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Abstract: The increasing human pressure on African regions is recognizable when looking at Land 
Use Land Cover (LULC) change maps, generally derived from satellite imagery. Using the Ethio-
pian Fincha watershed as a case study, the present work focuses on (i) identifying historical LULC 
change in the period 1989–2019; (ii) estimating LULC in the next thirty years, combining Geograph-
ical Information Systems (GIS) with Land Change Modelling (LCM). Landsat5/8 images were com-
bined with field evidence to map LULC in three reference years (1989, 2004, 2019), while the Multi-
Layer Markov Chain (MPL-MC) model of LCM was applied to forecast LULC in 2030, 2040, and 
2050. The watershed was classified into six classes: waterbody, grass/swamp, built-up, agriculture; 
forest; and shrub. The results have shown that, in the past 30 years, the Fincha watershed experi-
enced a reduction in forest and shrubs of about −40% and −13%, respectively, mainly due to ever-
increasing agricultural activities, and such a trend is also expected in the future. In fact, for the pe-
riod 2019–2050, LCM simulated a significant decrease in both forest and shrubs (around −70% and 
−20%, respectively), in favor of more areas covered by grass (19%) and built-up (20%). It is worth 
noting that a decrease in natural forests can drive an increase in soil erosion, fostering siltation in 
the water reservoirs located in the sub-basin. The study pointed out the urgency of taking actions 
in the sub-basin to counteract such changes, which can eventually lead to a less sustainable envi-
ronment. 

Keywords: Ethiopia; Fincha river; land use land cover; land change modeler;  
multi-layer Markov chain 
 

1. Introduction 
Land use is defined as how land is utilized by human beings and their habitats, usu-

ally with an accent on the practical role of land for economic activities, whereas land cover 
is a physical characteristic of the Earth’s surface or attributes of a part of the Earth’s land 
surface and immediate subsurface, including biota, soil, topography, surface and ground-
water, and human structures [1–4]. As it is strictly connected with representing the hy-
drological cycle [5,6], land use and land cover (LULC) change has been one of the most 
widely used methods to understand past land uses, types of changes estimated, the forces 
behind such changes, and the perceptible transformations of the Earth’s surface [1]. LULC 
changes could involve critical issues such as biodiversity degradation and negative im-
pact on human life [7,8]. The study of LULC change has attracted growing interest in re-
cent years and is a complex issue that involves physical, environmental, and socioeco-
nomic facts. According to Lambin et al. [9], the modeling of land cover processes can an-
swer questions such as (i) which are the main environmental and cultural variables that 
contribute most to the observed changes, and why? (ii) within a geographical region, 
which locations can be affected by land cover changes, where and at what rate does land 
cover change, and when? 
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Prediction using time series data is important for the future management plan of 
LULC, and it is frequently employed as a diverse appropriateness measure as a proxy of 
human influence on land change processes [4,10]. Analysis of the historical trends of 
LULC is paramount in modeling future LULC, as past information generally represents a 
good proxy of human influence on land processes [10,11]. To adequately predict future 
scenarios, models should be calibrated and validated, and various techniques are availa-
ble in the literature. Geometric rectifying, supervised and unsupervised classification 
methods, post-classification method, GIS spatial analysis, Markov chain analysis, the ER-
DAS IMAGINE model, and the Land Change Modeler (LCM) were used to analyze his-
torical LULC change and predict future changes [12–15]. 

The Land Change Modeler is a model used to evaluate the changing trend from one 
land use category to another and has been found to provide high spatial and temporal 
resolution with a reduced computational effort [16,17]. The integrated CA-Markov model 
is a robust technique in terms of quantity estimation as well as spatial and temporal dy-
namic modeling of LULC because remote sensing data and GIS can be proficiently incor-
porated. The integrated CA-Markov model can translate the results of the Markov chain 
model to spatially explicit results [18]. The Markov model has been widely adopted in 
ecological studies, and its applicability in LULC change modeling is promising because of 
its ability to quantify not only the states of conversion between land-use types but also the 
relative rate of conversion [19,20]. The CA-Markov model is a watershed-scale model that 
combines the link between LULC and drivers to physically model spatial changes [21] and 
anticipate geographical and temporal patterns with high simulation accuracy and is there-
fore well suited to long-term forecasting. Understanding the forms and the driving forces 
of LULC change is essential for providing rational and specific planning of viable land 
management [22]. Quantitative studies of the relationship between driving forces [23] and 
LULC are primarily undertaken using mathematical approaches and statistical methods 
such as principal component analyses or traditional correlation analysis [24]. System dy-
namics models, prediction models, Markov models, regression statistical models, and 
other models are also largely adopted in evaluating and predicting LULC changes at the 
watershed scale. 

Few studies of LULC change provide a combined assessment of the driving forces 
and consequences of such variations, particularly in developing countries such as Bang-
ladesh [25,26] and India [27] and in Africa [28,29]. Recent research focused on sub-Saharan 
Africa, showing a decrease in land covered by the natural environment, mostly due to 
human activities such as population growth, economic development, and globalization 
[30–32]. However, only recently have scholars been looking to explicitly connect such var-
iations with nature-related aspects such as the loss of ecosystem services [33–36], eventu-
ally providing policy implications and management strategies. Looking at past and pre-
dicted LULC changes in a small sub-basin, the present study will contribute to the discus-
sion, providing some evidence on LULC trends that are typical of the sub-Saharan areas. 

Indeed, in this region, the dynamics of LULC intensities and rates are changing and 
highly associated with overexploitation of natural resources, while the process is gov-
erned by climate (long dry periods followed by heavy precipitation), soil characteristics 
(thin layer of topsoil, silty texture, or low organic matter content), vegetation (barren land), 
topography (steep-slope), and natural hazards (forest fire, landslides) [17,37]. During the last 
decades, the human pressure has increased significantly, therefore the process has been accel-
erated considerably. In Ethiopia, LULC changes are generally persistent events where agricul-
tural activities and settlements are dominant in the rural landscape [38–41]. For example, 
Tadese et al. [4] reported that agricultural fields and settlements increased by around 17% and 
3%, respectively, from 1987 to 2017, while forested land decreased by 78%. 

Focusing on the Fincha River sub-basin in Ethiopia, this research aims to: (i) under-
stand the historical LULC changes over the past three decades (1989–2019); (ii) predict 
possible LULC patterns in the future three decades (2030–2050). The objectives of the pa-
per will be tackled by combining satellite imagery (Landsat dataset) and modeling (LCM), 
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using field evidence such as photos and information from local farmers to support the 
study. The study area and the methods used will be described in Section 2, while the re-
sults are presented and discussed in Section 3. In Section 4, the results are then discussed 
in light of actual policies on land management, showing the current limitations and pos-
sible future directions. The main outcomes of the study and its limitations are summarized 
in Section 5. 

2. Materials and Methods 
2.1. Study Area 

The Fincha sub-basin is located in Ethiopia, Oromiyaa regional state, Horroo Gudu-
ruu Wallaggaa, in the Upper Blue Nile basin (UBNB), between latitudes 9°9′53′′ N to 
10°1′00′′ N and longitudes 37°00′25′′ E to 37°33′17′′ E, at around 300 km from Addis Ababa 
(Figure 1b). The watershed is bounded to the south by the Great Gibe River basin, on the 
north by the Abbay River basin, on the west by the Didessa sub-basin, and on the east by 
the Guder sub-basin. The overall study area covers about 3781 km2, containing three sub-ba-
sins, namely the Fincha, Amerti, and Neshe. The altitude of this sub-basin spans from around 
970 m asl in the northern lowlands to more than 3200 m asl in the southern part (Figure 1c). A 
detailed description of the study area is reported in the recent work of Kenea et al. [7]. 

 
Figure 1. (a) Map of Africa with Ethiopia highlighted; (b) map of Ethiopia showing ground eleva-
tion; (c) Digital Elevation Model of the Fincha sub-basin and location of the main reservoirs in the 
Fincha sub-basin. The map was adapted from [7]. 

Four main seasons characterize the region: Summer, from June to August, with heavy 
rainfalls; Autumn from September to November (called harvest season); Winter, from De-
cember to February (the dry season with frost in the morning, especially in January); 
Spring, from March to May (occasional showers and the hottest season). The annual rain-
fall in the study area ranges between 1367 and 1842 mm with the minimum rainfall occurring 
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in the northern lowlands and maximum rainfall greater than 1500 mm in the southern and 
western highlands. June to September is the main rainy season of the catchment, with an av-
erage of 1604 mm and maximum rainfall between July and August. 

Natural resources, such as the Fincha, Amarti, and Nashee lakes (see Figure 1c), con-
tribute to the national economy by generating hydroelectric power but are also used for 
irrigating large fields devoted to sugar cane. The area is of interest for national and inter-
national hydro-politics due to its downstream connection to the Nile basin and its intense 
agriculture. 

2.2. Dataset 
The study was performed using freely available satellite imagery and a Digital Ele-

vation Model (DEM). The latter, having a resolution of 30 m and referring to 2019, was 
acquired from the GIS and Remote Sensing Department, Ministry of Water, Irrigation and 
Energy of Ethiopia [42]. 

Landsat-5 TM (L5, for the years 1989 and 2004) and Landsat-8 OLI-TIRS (L8, for the 
year 2019) data were downloaded from the United States Geological Survey (USGS) web-
site (earthexplorer.usgs.gov). As the Landsat-5 mission started in March 1984, it was not 
possible to acquire the images every 10 years, so the first reference year was set to 1989. 
The images referred to January, when there is a clear sky corresponding to the dry season, 
and were atmospherically corrected via QGIS (qgis.org). To cover the whole watershed 
area, a composite of Landsat images from different paths/rows was created, ensuring that 
the images refer to the same season (Table 1). 

Table 1. Details of the Landsat images that were analyzed in the study. 

Satellite Year Acquisition Date Path/Row Spatial Resolution 
Landsat 5 TM 1989 January 4 169/53, 169/54 30 m 

  January 11 170/53 30 m 
Landsat 5 TM 2004 January 11 170/53 30 m 

  January 15 169/53, 169/54 30 m 
Landsat 8 OIL 2019 January 14 170/53 30 m 

  January 23 169/53, 169/54 30 m 

Field surveys have been conducted to assist the LULC classification of the satellite 
images. In addition, key informant interviews (KII) and focal group discussions were per-
formed to obtain socio-economic support data, as this is paramount to understanding how 
locals interact with the environment [39–45]. KII were conducted with elders, as they have 
known the area for at least 30 years and have good knowledge of past LULC changes. 
Focal Group Discussions (FGD) were conducted with experts from zonal and district of-
fices of agriculture; natural resources management; environment and climatic change; 
land use administration, and with local people’s representatives. Ground truth data were 
collected using GPS and digital cameras to evaluate the current LULC. 

Open-ended questions about LULC’s significant changes in the study area, the con-
nection between the biophysical environment, institution, socioeconomic activity, and de-
mography were utilized during both KII and FGD. To learn more from a management 
point of view, assess the efforts made towards resource management, and identify obsta-
cles, discussions on the practices and regulations that affect land management and policies 
in the area were held. The topic of land degradation and the most urgent problems that 
need solutions were also covered. The major goals of the discussion and interviews were 
to gather enough information on the historical and present trends of LULC changes, iden-
tify their fundamental causes, and assess their effects on regional socio-economic life and 
the environment. In detail, farmers were asked to describe the areas of the landscape that 
have altered and to recognize the reasons behind those changes. Moreover, they were 
questioned on the effects of the modifications to their way of life, their surroundings, and 
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their working environment. In addition, farmers were asked to describe how their socio-
economic activity affects the change in land usage. 

Based on a checklist created in advance to assess the situation in the watershed, field 
observations were conducted, and images of significant sites were obtained. 

2.3. Land Use Land Cover Classification of Historical Data 
To map LULC, satellite images should be classified, assigning predefined LULC clas-

ses to some pixels. As pointed out by Jemberie et al. [44], this phase could be affected by 
various factors such as classification methods, algorithms, collecting of training sites, and 
the quality (correctness) of the classification should be assessed via field evidence [46,47]. 

The study was performed by classifying three reference years (1989, 2004, and 2019) 
and considering six LULC classes. The selection of these classes was performed based on 
past studies [7], field evidence, and information coming from local farmers and experts, 
as well as the personal considerations of the authors. Based on this, the Fincha sub-basin 
was classified into six classes, namely waterbody, built-up (urban and rural settlement), 
agriculture, forest (dense forest and sparse/desert forest), grass, and swamps (Table 2). 

Table 2. Land Use Land Cover classes and their description. 

LULC Classes Description 
Waterbody area completely covered by waters such as lakes, rivers, and ponds  

Built-up 
area covered by urban and rural settlements, roads, industries, 
infrastructures 

Agriculture area covered by annual and perennial crops 
Forest area covered by evergreen forest 
Shrub area with trees that are not evergreen during the dry season 
Grass/Swamp area covered with grasses used for grazing, and sugarcane plantations 

In the process of classification, it is difficult to differentiate some LULC classes’ spec-
tral properties from other classes. For instance, sugar cane, currently planted for the Fin-
cha sugar factory, and grass; urban and rural settlements, roads, industries, and infra-
structures have the same properties. This happens because the spectral properties of some 
LULC classes appear identical to others. To simplify the complexity and reduce the num-
ber of LULC classes, some related LULC classes were merged to form one class. For ex-
ample, urban and rural settlements, roads, industries, and infrastructures were aggre-
gated as built-up, while grass, swamps, and land that is covered by sugar cane, were com-
monly named grass/swamp. 

Following ample literature on this topic e.g., [46–50], the maximum likelihood super-
vised classification method was applied via ArcGIS by creating training sites. For the L8 
image of 2019, such training sites were defined using 100 ground truth points, while, for 
the two older L5 images, training signature sites were defined via unsupervised classifi-
cation, ancillary data (Google Earth and Copernicus data), and KII information and liter-
ature data [7]. To improve image quality, quality assessments were used by taking a total 
of 50 ground truth points (20 agriculture, 5 waterbody, 5 built-up, 10 forest, 5 shrub, and 
5 grass/swamps). The points were uniformly distributed across the watershed to guaran-
tee a proper classification. 

To quantitatively assess the accuracy, statistical methods such as overall accuracy 
and kappa value were applied. Based on this, random sampling data were prepared to 
check the overall accuracy OA and to determine the kappa coefficient K. Comparing the 
total corrected samples TCS and the total samples TS, OA provides an idea of how many 
sites are correctly classified (Equation (1)), and ranges from 0 (corrected samples) to 1 
(very accurate classification). 
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𝑂𝐴 =
𝑇𝐶𝑆

𝑇𝑆
 (1) 

The kappa coefficient K (Equation (2)) is generated from a statistical test and de-
scribes the accuracy of a classification compared to a random classification [51,52]. Its 
value varies between 0 and 1, where 0 indicates a total accidental classification, while 1 
indicates a very accurate classification. According to Gidey et al. [53], good classifications 
have K > 0.8, while bad classifications have K < 0.4. 

𝐾 =
[𝑇𝑆 ∗ 𝑇𝐶𝑆 − ∑(𝐶𝑜𝑙𝑢𝑚𝑛𝑇𝑜𝑡𝑎𝑙 ∗ 𝑅𝑜𝑤𝑇𝑜𝑡𝑎𝑙)]

𝑇𝑆 − ∑(𝐶𝑜𝑙𝑢𝑚𝑛𝑇𝑜𝑡𝑎𝑙 ∗ 𝑅𝑜𝑤𝑇𝑜𝑡𝑎𝑙)
 (2) 

where the matrix columns indicate the correspondence between ground truth data and 
the pixel location, while the matrix rows indicate to which class the is pixel assigned. 

2.4. Prediction of Future LULC and Associated Driving Forces 
To manage natural resources (biodiversity) influences, and to analyze and forecast 

spatial LULC changes, the Land Change Modeler (LCM) in TerrSet (formerly known as 
IDRISI) software was developed [54,55]. LCM is an ArcGIS-integrated suite of tools for 
the assessment of future LULC changes, detecting gains and losses, net change, persis-
tence, and identification of transitions between LULC classes [56]. To map future LULC 
scenarios, LCM utilizes historical LULC maps and a series of driving forces (Table 3). The 
Markov chain projection is performed by creating matrixes to estimate the transition prob-
ability and the area of each LULC class for future dates [57,58]. 

In this study, LCM was applied to forecast the future LULC in three scenarios (2030, 
2040, 2050), via a few main steps: (i) analysis of historical LULC maps (1989, 2004, and 
2019) and associated changes, (ii) creation of transition probability matrixes, (iii) model 
validation, iv) prediction of future LULC maps, accounting for possible driving forces. In 
this work, we define the probability transitional matrix as a matrix showing the transfer 
direction of LULC types from one category to other categories in a given year [10]. 

In LCM, there are two options for modeling algorithms that are used to model the 
transition variables: logistic regression and Multi-Layer Perceptron (MLP) neural network 
[59,60]. MLP uses minimal parameters, is more easily approachable, and has been exten-
sively enhanced to offer an automatic mode that requires no user intervention. Therefore, 
in the present study, the MLP neural network has been employed. 

To evaluate the capability of LCM in predicting future LULC, a predicted map of 
2019 was created based on 1989 and 2004 LULC, and then compared with the actual 2019 
map. To evaluate the quality of the 2019 predicted map against the 2019 reference map, 
the TerrSet validation module was used [61], mimicking the approach proposed in similar 
studies [62]. In TerrSet, two tools are available to assess the fit of the model to the sample 
data. First, the cross-validation tool iteratively removes a sample data point and interpo-
lates a new value for the location. A table is produced to show the difference between the 
predicted attributes and the known attributes at those locations. Second, a variance image 
is produced that shows the spatial variation of uncertainty as a result of the fitted model. The 
variance image provides information to assist in identifying the problem areas where the re-
lationship between the fitted model and the sample data points is poor [61]. 

Kappa indices, such as kappa for no information (Kno), kappa for location (Klocation), 
and kappa standards (Kstandards)l are used to identify potential errors [2,63,64]. Kappa 
values vary between 0 and 1, with values >0.8 meaning an almost perfect agreement. In 
detail, Kstandards is an index of agreement that attempts to account for the expected agree-
ment due to random spatial reallocation of the categories in the comparison map; Kno is 
identical to Kstandards if both the quantity and allocation of categories in the comparison 
map are selected randomly; Klocation represents the extent to which the maps agree in 
terms of location of each LULC category. 
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To corroborate the study outcomes, a series of statistics were considered [65]: agree-
ment due to chance (agreement chance), agreement due to quantity (agreement quantity), 
agreement due to the location at the grid cell level (agreement grid cell), disagreement 
due to the location at the grid cell level (disagree grid cell), and disagreement due to quan-
tity (disagree quantity) were calculated to indicate how well the comparison map agrees 
with the reference map [40]. 

Driving forces are the factors that affect LULC changes at the local scale, and there-
fore they should be locally investigated and addressed [8,66-68]. The driving variables 
(Table 3) were selected based on the actual literature and past studies, selecting the most 
important. In fact, there are still some other factors that are difficult to quantify, such as 
the population in the area. In simulating future LULC, LCM differentiates between static 
and dynamic variables, where the first are stable in time while the latter change tempo-
rally, and are therefore recalculated at each time step. 

Table 3. Driving variables that were considered in the LCM simulations. 

Driving Force Type 
Distance from disturbance Dynamic 

Distance from stream Dynamic 
Distance from urban Dynamic 
Distance from road Dynamic 
Evidence likelihood Dynamic 

Elevation Static 
Slope Static 

The type of land cover is strongly correlated with anthropogenic disturbance, for ex-
ample, the local population can access resources more conveniently while changing the 
land use because of the distance from the stream. The ease with which land can transition 
to urban usage depends on the distance from urban centers, which can be a highly pow-
erful force for change. One of the key factors in drawing more urban uses and expansion 
is the distance from roads, which determines accessibility. The primary topographic com-
ponent known to affect LULC change is elevation. In addition, it seems reasonable to use 
the evidence likelihood, a quantitative variable that reflects the likelihood of discovering 
change between agricultural land and all other land classes at the relevant pixel, given 
that the annual pace of agricultural expansion was considerable. The watershed slope in-
fluences the spatial trends of land cover change, leading one to assume that changes in 
land use are highly influenced by the terrain slope: gains in urban land are primarily con-
centrated on relatively flat slopes and deforestation declines as the slope’s gradient in-
creases. 

It is worth remembering that the selection of variables and indicators, to a certain 
extent, may cause some differences in the simulation results or model parameters, which 
will have effects on the prediction of LULC change. For example, for distance from the road, 
if the forest is very close to the road, the rate of forest clearance (deforestation) is very high, 
and vice versa, i.e., if there is road availability, the people living nearby can clear the forest for 
agriculture or other purposes. This is also applicable to other driving factors. 

The Cramer’s V Coefficient (CVC), sometimes called Cramer’s V strategy [66], was 
used to assess the correlations between the various driving variables. In statistics, CVC is 
a measure of association between two categorical variables, giving a value between 0 and 
+1, and it is based on Pearson’s chi-squared test [67]. According to Eastman [68], variables 
that have a Cramer’s V > 0.40 are good and these drivers will have the greatest impact on 
the modification process and its spatial distribution [69–71]. One has to remember that 
CVC does not recognize interaction effects between the explanatory variables and land 
cover categories, while it only helps to determine whether to include a specific variable as 
a driving factor of LULC changes. 
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2.5. LULC Detection 
LULC changes were detected via a few parameters: magnitude of change C, rate of 

change R, and change percentage P, using the following equations [2,72,73]: 

𝐶 = 𝐿 − 𝐵  (3) 

𝑅 =
𝐿 − 𝐵

𝑇
 (4) 

𝑃 =
𝐿 − 𝐵

𝐵
∗ 100 (5) 

where i represents the LULC class, Bi and Li are the areas [ha] with the earliest and latter 
LULC, respectively. The period between Bi and Li is T [year] and determines the rate of 
change Ri. Positive values of Pi mean an increase in a specific LULC in the study period T 
(Li > Bi, Ri > 0), while negative values mean a decrease (Li < Bi, Ri < 0). 

3. Results 
3.1. Historical LULC Maps 

Three reference years (1989, 2004, and 2019) were considered to evaluate historical 
LULC via a maximum likelihood supervised classification (Figure 2). As reported in Table 
4, in 1989 most of the study area was covered by agriculture (32%), grass/swamps (24%), 
and shrub (22%), with only a very minor part occupied by settlements (0.4%). Similar 
LULC was observed in 2004, with agriculture (34%), grass/swamp (24%), and shrub (18%) 
being the most dominant LULC classes and just a small increase in the area covered by 
built-up (1%). In 2019, the class distribution remained similar, with an increase in the built-
up area (1.7%). In summary, in the past, agriculture was always the most dominant LULC 
class in the Fincha watershed, followed by grass/swamp and shrub. 

 
Figure 2. LULC maps of the Fincha watershed in the three reference years. 

The results reported in Figure 2 are in agreement with Dibaba et al. [39], who pointed 
out that the Fincha watershed is characterized by an expansion of agriculture and built-
up LULC, resulting in a decline of natural vegetation. 
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Table 4. Details of LULC area of the Fincha watershed in the three reference years. 

LULC Type 
1989 2004 2019 

[ha] [%] [ha] [%] [ha] [%] 
Waterbody 15,744.08 5.24 19,928.15 6.63 20,860.55 6.94 

Grass/Swamp 73,371.25 24.42 73,423.56 24.43 73570.49 24.48 
Built-up 1252.00 0.42 2945.40 0.98 5007.75 1.67 

Agriculture 96,966.71 32.27 103,033.14 34.29 115,446.96 38.42 
Forest 48,373.16 16.10 46,569.29 15.50 29,213.93 9.72 
Shrub 64,790.11 21.56 54,597.77 18.17 56,397.63 18.77 
Total 30,0497.31 100.00 30,0497.31 100.00 300,497.31 100.00 

3.2. Accuracy Assessment for Historical LULC  
The overall accuracies OA and kappa values K were 82.80%, 85.57%, and 89.82% and 

80.51%, 82.54%, and 87.84%, respectively, for the three reference years (Table 5 and Ap-
pendix Tables A1–A3). These results indicate that the accuracy of the classifications im-
proved from 1989 to 2019, also thanks to the higher quality of the satellite data used. 

The accuracy of a map could be different for users and map developers. The user’s 
accuracy indicates how often a specified class on the map is present on the ground, while 
the producer’s (mapmaker) accuracy shows the probability that a certain land cover is 
classified according to field evidence. 

Table 5. LULC classification accuracy for 1989, 2004, and 2019. 

Year LULC Class Producer Accuracy User Accuracy OA [%] K [%] 

 
 

1989 

Waterbody 92.86 89.66 
 
 
 

82.80 

 
 
 

80.51 

Grass/Swamp 76.78 86.00 
Built-up 84.61 84.62 

Agriculture 82.69 74.14 
Forest 85.71 87.80 
Shrub 80.43 80.43 

 
 

2004 

Waterbody 97.06 91.67 
 
 
 

85.57 

 
 
 

82.54 

Grass/Swamp 75.14 84.13 
Built-up 83.87 86.67 

Agriculture 88.41 81.33 
Forest 89.80 93.62 
Shrub 84.62 81.48 

 
 

2019 

Waterbody 94.44 85.00 
 
 
 

89.82 

 
 
 

87.84 

Grass/Swamp 86.30 87.50 
Built-up 97.14 91.89 

Agriculture 90.45 95.00 
Forest 89.29 92.59 
Shrub 86.67 85.25 

Hailu et al. [40] defined the kappa statistics <40%, 40–75%, and >75% as poor, good, 
and excellent, respectively. Using this approach, from Table 5 one can notice that the sta-
tistics of the Fincha watershed were excellent, meaning a very good agreement between 
the classification maps and the reference information. 
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3.3. Historical LULC Changes and Transition Probability Matrix 
Comparing the three reference years, it is possible to observe a considerable reduc-

tion in the area covered by forest and shrubs during the observation period (Table 6). In 
detail, yearly, around 639 ha of forest and 280 ha of shrubs were cleared in favor of other 
LULC classes. As anticipated, human pressure contributed to changing the environment, 
as recognizable by the increase in areas covered by agricultural fields, built-up, 
grass/swamp, and waterbodies, which yearly gained around 616 ha, 125 ha, 7 ha, and 171 
ha, respectively. Waterbodies increased significantly during the last 30 years, mainly be-
cause of human intervention. In fact, in 1989, the Amerti reservoir, one of the reservoirs 
located in the Fincha watershed, was not filled, while it was filled in 2004. In 2019, another 
dam was constructed over the Nashe River [2]. The study pointed out small changes in 
terms of grass/swamps, at least in terms of net variation. In fact, as is visible from Figure 
3 and Table 6, the majority of the Fincha watershed was affected by variations in LULC 
that include this class. 

The results presented here are in line with the existing literature on LULC in the Fin-
cha watershed [17,39]. All the authors agreed that the shift from natural LULC towards 
more anthropized environments could threaten biodiversity and decrease the total values 
of ecosystem services [74]. 

Table 6. Historical LULC changes in the Fincha watershed. 

 1989–2004 2004–2019 1989–2019 

LULC Class Area [ha] 
Area 
[%] 

Change 
[ha/Year] 

Area [ha] 
Area 
[%] 

Change 
[ha/Year] 

Area [ha] 
Area 
[%] 

Change 
[ha/Year] 

Agriculture 6067.5 6.3 404.5 12,412.7 12.1 827.5 18,480.3 19.06 616.0
Built-up 1693.4 135.3 112.9 2062.3 70.0 137.5 3755.8 300.0 125.2
Forest −1803.9 −3.7 −120.3 −17,355.4 −37.3 −1157.0 −19,159.2 −39.6 −638.6
Grass/Swamps 52.3 0.1 3.5 146.9 0.2 9.8 199.2 0.3 6.6
Shrub −10,192.3 −15.7 −679.5 1799.9 3.3 120.0 −8392.5 −13.0 −279.8
Waterbody 4183.0 26.6 278.9 933.4 4.7 62.2 5116.3 32.5 170.5

 
Figure 3. LULC changes during the observed period: (a) from 1989 to 2004, (b) from 2004 to 2019, 
(c) from 1989 to 2019. 
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It is worth recalling that the probability transitional matrix is the transfer direction of 
LULC types from one category to other categories in the given year [10]. The nature 
change can be distinguished from the Markov transitional matrices for historical LULC 
over the period (1989–2004 and 2004–2019). The nature of change can be distinguished 
from the trend as depicted in the Markov transition matrices over the period between 1989 
and 2019. The diagonal values represent the probability that each land cover class remains 
persistent (constant) from earlier to later years. The other values represent a given land 
cover land class undertaking transition to another land cover land class. 

Between 1989 and 2004, the highest and the lowest persistent LULC classes were wa-
terbody and grass/swamps, characterized by a percentage of stability of 91% and 42%, 
respectively. During the period 2004–2019, the most and the least stable LULC class cate-
gories were waterbody and grass/swamp, which accounted for around 80% and 31%, re-
spectively. Over the entire temporal horizon observed (1989 to 2019), a large part of the 
forest was converted to agriculture and grass/swamps (see Tables A4–A6 for the detailed 
LULC transition matrixes). 

According to information obtained during field investigations (KII and field evi-
dence), waterbodies increased after the construction of the Nashe Dam. During the con-
struction of the reservoir, many farmers along and downstream of the Nashe stream were 
displaced to other agricultural places or towns. The abandonment of fields and the need 
for resettling in other areas caused a decrease in forests and an increase in built-up areas. 
In addition, poorly planned and long-term urban development and agricultural manage-
ment strategies contribute to negatively affecting natural resources, causing a significant 
decline in the last decades (Figure 3). 

3.4. Model Validation 
The LULC map of 2019, predicted from the 1989 and 2004 data, has been validated 

with the classified LULC map of the very same year (Table 7), showing that the LCM 
model can effectively forecast LULC changes. 

Table 7. LULC classes in 2019: projected vs classified values. 

  LCM Projected LULC Classified LULC 
LULC Class Area [ha] Percentage [%] Area [ha] Percentage [%] 

Waterbody 19942.55 6.64 20861.54 6.94 
Grass/swamp 76883.19 25.58 73570.84 24.48 
Built-up 3007.232 1.00 5007.76 1.67 
Agriculture 108578.3 36.13 115449.74 38.42 
Forest 48717.03 16.21 29214.18 9.72 
Shrub 43377.06 14.43 56401.33 18.77 
Total 300505.4 100.00 300505.40 100.00 

The capability of LCM in predicting the 2019 LULC was assessed via K-indexes and 
other statistics in TerrSet (Table 8). All the values of the computed K-indexes (>80%) indi-
cate good agreement between the projected and the actual LULC map [2]. The Disagree 
Quantity (0.0742) is greater than the Disagree Gridcell (0.0268), indicating that the model 
has a higher ability to predict the LULC in location (spatial) than in quantity for the Fincha 
watershed.  
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Table 8. Results of using the Multi-Layer Perceptron Markov Chain (MLP_MC) model for predict-
ing LULC in 2019. 

Statistics Value 
Kno 0.8743
Klocation 0.8864
Kstandards 0.8285
Agreement Chance 0.1667
Agreement Quantity 0.3252
Agreement Gridcell 0.4071
Disagreement Gridcell 0.0268
Disagreement Quantity 0.0742

3.5. Future LULC 
To forecast future LULC changes, it is necessary to account for the most important 

driving variables (Table 9). As shown, all variables but the slope should be included in 
LCM, as the Cramer’s V value of the slope is very low.  

Table 9. Cramer’s V values of driving forces. 

Driving Force Cramer’s V Value 
Distance from disturbance 0.2782 
Distance from stream 0.3240 
Distance from urban 0.1548 
Distance from road 0.2736 
Evidence likelihood 0.4212 
Elevation 0.2949 
Slope 0.0101 

The LULC maps for 2030, 2040, and 2050 were created via LCM, using the historical 
maps as a basis (Figure 4). As observed in the past, an increase in areas covered by agri-
culture, built-up, grass/swamp, and waterbody is forecast, while a drastic decrease in for-
est and shrub should be expected, with a slower rate of deforestation in the decade 2040–
2050 (Figure 5 and Table 10). The decrease in natural forests, in combination with climate 
change, is likely to negatively affect the hydrological cycle of the whole Fincha sub-basin, 
as already shown by preliminary studies [7]. Moreover, the lower availability of wood 
(mostly timber) for construction will also impact the local economy. 

Table 10. Future LULC changes in the Fincha watershed. 

 2019–2030 2030–2040 2040–2050 2019–2050 
LULCC Class [ha] [%] [ha] [%] [ha] [%] [ha] [%] 

Agriculture 7722.2 6.7 2795.1 2.3 1619 1.3 12136.3 10.5
Built-up 358.8 7.2 420.7 7.8 204.5 3.5 984 19.6
Forest −13585.1 −46.5 −4374.9 −28.0 −1808.4 −16.1 −19768.4 −67.7
Grass/swamp 12589 17.1 1672.5 1.9 −235.5 −0.3 14026 19.1
Shrub −9287.6 −16.5 −1309.8 −2.8 −392.8 −0.9 −10990.2 −19.5
Waterbody 2204.5 10.6 796.3 3.5 613.1 2.6 3613.9 17.3
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Figure 4. Predicted LULC of the Fincha watershed for the next three decades. 

 
Figure 5. Observed (1989, 2004, 2019) and simulated (2030, 2040, 2050) LULC in the Fincha watershed. 

In terms of transition probability (Tables A7–A9), areas covered by forest and shrubs 
are more prone to be converted into agricultural land, while built-up areas should be ex-
pected on the grass/swamp zones. This indicates that, in the future, agriculture and built-
up zones will expand at a high rate since the other LULC classes will be converted to them. 
Conversely, forests and shrubs will decline at a significant rate. 

4. Discussion and Policy Implications 
As suggested in the review carried out by Regasa et al. [3], most of the studies of 

LULC in Ethiopia are on a local scale, analyzing how past variations affected water re-
sources and socio-economic conditions in the region. This was mostly connected with the 
difficulty in obtaining proper field evidence (e.g., photos, description of LULC changes 
observed by local inhabitants). Therefore, very few works tried to forecast future LULC 
changes at the watershed scale, eventually providing new insights that can be useful for 
developing future basin-wide management strategies [74]. The present study was devel-
oped to fill this gap, estimating the Fincha sub-basin LULC for the next three decades 
(2030, 2040, and 2050) based on past information (LULC in 1989, 2004, and 2019), to infer 
trends to be used in multiple ways. The LCM results point out that, in the coming decades, 
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significant changes in LULC should be expected, mostly because of the ever-increasing 
pressure of humans in need of more land for settlements and cropland. Indeed, the local 
population is growing, and more natural resources are needed to satisfy their needs for 
food, energy, and construction materials [2,7,75-77]. Apart from the direct consequences 
on the environment, the ongoing deforestation in the Fincha sub-basin is also causing an 
intensification of soil erosion, triggering sediment siltation in the various reservoirs lo-
cated in the region, eventually leading to a decrease in reservoir efficiency in terms of water 
availability and hydropower production. Therefore, future studies should integrate the 
analysis of LULC changes with the simulation of soil erosion and sediment transport, to 
help local authorities better plan adequate management strategies to reduce siltation and 
guarantee the sustainability of local water resources, biodiversity, and socio-economy. 

The reduction in forest cover pointed out in the present study compares well with 
similar research performed at the Ethiopian level [2,7,17,28,39,74,78–80]. This trend was 
historically caused by the political situation, as, during the 1970s, the military regime pro-
claimed the nationalization of all rural land, abolishing private property [28,75,81,82]. 
However, the state was unable to adequately manage the land, and the majority of the 
forest was converted to settlements, agricultural land, and highly degraded areas because 
of the low level of land management practices. A similar approach has been taken since, 
but nowadays the land is property of the nations, nationalities, and people of Ethiopia 
according to Article 40(3) of the constitution endorsed in 1994 [83]. Because of the present 
policies, an increasing number of farmers are pushing for the expansion of their fields at 
the expense of the natural environment, in search of better socio-economic conditions 
driven by market-oriented choices [84–86]. 

As pointed out by Tolessa et al. [86], the reduction in land coverage and ecosystem 
services connected to natural resources such as forests are strictly connected with the pre-
sent policy. As also shown in past investigation [87] and in the present work, the trend of 
decreasing forests to provide room for agriculture is very likely to continue in the future, 
also following the Ethiopian legislation. In fact, in Ethiopia, farmers have more legal rights 
over their land if they convert forest land into farmland, as the law stipulates natural forests 
as the property of the government. This forces farmers (legally or illegally) to convert forests 
into agricultural areas, as this guarantees them the use of the land for an indefinite period. 
As in other Ethiopian watersheds, the Fincha sub-basin was also affected by the 1975 land 
reform as, after it, grazing lands and forests were freely accessed for various uses. Tefera 
and Sterk [88] showed that, of the land potentially available for community use, cropland 
covered 77% of the whole region in 2001, indicating that further expansion cannot accom-
modate new farm families. This corroborates the hypotheses made in the present work, 
where future LULC was simulated assuming a trend similar to recent decades. 

As with other Ethiopian basins [89], in the Fincha sub-basin, population pressure is 
a top driver of LULC change. To address this, in addition to policy changes, the local com-
munity should also start reforestation of the degraded forest area to assure the sustaina-
bility of the environment in the future, as also stressed by Senbeta [90]. 

To provide both decision-makers and local stakeholders such as farmers with more 
evidence on the importance of safeguarding water resources and ecosystem services at 
the basin scale, additional studies are needed, also taking advantage of information re-
motely acquired, such as satellite imagery, or considering different simulation algorithms 
and expanding the dataset of field evidence. Indeed, acquiring ground truth data and in-
formation from the local population, paramount for assuring a proper calibration/valida-
tion of the model, in locations that are hardly reachable or with unstable political situa-
tions such as the Fincha sub-basin, could be very difficult and expensive. 
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5. Conclusions 
The present study investigated the historical LULC (years 1989, 2004, and 2019) in 

the Ethiopian Fincha watershed via a combination of satellite imagery and field support 
data. Based on such analysis, the Land Change Modeller was applied to forecast LULC 
over the next three decades (years 2030, 2040, and 2050). The 2019 LULC map was used 
for validating the LCM approach, comparing the forecast situation with the actual one 
derived from satellite images, indicating that the used Multi-Layer Perceptron (MLP) neu-
ral network of Markov chain (MC) has enough capability to predict future LULC. 

The study results have shown that, over the last thirty years, the forest covering the 
Fincha watershed was mostly converted to agricultural and grass/swamp areas. An in-
crease in zones covered by waterbody and built-up was also observable, mainly connected 
to the increasing human pressure and the construction of new hydropower reservoirs. 
This trend is recognizable not only in the study sub-basin but also in many Ethiopian ba-
sins [3], showing that LULC changes represent a major problem in the country. 

As pointed out by the modeling results, in the future, a similar trend is more than 
probable. Indeed, if management strategies are not changed towards a more sustainable 
approach, also via proper reforms at the national level, an even more significant decrease 
in forest coverage should be expected in favor of new settlement areas and cropland. This 
change could help locals in sustaining their livelihood in the short term, but, in the me-
dium/long term, the reduction in areas covered by forest will contribute to decreasing 
biodiversity and ecosystem services, as well as fostering soil erosion, with detrimental 
consequences such as reservoir siltation. 

It is worth remembering that, to corroborate the results presented here and to reduce 
the uncertainties, additional data should be included in the study, mostly deriving from 
laborious and expensive field investigations. However, due to the current conditions of 
the study area, obtaining such information in the coming months could be very challeng-
ing. On the other hand, the increasing availability of commercial high-resolution satellite 
images could partially help in enlarging the dataset of field evidence, pointing out LULC 
changes happening at a more detailed scale. Therefore, in the future, a deeper analysis of 
satellite information is planned. 
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Appendix A. Accuracy Assessment of Historical LULC 
The accuracy of the historical maps of LULC was assessed separately, showing the 

following results:  

Table A1. Overall accuracy and kappa statistics for 1989. 

LULC Class Waterbody Grass/Swamp Built-Up Agriculture Forest  Shrub Total 
Users Accuracy 

[%] 
Waterbody 26 3 0 0 0 0 29 89.66 
Grass/swamp 1 43 1 3 2 50 86.00 
Built-up 0 1 22 2 1 0 26 84.62 
Agriculture 0 7 3 43 2 3 58 74.14 
Forest  0 0 0 1 36 4 41 87.80 
Shrub 1 2 0 3 3 37 46 80.43 
Total  28 56 26 52 42 46 250  
Producer’s accuracy 92.86 76.78 84.61 82.69 85.71 80.43 82.80 

Table A2. Overall accuracy and kappa statistics for 2004. 

LULC Class Waterbody Grass/Swamp Built-Up Agriculture Forest  Shrub Total Users Accuracy 
[%] 

Waterbody 33 3 0 0 0 0 36 91.67 
Grass/swamp 0 53 1 6 0 3 63 84.13 
Built-up 0 2 26 1 1 0 30 86.67 
Agriculture 0 7 3 61 1 3 75 81.33 
Forest  0 1 0 0 44 2 47 93.62 
Shrub 1 4 1 1 3 44 54 81.48 
Total  34 70 31 69 49 52 305  
Producer’s accuracy 97.06 75.14 83.87 88.41 89.80 84.62 85.57 

Table A3. Overall accuracy and kappa statistics for 2019. 

LULC Class Waterbody Grass/Swamp Built-Up Agriculture Forest  Shrub Total 
Users Accuracy 

[%] 
Waterbody 34 3 0 0 3 0 40 85 
Grass/swamp 2 63 0 4 0 3 72 87.5 
Built-up 0 0 34 1 1 1 37 91.89 
Agriculture 0 2 1 76 0 1 80 95 
Forest 0 1 0 0 50 3 54 92.59 
Shrub 0 4 0 3 2 52 61 85.25 
Total  36 73 35 84 56 60 344  
Producer’s accuracy 94.44 86.30 97.14 90.45 89.29 86.67 89.82 

Appendix B. Transition Matrixes Historical LULC 
Tables A4–A6 summarize the transition matrix between the three reference years. 

Detailed analysis and a discussion of these results are reported in Section 3.3. 

Table A4. Transition area matrix [ha] from 1989 to 2004. 

Land Class 
2004    Percentage of 

Stability (%) Agriculture Built-up Forest Grass/Swamp Shrub Waterbody Total 

19
89

 Agriculture 62112.6 607.9 9025.1 21434.4 3434.4 352.4 96966.7 64.5 
Built-up 514.5 704.0 184.2 258.0 220.0 5.0 1252.0 56.0 
Forest 6325.0 875.4 23355.9 11338.0 4857.3 1621.6 48373.2 48.3 
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Grass/Swamp 24120.9 412.2 10034.8 30765.4 5016.3 3021.9 73371.3 41.9 
Shrub 9956.4 972.9 2872.0 9370.6 41011.7 606.6 64790.1 63.3 
Waterbody 3.8 6.7 1097.3 257.3 58.2 14320.8 15744.1 91.0 

  Total 103033.1 2945.4 46569.3 73423.6 54597.8 19928.2 300497.3  

Table A5. Transition area matrix [ha] from 2004 to 2019. 

Land Class 
2019   Percentage of 

Stability (%) Agriculture Built-up Forest Grass/Swamp Shrub Waterbody Total  

20
04

 

Agriculture 74841.6 1627.9 1405.5 14511.7 10274.4 373.1103034.3 72.6
Built-up 350.0 1024.0 720.3 1208.1 554.4 10.2 2945.4 34.8
Forest 7476.7 1034.5 19066.9 14450.5 2202.5 2338.2 46569.2 40.9
Grass/Swamp 30227.2 979.7 4619.3 22820.6 12648.9 2128.0 73423.5 31.1 
Shrub 2540.9 645.2 1776.3 19004.0 30591.5 39.82 54597.7 56.0
Waterbody 10.6 618.0 1625.6 1575.7 126.0 15972.2 19928.2 80.1 

  Total 115447.0 5007.8 29213.9 73570.5 56397.6 20861.5300498.3

Table A6. Transition area matrix [ha] from 1989 to 2019. 

Land Class 
2019   Percentage of 

Stability (%) Agriculture Built-up Forest Grass/Swamp Shrub Waterbody Total  

19
89

 

Agriculture 71320.09 1517.76 1965.61 13597.53 8041.16 528.00 78.2
Built-up 422.17 77.11 108.22 314.58 322.98 6.92 1251.98 95.7
Forest 7954.91 801.46 17400.68 16309.28 4393.61 1513.6148373.55 52.6
Grass/Swamp 30733.54 1185.15 5318.34 20417.33 11716.12 4002.5773373.05 57.9
Shrub 4998.46 954.23 3678.88 22463.67 31882.18 816.5564793.97 65.8
Waterbody 21.35 472.00 742.95 470.60 43.29 13993.8815744.07 100.0

  Total 115450.52 5007.71 29214.66 73572.99 56399.35 20861.54300506.7
6

Appendix C. Transition Matrices for Future LULC. 
Tables A7–A9 summarize the transition matrix of the forecasted LULC (see Section 3.5). 

Table A7. Transition area matrix [ha] of LULC from 2019 to 2030. 

Land Class 
2030   Percentage of 

Stability (%) Agriculture Built-up Forest Grass/Swamp Shrub Waterbody Total  

20
19

 

Agriculture 90279.1 52.3 35.3 15280.6 9798.9 0.0115446.2 78.2
Built-up 95.3 4789.8 0.00 120.9 1.7 0.0 5007.8 95.7
Forest 3154.1 3.26 15357.8 9425.6 44.7 1228.6 29214.1 52.6
Grass/Swamp 29051.8 508.2 233.7 42631.3 171.8 972.6 73569.3 57.9
Shrub 588.9 13.1 2.0 18701.0 37093.0 3.3 56401.1 65.8
Waterbody 0.00 0.00 0.00 0.00 0.00 20861.5 20861.5 100.0

  Total  123169.2 5366.6 15628.8 86159.5 47110.0 23066.0300499.9
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Table A8. Transition area matrix [ha] of LULC from 2030 to 2040. 

Land Class 
2040  Percentage of 

Stability (%) Agriculture Built-up Forest Grass/Swamp Shrub Waterbody Total 

20
30

 

Agriculture 110334.9 22.5 19.2 6339.8 6268.9 183.9123169.2 89.6
Built-up 47.8 5268.5 0.0 39.6 10.6 0.2 5366.6 98.2
Forest 830.1 0.6 11219.3 3565.6 8.6 4.6 15628.8 71.8
Grass/Swamp 10986.0 467.1 3.6 73678.3 186.5 838.0 86159.5  85.5
Shrub 3530.6 28.5 11.8 4195.6 39320.3 23.2 47110.0 83.5
Waterbody 234.9 0.0 0.0 13.1 5.5 22812.5 23066.0 98.9

  Total  125964.28 5787.3 11253.9 87832.0 45800.2 23862.3300499.9

Table A9. Transition area matrix [ha] of LULC from 2040 to 2050. 

Land Class 
2050   Percentage of 

Stability (%) Agriculture Built-up Forest Grass/Swamp Shrub Waterbody Total  

20
40

 

Agriculture 118408.7 17.5 10.8 3481.5 3838.9 207.0125964.3 94.0
Built-up 28.2 5722.2 0.0 33.8 2.8 0.3 5787.3 98.9
Forest 42.8 0.2 9430.3 1780.3 0.4 0.0 11253.9 83.8
Grass/Swamp 8347.1 242.7 2.4 78766.4 53.6 419.7 87832.0 89.7
Shrub 746.2 9.2 2.1 3521.6 41509.3 11.9 45800.2 90.6
Waterbody 10.3 0.0 0.0 12.9 2.4 23836.6 23862.3 99.9

  Total  127583.3 5991.8 9445.5 87596.5 45407.4 24475.4300499.9
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