehensive scoring result into five levels based on the natural breaks method [49] to
evaluate the eco–environmental vulnerability of each village/town.

3. Results and Discussion
3.1. Index–System Construction

From a previous study, the EWM evaluates the index by measuring the degree of
differentiation; the higher the degree of dispersion of the index is, the higher the weight
given to the index is [50]. In this study, the original datasets were normalized with the
extreme–value method to minimize the inconsistency caused by the dimensions of each



Land 2022, 11, 1321 7 of 16

index. We calculated the standard deviation (SD) value of each index (standardized re-
sults) of 43,046 villages and towns shown in Table 3 and found that these nine indexes
(geographical environment (DEM, slope, NPP) and resource endowments (total rainfall
per year, per capita cultivated land, farmland proportion, grassland proportion, forestland
proportion, construction–land proportion)) with high SDs are the main factors influencing
the vulnerability of the eco–environment (Figure 4) with high weights (Table 4), which indi-
cates that the EWM is effective in measuring the degree of these nine indexes. The results
show that eco–environmental vulnerability at the rural–area scale is mainly determined
by the geographical environment and resource endowments, with little relationship with
humanistic elements and the economic level. The forestland proportion is the main index
affecting eco–environmental vulnerability, followed by the grassland proportion index.
From 2000 to 2015, we also find that the influence of the grassland proportion index and
the forestland proportion index decrease, while the influence of the farmland proportion
index and the per capita cultivated–land index increase. Compared with the work by
Zhou et al. [39], we find that most of the indexes that influence the regional types at the
county scale are not significant at the rural–area scale. Performing ecological zoning at the
village scale holds great significance.
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Table 4. Weigh of each index calculated with EWM in 2000 and 2015.

No. in Figure 4 Name in Table 3
Weight

2000 2015

1 NPP 0.0525 0.0514
2 Total rainfall per year 0.0665 0.0723
3 Per capita cultivated land 0.1395 0.1508
4 Farmland proportion 0.1158 0.1207
5 Grassland proportion 0.2381 0.2235
6 Forestland proportion 0.3276 0.315
7 Construction–land proportion 0.0198 0.0289
8 Slope 0.0321 0.03
9 DEM 0.008 0.0074
10 Agricultural development advantage degree − −
11 Broken index of the surface − −
12 Road traffic density − −
13 Per capita GDP − −



Land 2022, 11, 1321 8 of 16

3.2. Eco–Environmental Vulnerability at the Rural–Area Scale

With the weight information of each indicator shown in Table 4, we calculate the
comprehensive score of each town/village with Equation (5) and then normalize the
scoring result; we divide the comprehensive scoring result into five levels and then the
classification criteria of the eco–environmental vulnerability at the rural–area scale are built
and are shown in Table 5. The eco–environmental vulnerability at the rural–area scale in
2000 and 2015 is shown in Figure 5. It is obvious that the eco–environmental vulnerability
in 2000 and 2015 is greatly different, especially in Tibet, Northeast China and the pan–Pearl
River Delta area.

Table 5. Classification criteria of eco–environmental vulnerability.

Grading Level Classification Criteria Eco–Environmental Vulnerability

1 [0, 0.26] Extreme
2 (0.26, 0.43] Heavy
3 (0.43, 0.56] Moderate
4 (0.56, 0.69] Light
5 (0.69, 1] Slight
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Figure 5. Eco–environmental vulnerability at the rural–area level in (a) 2000 and (b) 2015 shown at
the county level representing the administrative units.

Among the 43,046 villages and towns in China (2020), there are 29,703 in 2000 and
30,384 in 2015 with moderate, light, and slight eco–environmental vulnerability, and the
share in area of these rural areas is higher than 74% for both years, which indicates that
the eco–ecological environment of China is of high quality (Table 6). However, for the
whole country, the ecological environment is found to have worsened from 2000 to 2015;
more villages and towns become extreme eco–environmental vulnerability zones, and
the villages and towns in slight eco–environmental vulnerability zones decrease. The
percentage change in the area at each grading level is much higher than the percentage
change in quantity. For example, for rural areas at grading level 5, from 2000 to 2015,
the percentage change in number decreases by 0.55%, but the percentage change in area
decreases by 4.62%, which demonstrates that the variation in area is a better indicator
than the variation in quantity when analyzing the eco–environmental variation based on
administrative divisions at the village level (Table 6).
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Table 6. Detailed information on the villages and towns at each grading level.

Grading Level
2000 2015

Number Proportion Area
(×1012 m2) Area Ratio Number Proportion Area

(×1012 m2) Area Ratio

1 5355 0.1244 1.09 0.1107 6566 0.1525 1.23 0.1247
2 7988 0.1856 1.45 0.1467 6096 0.1416 1.33 0.1342
3 8360 0.1942 1.29 0.1307 9174 0.2131 1.84 0.1869
4 7295 0.1695 1.54 0.1558 7401 0.1719 1.85 0.1873
5 14,048 0.3263 4.5 0.4561 13,809 0.3208 3.62 0.3670

The policy–making of each administrative division (i.e., taking the province level,
city level, and county level as the units of analysis) plays an important role in analyses of
ecological development [18–22]. Theoretically, the boundaries of administrative divisions
have a deep relationship with the division of the ecological environment. When analyzing
the ecological environment based on datasets at a 30 m spatial resolution, it is clear that
the boundary effect is not obvious at the county–level scale, and the results of ecological
environment development are discontinuous at the county–level scale. For each county, the
ecological zoning of different villages and towns is inconsistent (Figure 5). Additionally,
most of the national plan for developing functional zones [24,25,28] is at the village–level
scale. Thus, it is necessary and meaningful to perform an analysis at the level of a smaller
(village–level scale) administrative unit.

3.3. Variation in Eco–Environmental Vulnerability from 2000 to 2015 at the Rural–Area Scale

When analyzing the variation in eco–environmental vulnerability from 2000 to 2015,
the grading–level variation includes nine types (Figure 6 and Table 7). In terms of number
and area, over 77% and 69.78% of villages and towns, respectively, have no changes in
ecological sensitivity, and the percentage change in number is 22.83% (9828 out of 43,406).
The deterioration areas are mainly concentrated in Tibet, the eastern area of Xinjiang, and
the Xing’an Mountains region. Most of the central region of China shows sustainable
development. Over 20% of the area changes at a one–unit scale.
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Table 7. Detailed information on the variation in eco–environmental vulnerability from 2000 to 2015.

Nine Types of Grading
Level Variation Number Proportion

(×100%)
Area
(m2)

Area Ratio
(×100%)

−4 29 0.0007 2.96 × 1010 0.0030
−3 104 0.0024 2.24 × 1011 0.0226
−2 499 0.0116 4.24 × 1011 0.0429
−1 4424 0.1028 1.19 × 1012 0.1206
0 33,218 0.7717 6.89 × 1012 0.6978
1 4629 0.1075 1.02 × 1012 0.1034
2 114 0.0026 7.89 × 1010 0.0080
3 25 0.0006 1.57 × 1010 0.0016
4 4 0.0001 2.68 × 108 0.0000

For the nine grading–level variation types, the deterioration areas show a higher
percentage change in area equal to 7.82% with more than two grading–level variations,
while the percentage change in number is 1.8%. The ecological environment of some larger
villages and towns is found to have greatly changed. When evaluating variation, it is
important to take administrative divisions as the standard for changes in both the number
and area of villages and towns.

3.4. Sustainable–Development Evaluation at the Rural–Area Scale
3.4.1. Relationship with Economic Development

From Section 3.1, the economic level and humanistic elements are not included in the
index system built to calculate the eco–environmental vulnerability of the study area. From
a previous study, economic growth can influence eco–environmental vulnerability [28].
Shen et al. found that economic growth targets have significant inhibitory effects on
green technology innovation [31]. For the study of the relationship between the economy
and the environment, the Cruz Nez curve theory is widely accepted [51,52]. Kuznets
pointed out that the relationship between per capita income and income inequality is an
inverted U–shaped curve [53], and there is an inflection point between economic growth
and environmental pollution. The level of environmental pollution rises with economic
growth. However, when the per capita income exceeds a certain level (i.e., inflection point),
the environment improves with economic growth. Nevertheless, for some countries or
regions, the relationship between environmental pollution and economic growth is not fully
consistent with the theoretical hypothesis of an inverted U–shaped relationship, which
hypothesizes a fully consistent inverted U–shaped curve [54–56].

To explore the inhibitory effect of economic growth on eco–environmental vulnerability
at the rural–area scale in China, we detect the relationship between the annual growth
rate of per capita GDP and the variation in eco–environmental vulnerability from 2000 to
2015 (Figure 7). The variation in eco–environmental vulnerability has a close relationship
with the annual growth rate of per capita GDP. The SD of the annual growth rate of per
capita GDP has a high value when the eco–environmental vulnerability shows negative
grading–level variation, while it sharply decreases with positive grading–level variation
from 0 to 4. This finding indicates that the variation in the annual growth rate of per
capita GDP of villages and towns in the negative direction is greater, and the economic
development pattern in these areas is seriously inconsistent with the goals of sustainable
development. The decreasing SD values also demonstrate the credibility of the positively
changing GDP inhibitory effect.

We also found that the economy is growing at an extremely high rate, which may
strongly damage the ecological system. The grading–level variation and the mean annual
growth rate of per capita GDP show a negative correlation (the red dashed line in Figure 7).
When the annual growth rate of per capita GDP is higher than 0.47, the GDP mainly
shows a negative influence on the environment of most villages and areas, especially
when the mean annual growth rate of per capita GDP is higher than 0.65. When the mean



Land 2022, 11, 1321 11 of 16

annual growth rate of per capita GDP is lower than 0.47, the GDP mainly shows a positive
influence on the environment, which is more consistent with the requirements of sustainable
development. At the data level of representation adopted, economic development shows a
close relationship with the geological environment, and the study results can provide some
reference for the sustainable development of rural areas in China.
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3.4.2. Sustainable–Development Evaluation Score

Based on the results shown in Sections 3.2 and 3.3, there are five different grading levels
(Table 5) and nine grading variation levels (Table 7) of eco–environmental vulnerability. The
total grading–level variations from 2000 to 2015, including 25 change types, are shown in
Table 8. To perform a sustainable assessment based on the eco–environmental vulnerability
results, we define the sustainable development evaluation score of each village and evaluate
the sustainable–development of rural areas in China from 2000 to 2015. Four rules are set
to calculate the sustainable–development evaluation score:

1. The sustainable–development evaluation score ranges from 1 to 25.
2. Based on the grading results in 2015, the higher the eco–environmental vulnerability

in 2015 is, the higher the sustainable–development evaluation score is.
3. For positive variation, the higher the grading–level variation from 2000 to 2015 is, the

higher the sustainable–development evaluation score is. In contrast, for negative varia-
tion, the higher the grading–level variation is, the lower the sustainable–development
evaluation score is.

4. For villages with the same grading level, the sustainability development evaluation
score of positive change is higher than that of negative change with respect to this
level from 2000.

The sustainability score of the 25 change types is calculated, as shown in Table 8, and
serves as the criterion for the potential of social development. We draw the sustainable–
development evaluation score map shown in Figure 8. The higher the sustainable–development
evaluation score is, the higher the potential for social development of the village is. The results
can provide useful information for MMA planning.
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Table 8. Detailed information on the 25 types of variation and the sustainable–development evalua-
tion score.

Change Type
Time

Grading–Level Variation Sustainable–Development
Evaluation Score Number Area (m2)

2000 2015

1 5 1 −4 1 29 2.96 × 1010

2 4 1 −3 2 33 5.47 × 109

3 3 1 −2 3 170 1.73 × 1010

4 2 1 −1 4 1226 2.87 × 1011

5 1 1 0 5 5108 8.91 × 1011

6 5 2 −3 6 71 2.18 × 1011

7 4 2 −2 7 137 4.07 × 1010

8 3 2 −1 8 1117 1.2 × 1011

9 2 2 0 9 4568 7.74 × 1011

10 1 2 1 10 203 1.72 × 1011

11 5 3 −2 11 192 3.66 × 1011

12 4 3 −1 12 783 1.76 × 1011

13 3 3 0 13 6029 9.31 × 1011

14 2 3 1 14 2139 3.47 × 1011

15 1 3 2 15 31 2.45 × 1010

16 5 4 −1 16 1298 6.07 × 1011

17 4 4 0 17 5055 1.01 × 1012

18 3 4 1 18 1000 1.96 × 1011

19 2 4 2 19 39 2.92 × 1010

20 1 4 3 20 9 4.88 × 109

21 5 5 0 21 12,458 3.28 × 1012

22 4 5 1 22 1287 3.05 × 1011

23 3 5 2 23 44 2.53 × 1010

24 2 5 3 24 16 1.09 × 1010

25 1 5 4 25 4 2.68 × 108
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We also analyze the relationship between economic growth rate and the sustainable–
development score (Figure 9). The SD value of the annual growth rate of per capita GDP
shows violent oscillations with high values and decreases along with the increase in the
sustainable–development evaluation score; it tends to be stable after reaching a score of
16, while the mean value of the annual growth rate of per capita GDP slightly decreases
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and remains nearly stable after reaching a score of 16. The results indicate that when eco–
environmental vulnerability is at light and slight levels, economic growth and ecological
protection can achieve common development. However, when eco–environmental vulnera-
bility is more fragile, the inhibitory effect of economic growth is obvious in rural areas.
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4. Conclusions

Ecological zoning considering the village–town administrative unit holds great sig-
nificance for the sustainable development of village–town system planning. In this study,
we first build an index system with the EWM method to evaluate eco–environmental vul-
nerability and then build a sustainable–development score calculation criterion to explore
the sustainability of China’s development at the village scale based on evidence from
43,046 villages and towns from 2000 to 2015. The following conclusions are drawn from the
results of this study:

• Eco–environmental vulnerability is mainly determined by the geographical environ-
ment and resource endowments at the village–town scale. Nine indicators, including
DEM, slope, NPP, total rainfall per year, per capita cultivated land, farmland propor-
tion, grassland proportion, forestland proportion, and construction–land proportion,
are the main indicators influencing eco–environmental vulnerability;

• The eco–environmental vulnerability results are divided into extreme, heavy, moderate,
light, and slight levels. Among the 43,046 villages and towns in China (2020), there are
29,703 in 2000 and 30,384 in 2015 with moderate, light, and slight eco–environmental
vulnerability. The ecological environment is found to have worsened from 2000 to
2015, and the variation in area is a better indicator than the variation in quantity
when analyzing eco–environmental variation based on administrative divisions at the
village level;

• The variation in eco–environmental vulnerability has a close relationship with the
annual growth rate of per capita GDP. The economic growth rate shows an inhibitory
effect on the environment at the rural–area scale from 2000 to 2015. The critical thresh-
old for negative environmental impact of the annual growth rate of per capita GDP is
0.47; the higher the value is, the more serious the negative effects on the environment
are. Economic growth and ecological protection can achieve common development
when eco–environmental vulnerability is at light and slight levels. However, when
eco–environmental vulnerability is more fragile, the inhibitory effect of economic
growth is obvious in rural areas.
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This study provides new insights into eco–environmental vulnerability zoning at the
village–town scale and sustainable–development assessment under the conditions of rapid
urban and economic development. The results obtained in this study can provide useful
information on how to enhance the positive interaction between urbanization and economic
growth and how to promote the construction of new sustainable urban development
in China.
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