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Abstract: Whether China’s economy can maintain sustainable growth has been debated both in China
and internationally, and the most representative critique has been summarized in the “Krugman
Query”. Faced with such doubts, how to achieve a “win-win” for economic growth and environmental
protection has become one of the central objectives of local government work while striving for the
new vision of development. Taking China’s carbon trading pilot policy as an example, and based on
panel data of 30 provincial administrative regions in China from 2001 to 2018, this paper uses the
Data Envelopment Analysis-Malmquist index model and the Propensity Score Matching-Difference
in Difference method to measure the level of green economic growth from two aspects: green
development mode and economic growth effect, and further explore the impact of China’s carbon
trading system on green economic growth. The results show that the implementation of the carbon
trading system promoted both the green development level and economic growth of pilot cities, and
positively affected green total factor productivity, refuting the “Krugman Query”. Finally, the study
puts forward a series of recommendations in strengthening environmental regulation, improving
green technology innovation, and developing low-carbon industries.

Keywords: carbon trading system; green economic growth; data envelopment analysis-Malmquist
index model; propensity score matching-difference in differences method

1. Introduction

Is the source of power for China’s economic growth rate production efficiency im-
provement or factor input accumulation? In recent decades, China’s economy has achieved
rapid growth. Indeed, this has led to increasingly severe challenges associated with envi-
ronmental pollution and sustainable development [1,2]. In academic circles, the ensuing
debate on whether China’s economy could maintain sustained growth was fierce. Amer-
ican economist Paul Krugman proposed that the economic recovery effect induced by
China’s early reform and opening up would be short-lived. He further suggested that
in the long run, the growth model of China’s economy depended on the “Preparation”
of factor accumulation rather than the “Inspiration” productivity improvement yields.
Without effective institutional support, China’s economic growth mode would be diffi-
cult to sustain [3]. Scholars have debated the authenticity and sustainability of China’s
economic growth trying to answer this “Krugman Query”, and achieved certain progress.
Their efforts mainly focused on the following two aspects: First, the contribution of factor
investment to economic growth was assessed. Wu (2013) empirically tested the average
revenue of capital input to economic development by using the Stochastic Frontier Analysis
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(hereinafter abbreviated as “SFA”) and Data Envelopment Analysis (hereinafter abbrevi-
ated as “DEA”) method and found that the contribution of labor input was highest [4].
Based on the non-parametric analysis framework, Dong and Liang (2013) showed that
total factor productivity, labor, and capital contributed about 10.9%, 3.7%, and 85.4% to
economic growth, respectively [5]. Cheng et al. (2019) showed that the contribution rates
of market potential, capital, and labor force to economic growth were 34.55%, 34.86%, and
8.56%, respectively [6]. Second, it evaluated the contribution of total factor productivity
to economic growth. However, these studies did not consider the eco-environmental vari-
ables affecting China’s economic growth, which might lead to certain deviations in the
obtained conclusions.

To achieve sustained economic development and the carbon emission target, China
adopted increasingly strict environmental regulation policies. Moreover, environmental
protection was vigorously strengthened, green development was realized, and efforts were
taken to reverse the negative environmental impacts resulting from economic growth. In
2013, the carbon trading pilot system was implemented in seven provinces and cities,
including Beijing, Tianjin, and Shanghai; then, in 2017, the system was gradually im-
plemented nationwide (Figure 1). Clearly, only considering the efficiency of economic
development is insufficient. Traditional total factor productivity measurements did not con-
sider the resources and environmental problems associated with economic development,
which tended to mislead policymaking. Compared with traditional indicators, Green Total
Factor Productivity (hereinafter abbreviated as “GTFP”) can directly reflect the quality
of economic growth under the constraint of factor input. This became a key factor for
promoting the transformation of green development and achieving economic growth. In
practice, two questions remain: can the pilot policy lead to the improvement of GTFP and
promote the growth of China’s green economy? Furthermore, what is the contribution
of such a carbon trading system to green economic growth? Answers to these questions
will help us to understand objectively China’s green economic growth. Furthermore, such
knowledge can be used to explore the realization of “win-win” strategies benefitting both
ecology and economy.
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Previous studies on carbon emissions and economic growth mainly focused on
pollution reduction effect, decoupling effect, driving factors, and spatial differentiation.
Razzaq et al. (2021) explored the causal relationship between economic growth, carbon
emissions and energy efficiency and the emission reduction effect from the perspective of
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municipal domestic waste recycling [7]. Pei et al. (2021) analyzed the relationship mecha-
nism between carbon footprint and economic growth in the Yangtze River Delta city cluster
based on the decoupling model [8]. Saint et al. (2020) analyzed the linkage between carbon
emissions, electricity consumption, economic growth and globalization and the driving
factors in Turkey [9]. Yan et al. (2014) selected agricultural carbon emission intensity and
agricultural economic intensity as the measures to empirically analyze the inflection point
changes and spatial and temporal divergence of agricultural carbon emissions in China [10].
However, research on whether carbon trading pilot policies can promote green economic
growth is relatively lacking and has not attracted sufficient attention. In addition, the rela-
tionship between carbon emissions and green economic growth is complex, comprehensive,
and dynamic, and can change due to changes in time and space, so a hybrid approach is
needed to systematically and deeply explore the influence path and mechanism of “carbon
emissions-green economic growth”. It can not only provide theoretical support and policy
guidance to promote economic growth, but also promote green and low-carbon transition
in a scientific and orderly manner.

Compared to existing studies, the marginal contributions of this paper are mainly in the
following areas. First, from a research perspective, this paper aims to provide information
on how green development can be achieved and economic growth promoted. For this,
the present paper tests whether China’s current carbon trading mechanism has enabled
a low-carbon economy to achieve a certain degree of transformation. This goal is to offer
a decision-making basis for the comprehensive development of China’s carbon emission
trading mechanism. Second, as far as methods are concerned, different from existing
literature methods for calculating total factor energy efficiency, the present article applies
the sequential DEA Malmquist productivity index to add pollution emission variables
(such as carbon dioxide) to the calculation of total factor productivity. This enables further
exploration of the mechanism between carbon emission and GTFP. This indicator can
simultaneously consider expected output and unexpected output in periods of economic
expansion in the model for calculation, to identify the output of economic development, and
help to measure green economic growth more comprehensively. Moreover, the Propensity
Score Matching-Difference in Differences (hereinafter abbreviated as “PSM-DID”) method
is used to explore how the carbon trading pilot policy affects green economic expansion.
Third, in terms of the measurement indicators of green economic growth, this paper further
examines the influence of carbon trading on efficiency improvement effect and technological
progress effect—the two main sources of GTFP improvement. Green development mode
and economic growth effect are distinguished, and the growth level of green economy is
further comprehensively and systematically measured, to provide theoretical and empirical
support for relevant decisions (Figure 2).
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2. Literature Review

In recent decades, China’s economic aggregate has expanded rapidly, but this eco-
nomic growth was mainly driven by investment and factors, which has caused serious
resource and environmental problems and resulted in low total factor productivity. With
the increasing significant strategic trend of the new normal development, further explo-
rations on the influencing mechanism between environmental regulation and total factor
productivity had become an important power source to accelerate the high-quality and
green development of the economy, which is of great research value. Scholars mainly focus
on the correlation between the two with the following three key focal points.

The first viewpoint namely “Porter hypothesis”. Porter suggested that the design of
reasonable and proper environmental control could stimulate enterprises to achieve inno-
vative technological development. The advantages of the technological innovation yield
could partly counteract or even overcome the costs incurred by environmental regulation.
Consequently, resource allocation can be optimized, and total factor productivity can be
improved, so as to unify the economic benefits with the ecological benefits. Under the
theoretical framework of the Porter Hypothesis, Miyamoto and Takeuchi (2019) proved that
rigorous environmental regulations had active effects on enterprise innovation or R&D in-
vestment [11]. The second view is summarized in the “cost compliance theory”. According
to this theory, under the environmental regulation policy, the production cost of enterprises
increases with increasing pollution control, which limits the output of profit-maximizing
enterprises and leads to a decrease in enterprise productivity. Therefore, at the microcos-
mic level, environmental regulation exerts a restraining impact on economic growth [12].
Lanoie et al. (2001) [13], Chintrakarn (2008) [14], and Naso (2017) [15] refuted the existence
of the Porter hypothesis by empirically testing the correlation between environmental
supervision and total factor productivity and competitiveness. The third view is that the
influence mechanism between the two is uncertain. Relevant studies showed that there
is an “inverted N-type” relationship between the two enterprises [16]. Furthermore, the
Porter hypothesis was verified for different regions, and research showed that the middle
region cannot verify the Porter effect, but the opposite was found for the eastern region [17].

New institutional economics held that the operation effect of economic policy was
closely related to the system. Whether the system applied command-controlled system or
a market-driven system, the key to the effect of emission reduction policy lay in suitable
system design. At present, many studies have concerned the impact between the two.
With specific foci on the micro, meso, and macro levels. Certain research progress has
been made. In the carbon trading system (a specific form of environmental regulation),
promoting the prosperity and development of the green economy is to achieve carbon
emission reduction and economic growth. However, it remains uncertain whether this pilot
policy has an impact on China’s green total factor productivity growth. If so, what was
the underlying mechanism? Analysis of these questions is in favor of further effectively
improving green development in China. In the existing relevant literature, most studies on
the carbon trading system focused on analyses of its emission reduction impact [18–20],
emission reduction targets [21–23], and rationality [24–27]. In measurements of total factor
productivity, labor and capital are mostly assumed as the main variables, while related
variables such as resources and energy are rarely involved [28,29]. In terms of research
methods, empirical methods applied to assess the influence of environmental supervision
on green total factor productivity were regression analysis, Generalized Method of Moment,
or threshold model [30], while research rarely focused on quantitative assessment such as
PSM-DID [31–33]. Using the PSM-DID method to explore the effect of carbon trading on
green total factor productivity can effectively avoid deviations between pilot provinces and
other provinces and can improve the overall accuracy of policy evaluation results.

A carbon trading policy is a market mechanism innovation aimed at reducing CO2
emissions and enhancing the combined economic and environmental benefits. Carbon
Trading Regarding the effectiveness of carbon trading, as of 31 December 2021, the cu-
mulative volume of carbon emission allowances traded in the pilot carbon market was
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483 million tons, with a turnover of 8.622 billion yuan [34]. The pilot carbon market will
continue to parallel the national carbon market and gradually transition smoothly to the
national carbon market. Guo and Sun (2022) empirically tested that pilot emission trading
policies can significantly improve regional economic efficiency [35]. Wang and Wang (2022)
argued that carbon emissions trading policies can increase green product innovation among
exporters within pilot provinces and cities through the moderating effect of product conver-
sion rates [36]. Regarding the drivers of urban economic development, most of the existing
studies analyze the drivers of economic development in terms of natural resources [37],
human capital [38], technological innovation [39], data and information [40], and institu-
tional innovation [41], based on the fact that different economic development periods have
development rules and development methods. Among them, natural resources, scientific
and technological innovation, and institutional innovation are transforming to green de-
velopment, presenting the characteristics of less input, high output, low pollution, and
eliminating the emission of environmental pollutants in the production process as much as
possible, which promotes regional development and economic efficiency [42]. In addition,
cities act as command and control centers of the world economy [43], with some cities
showing a significant increase in command and control functions and a growing position in
the global economy [44,45], and Derudder et al. (2018) and Taylor et al. (2010) emphasized
the role of world city networks in driving urban economic growth [46,47]. Finally, carbon
trading and the realization of high-quality economic development are internally consistent.
The carbon trading mechanism can enhance the internal vitality of high-quality economic
development through innovation drive.

3. Methods and Data Sources
3.1. DEA Malmquist Exponential Model and Its Decomposition

DEA was proposed by Charnes et al.(1978) based on the relative efficiency principle in
reference to the marginal benefit theory and linear programming model [48]. Its principle
is to analyze the effective production frontier of sample input-output as reference standard,
and then compare the decision-making unit with this reference standard to assess whether
the decision-making unit realizes DEA effectiveness. DEA is a non-parametric statistical
estimation method. The DEA model effectively avoids the influence of subjective factors
on parameters, simplifies the model calculation process, and reduces experimental error.

The Malmquist index was not utilized until Rolf et al. (1997) combined it with DEA in
1994, thus making it widely applicable to various efficiency calculations, which is based on
the traditional DEA model and adds a time variable to illustrate the dynamic change value
of efficiency from the beginning to the end of a certain observation period [49]. This is an
extended application of DEA and can be used to measure the characteristics and trends
of the dynamic change of output efficiency in different periods. The Malmquist index
reflects the change in investment efficiency between two adjacent periods. If the index
is larger than 1, the overall efficiency increased, if the index is equal to 1, the efficiency
remained unchanged, and if the index is less than 1, the efficiency decreased. It represents
the ratio between the output of a decision-making unit and the input of all factors. Its
variation is influenced by the two dimensions of the technological progress change index
(hereinafter abbreviated as “TECHCH”) and the technical efficiency change index (here-
inafter abbreviated as “EFFCH”). In the case of fixed scale, changes in technical efficiency
include the pure technical efficiency index (hereinafter abbreviated as “PECH”) and the
scale efficiency index (hereinafter abbreviated as “SECH”). The Malmquist index can be
expressed as: Malmquist index = EFFCH × TECHCH = PECH × SECH × TECHCH. The
specific calculation formula is:
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In Formula (1), i represents the ith decision-making unit, xt
i , yt

i and xt+1
i , yt+1

i repre-
sents the input and output set of t and t + 1, respectively; yt

i is the output vector of the
corresponding decision-making unit; Dt

i
(
xt

i , yt
i
)

represents the technical efficiency of phase

t; Dt+1
i

(
xt+1

i , yt+1
i

)
represents the technical efficiency of phase t + 1.

3.2. The PSM-DID Method

The DID method is widely used in the assessment of policy effects by estimating
the net effect size of a policy on participating individuals. The data can be divided into
treatment and control groups according to whether the carbon trading system is piloted or
not, and the differences between the two groups after the carbon trading pilot are studied
under the condition of parallel trend assumptions, and the matched samples are generated
by the PSM method, and then, the green economic growth effects of the pilot emissions
trading policy are estimated by combining the DID method, thus ensuring the accuracy of
the estimation results to a greater extent.

3.3. Data Sources

Due to the long service life span, certain data would be missing from each index
system, and thus, interpolation was used to supplement the missing data. All data are from
statistical yearbooks of relevant fields in China.

4. Results
4.1. Input-Output Index

When constructing the index system, not only the selection of input and output indica-
tors should be considered, but also the output indicators should be divided into expected
and unexpected output indicators. The input indicators are labor, energy, and capital.

(1) Regarding labor input, according to most scholars’ research on GTFP, the employed
personnel in each province over the years was selected as a substitute index.

(2) Regarding energy input, the regional total energy consumption, converted into stan-
dard coal, was selected as a substitute index.

(3) Regarding the capital stock index, the method commonly used by most scholars is
the perpetual inventory method. The formula is kt+1 = It + (1 − δt) KT, which the
depreciation rate of real capital in period t is represented by δt, the total amount of
fixed capital formation It, and the current capital stock KT. This includes the determi-
nation of base capital stock, current year investment, and economic depreciation rate
δ as well as the selection of the investment commodity price index. In this paper, the
research results of Shan (2008) are applied and the total fixed capital formation is used
to measure It [50]. The fixed asset investment price index of each province is used
to replace the investment price index. A depreciation rate δ of 10.96% is uniformly
applied throughout this paper.

(4) Regarding expected output, the actual GDP of each region is chosen as index.
(5) Regarding undesired output, the CO2 emission index is selected as the undesired

output index of a region.

Currently, no official statistics on China’s domestic carbon emission data are available.
Therefore, the carbon emission data had to be estimated from existing research. This paper
uses IPCC guidelines to calculate carbon emissions and the specific calculation formula is
presented in the following: Ct = ∑Eit × ηI, where Ct represents the total carbon emission
in year T, Eit represents the consumption of the ith energy in year t, and ηI represents the
carbon emission coefficient of the ith energy source.

4.2. Analysis of the Measurement Results of Green Total Factor Productivity

When calculating the Malmquist index, this paper uses three input indexes and two
output indexes. The specific input index is labor input L which denotes the employed
persons of various provinces and cities over the assessed years. Energy input E is the
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total energy consumption of the region using converted standard coal. Capital stock k is
calculated by the perpetual inventory method. Output indicators are measured by real
GDP and carbon dioxide emissions. The specific data used are panel data, calculated by
using the data of specific years of specific provinces and cities. Finally, the GFTP of a
specific province and city was obtained. The results are shown in Table 1 and a total of
540 GFTP indicators are composed of new panel data.

Table 1. TFP index and decomposition of annual TFP changes in 30 Provinces and cities in China
(2001–2018).

Provinces and Cities PECH SECH EFFCH TECHCH

Anhui 17.992 18.041 18.033 1.0155
Beijing 18.002 18.001 18.006 0.9124
Fujian 18.055 18.007 18.062 0.9617
Gansu 18.176 18.143 18.684 1.1751

Guangdong 18.025 17.997 18.019 1.0097
Guangxi 17.988 18.073 18.063 1.0969
Guizhou 18.009 18.849 18.999 1.1477
Hainan 18.022 18.572 18.591 1.0309
Hebei 18.082 18.001 18.088 0.9151
Henan 18.018 18.005 18.05 1.0267

Heilongjiang 18.009 17.987 18.016 1.0329
Hubei 18.000 17.99 17.987 1.2620
Hunan 17.998 18.002 17.997 1.0502

Jilin 17.951 17.972 17.915 1.0910
Jiangsu 18.07 18.053 18.124 0.9814
Jiangxi 17.987 18.083 18.07 1.0127

Liaoning 18.085 18.483 18.566 0.9483
Inner Mongolia 17.999 18.078 18.077 1.0884

Ningxia 18.298 18.021 18.604 1.2265
Qinghai 18.239 17.817 18.052 1.2121

Shandong 18.017 18.13 18.154 0.9814
Shanxi 17.944 18.17 18.11 1.0232

Shaanxi 18.148 18.252 18.821 1.1560
Shanghai 18.056 18.016 18.072 1.0080
Sichuan 18.01 19.333 19.348 1.1491
Tianjin 18.091 18.004 18.099 0.8966

Xinjiang 18.291 17.925 18.263 1.2449
Yunnan 18.053 18.533 18.961 1.1433
Zhejiang 18.064 18.009 18.071 0.9887

Chongqing 18.002 18.025 18.026 1.1337

According to the results presented in Table 2, overall, China’s GTFP was heterogeneous
over regions and years, ranging from 0.5 to 1.2. This shows that the GTFP varies among
provinces and cities in China and is unevenly developed. It should be noted that if
TFPCH > 1, the GTFP of the province in that year was of high quality and showed a
significant improvement trend. In contrast, if TFPCH < 1, the GTFP of the province did
not develop well in that year. In 2001–2012, TFPCH was low in certain pilot provinces and
cities. The reason was that before the implementation of policy pilots, GTFP in China’s pilot
regions lagged and did not follow a positive development trend. In 2013–2018, most pilot
areas had TFPCH < 1. Pilot areas for GTFP in China after pilot development did not yield a
positive effect, which was associated with the time lag of policy implementation. The results
of policy effectiveness emerge with the further advancement of policy implementation
time. The GTFP of all non-pilot provinces and cities improved over this period. Compared
with the period from 2001 to 2012, China’s GTFP improved, but during the period from
2013 to 2018, in certain provinces and cities, TFPCH was still <1. This indicates that pilot
policies did not achieve effectiveness for the time being, indicating that China’s GTFP still
has development space.



Land 2022, 11, 1199 8 of 16

Table 2. Average green total factor productivity from 2001 to 2012 and from 2013 to 2018.

2001–2012 2013–2018
Pilot Areas TFPCH Non-Pilot Areas TFPCH Pilot Areas TFPCH Not-Pilot Areas TFPCH

Beijing 0.8955 Heilongjiang 1.0569 Beijing 0.8688 Heilongjiang 0.9153
Tianjin 0.9175 Zhejiang 0.9640 Tianjin 0.8733 Zhejiang 0.8788

Shanghai 1.0165 Fujian 0.9976 Shanghai 0.9541 Fujian 0.8863
Chongqing 1.1110 Hebei 0.9376 Chongqing 1.1908 Hebei 0.8706

Hubei 1.0414 Liaoning 0.9563 Hubei 1.0108 Liaoning 0.9071
Guangdong 1.0132 Shandong 1.0058 Guangdong 0.9186 Shandong 0.8850

Jiangsu 1.0085 Jiangsu 0.5830
Henan 1.0260 Henan 0.9830
Anhui 1.0326 Anhui 0.9161
Hainan 1.0580 Hainan 0.9111
Hunan 1.0206 Hunan 1.0326
Jiangxi 1.0107 Jiangxi 0.9646

Inner Mongolia 1.0693 Inner Mongolia 1.0553
Guangxi 1.0900 Guangxi 1.1191
Sichuan 1.1277 Sichuan 1.2806
Guizhou 1.1166 Guizhou 1.2515
Yunnan 1.1102 Yunnan 1.2520
Shaanxi 1.1196 Shaanxi 1.2743
Gansu 1.1502 Gansu 1.2543

Qinghai 1.2139 Qinghai 1.1228
Ningxia 1.2250 Ningxia 1.2251
Xinjiang 1.2587 Xinjiang 1.1650

4.3. Carbon Trading and Green Economic Growth: An Empirical Test
4.3.1. Variable Selection

(1) Setting of explained variables

1© Green development effect. To measure the efficiency of green development, it is
necessary to consider not only the allocation efficiency of input-output factors, but also
the resource input and environmental costs. In other words, when constructing the index
system, the selection of input-output indicators must be considered. Based on the existing
research and theory, and according to the core requirements of green development, the
green development effect measurement system constructed in this paper mainly examines
the level of green production technology. Among them, the output indicators are divided
into expected output indicators and non-expected output indicators, and the input indi-
cators are selected as labor, energy, and capital, and the green development efficiency is
comprehensively measured by using the DEA model and decomposed by the Malmquist
index, in order to fully reflect the concept of green development and comprehensively
measure the level of green production technology.

2© Economic growth effect. The impact of economic growth is expressed in terms of
carbon emission intensity, i.e., CO2 emissions per unit of GDP. The calculation formula
is carbon emission intensity = carbon emission/GDP, denoted as Ci. A decline in carbon
emission intensity reflects the coordinated development between the economy and the
environment. Specifically, if the pilot policy in China reduces the carbon emission intensity,
this represents the economic growth effect, where the stronger the decline, the stronger the
economic growth effect. Conversely, it hinders economic growth.

(2) Core explanatory variables

1© Implementation of the regional virtual variable treat for the pilot policy of the
carbon trading system; Treat = 1 represents provinces and cities that implemented pilot car-
bon trading system policies during 2013–2018 (e.g., Beijing, Tianjin, Shanghai, Chongqing,
Hubei, Guangdong, and Shenzhen); Treat = 0 represents provinces and cities that did not
implement carbon trading system pilot policies during 2013–2018 (excluding Tibet, Hong
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Kong, Macao, and Taiwan). 2© The time dummy variable before and after the implemen-
tation of carbon trading system pilot policies; Time = 1 represents the implementation of
carbon trading system pilot policies during 2013–2018; Time = 0 represents that the pilot
policy of carbon trading system was not carried out during 2001–2012. 3© DID estimator
tt; tt is the interaction term between the regional dummy variable and the time dummy
variable, which is the core index to verify green development. Through the symbol and
significance of tt, the effect of carbon trading system pilot policy on green development
and economic growth could be assessed.

(3) Control variables

Based on previous research, this paper scientifically selects six control variables that
affected the green development level. These are presented in detail in the following:

1© Economic development level: Per capita gross national product reflects the per
capita GDP, recorded as pgdp.

2© Industrial structure: The proportion of the added value of the secondary industry
in GDP, recorded as is;

3© Investment in energy industry, denoted as eii; this reflects whether the energy
industry investment was moderate or not directly affected by the clean use of energy.
Because of the non-renewability of fossil energy, the energy problem has aroused great
concern. Coupled with the continuous growth of energy demand, the energy industry had
become the key sector of greenhouse gas emission.

4© The technical level: This paper uses domestic patent application acceptance to
measure technological progress, recorded as pi.

5© Population scale, recorded as pop; pop refers to the number of permanent residents
in all provinces and cities.

4.3.2. Double Difference Regression Analysis

This paper establishes the PSM-DID model according to pilot provinces and cities and
the implementation time of the pilot policy. Furthermore, GTFP (gtfp) is used to measure
the level of green production technology; these were assumed as dependent variables. The
core variables were the virtual variables of pilot policy, urban virtual variables, and their
interaction items. The time selection range of the data was from 2001 to 2018, and the
cross-section selection range was all provinces, municipalities directly under the central
government, and autonomous regions (except Tibet, Hong Kong, Macao, and Taiwan).
Because China’s carbon trading system was implemented in 2013, the policy dummy
variable time = 1 was selected for data from 2013 to 2018, and time = 0 was selected for
other time periods. The city virtual variable city was generated, where the seven pilot cities
(i.e., Shanghai, Beijing, Guangdong, Shenzhen, Tianjin, Hubei, and Chongqing) are set as 1,
i.e., city = 1, while other regions (excluding Xizang, Hong Kong, Macao, and Taiwan) were
set as city = 0. Therefore, the interaction between policy dummy variable and city dummy
variable was defined as their product, namely jc = time * city. The regression model of the
benchmark was:

gt f pit = α0 + α1 ∗ time + α2 ∗ city + α3 ∗ jc + uit (2)

ctit = β0 + β1 ∗ time + β2 ∗ city + β3 ∗ jc + σit (3)

Based on the benchmark regression model, the following control variables are added:
economic development level (denoted as PGDP), industrial structure (denoted as is), energy
industry investment (denoted as eii), technical level (denoted as pi), and the size of the
population (denoted as pop). Firstly, descriptive analysis was carried out on the variables.
The descriptive statistics of each index are shown in Table 3.
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Table 3. Descriptive statistics.

Variable Observations Mean Standard Deviation Minimum Maximum

pgdp 540 34,182.52 25,793.02 3000 140,211
is 540 45.3407 7.9597 19 59
eii 540 631.9064 574.5274 9.35 3382.51
pi 540 47,983.44 92,212.75 124 793,819

pop 540 4417.807 2660.747 523 11,346
ct 540 1.0602 0.7911 0.1015 5.4273
gt 540 1.0545 0.3782 0 2.242

The effect mechanism of carbon trading pilot policy implementation on the level of
green production technology and green development effect was tested by the DID method
in this paper. Total factor productivity and carbon emission intensity are set as dependent
variables and policy dummy variables, urban dummy variables, and interaction terms
are set as independent variables. To verify the robustness of variable coefficients, we add
control variables to the original model. First, the impact of the pilot policy on the level
of green production technology is analyzed (Table 4). Control variables are not added in
model 1, and Models 2–6 gradually added control variables.

Table 4. Effect of carbon trading policy implementation on green development—difference in
differences method.

(1) (2) (3) (4) (5) (6)
Variables gtfp gtfp gtfp gtfp gtfp gtfp

time 0.0535 ** 0.0578 ** 0.0543 ** 0.115 ** 0.116 ** 0.116 **
(0.0285) (0.0274) (0.0282) (0.0519) (0.0520) (0.0517)

city 0.0718 0.0746 0.0716 0.0457 0.0474 0.0388
(0.0197) (0.04288) (0.0533) (0.0536) (0.0538) (0.0536)

jc 0.0242 *** 0.0268 *** 0.0233 *** 0.0281 *** 0.0309 *** 0.0512 ***
(0.0060) (0.0078) (0.0082) (0.0093) (0.0095) (0.0094)

pgdp 1.45 × 10−07 *** 1.12 × 10−07 *** 6.42 × 10−07 *** 4.24 × 10−07 *** 1.56 × 10−06 ***
(0.33 × 10−07) (0.37 × 10−07) (0.64 × 10−07) (0.07 × 10−06) (0.15 × 10−06)

is −0.000898 *** −0.00156 *** −0.00150 *** −0.000242 ***
(0.00014) (0.00028) (0.00028) (0.00032)

eii 0.000112 *** 0.000113 *** 0.000139 ***
(3.75 × 10−05) (3.76 × 10−05) (3.87 × 10−05)

pi 1.04 × 10−07 *** 2.68 × 10−07 ***
(0.22 × 10−07) (0.63 × 10−07)

pop −2.04 × 10−05 ***
(7.84 × 10−06)

Constant 1.088 *** 1.086 *** 1.044 *** 1.122 *** 1.116 *** 1.151 ***
(0.0222) (0.0286) (0.103) (0.106) (0.106) (0.107)

Observations 540 540 540 540 540 540
R-squared 0.013 0.013 0.013 0.029 0.030 0.042

t statistics in parentheses. ** p < 0.01, *** p < 0.001.

From the results of the DID method, the coefficient coincidence degree and importance
of core explanatory variables did not change fundamentally from Model 1 to Model 6.
The coefficient significance of other variables changed for the most part, and the decisive
coefficient R2 of the model gradually increased. In Model 6, at a significance level of 5%,
the core explanatory variables are positively correlated with the level of green production
technology. This indicates that the pilot policy promoted the green development level in
pilot cities, but the effect was weak, and merely increased by 5.2%.

Regarding control variables, the level of economic development was positively corre-
lated with the level of green production technology. The industrial structure had a negative
correlation with the level of green production technology. Energy industry investment
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had a significant positive impact on the level of green production technology, i.e., the
increased investment would improve the level of production technology. The technology
level had a significant positive impact on the technology level of green production, i.e., the
improvement of technology yields a “synergistic effect”, driving the improvement of green
technology. The scale of the population had a significant negative impact on the level of
green production technology, and an increase in population constrains the improvement
of production technology. This shows that from the perspective of control variables, if
spatial factors were not considered, “economic development level”, “energy industry in-
vestment”, and “technology level” would promote green economic growth to a certain
extent; however, the “proportion of secondary industry” and “population size” would
hinder green economic growth to a certain extent. This proved that the “Krugman Query”
was not tenable.

The influence of pilot policy implementation on economic growth effect is analyzed
in the following, and control variables are gradually added to the benchmark regression
model. The results are shown in Table 5.

Table 5. Effect of carbon trading policy implementation on economic growth—difference in differ-
ences method.

(1) (2) (3) (4) (5) 6)
Variables ct ct ct ct ct ct

time −0.224 *** −0.0415 *** −0.0378 *** −0.0541 *** −0.0628 *** −0.0655 ***
(0.0768) (0.0126) (0.0141) (0.012) (0.011) (0.0040)

city −0.601 *** −0.429 *** −0.432 *** −0.393 *** −0.417 *** −0.363 ***
(0.0992) (0.103) (0.104) (0.105) (0.104) (0.0975)

jc −0.0844 *** −0.249 *** −0.245 *** −0.323 *** −0.363 *** −0.491 ***
(0.022) (0.021) (0.022) (0.025) (0.024) (0.023)

pgdp −8.96 × 10−06 *** −8.92 × 10−06 *** −1.01 × 10−05 *** −6.90 × 10−06 *** −1.40 × 10−05 ***
(1.82 × 10−06) (1.83 × 10−06) (1.89 × 10−06) (2.08 × 10−06) (2.09 × 10−06)

is 0.000949 *** 0.00467 *** 0.00383 *** 0.00407 ***
(0.00018) (0.00046) (0.00042) (0.00022)

eii 0.000170 ** 0.000191 *** 0.000350 ***
(7.35 × 10−05) (7.30 × 10−05) (7.04 × 10−05)

pi −1.51 × 10−06 *** −8.17 × 10−07 *
(4.31 × 10−07) (4.79 × 10−07)

pop −0.000128 ***
(1.42 × 10−05)

Constant 1.249 *** 1.422 *** 1.466 *** 1.584 *** 1.502 *** 1.720 ***
(0.0444) (0.0558) (0.201) (0.207) (0.206) (0.194)

Observations 540 540 540 540 540 540
R-squared 0.100 0.139 0.139 0.147 0.166 0.276

t statistics in parentheses * p < 0.05, ** p < 0.01, *** p < 0.001.

In Model 6, at the significance level of 5%, the core explanatory variables had a
significant positive impact on the level of green production technology, indicating that
the implementation of carbon trading policy exerts a strong effect by reducing the carbon
emission intensity of pilot cities by 49.1%.

Regarding control variables, the level of economic development, the technology level,
and the population size had a significant negative impact on carbon emission intensity. The
industrial structure had a significant negative impact on carbon emission intensity, i.e., the
higher the industrial structure, the less the restriction of carbon emissions. Investments
in the energy industry had a significant positive impact on carbon emission intensity
i.e., increasing investment would improve carbon emission intensity.

4.3.3. PSM-DID Analysis

This paper uses the logit model, where the policy dummy variable time is used as the
dependent variable, and variables are used as covariates. The results obtained by using the
PSM method are shown in Table 6.
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Table 6. Validity test of propensity score matching.

Variable Experimental Mean Mean of the Control Group Difference t p Values

pgdp 56,398 57,939 −7.1 −0.61 0.542
is 43.056 41.095 25 1.58 0.104
eii 1031.4 749.25 51.1 0.56 0.615
pi 98,471 63,506 35.3 1.05 0.202

pop 4574.1 3467 41.3 1.95 0.429

The data in Table 7 show that at a significance level of 5%, the p values of all variables
fail to pass significance. The results show that the matching results are effective, and the
PSM-DID method is therefore used for estimation, and control variables are added and not
added, respectively.

Table 7. PSM-DID estimation.

Green Production Technology Green Development Effect
Variables (1) (2) (3) (4)

time 0.0790 *** 0.000155 0.217 *** 0.134 ***
(0.0205) (0.0272) (0.0145) (0.0186)

city 0.101 *** 0.0589 ** 0.0353 * 0.00379
(0.0265) (0.0282) (0.0187) (0.0193)

jc 0.176 *** 0.202 *** −0.0477 *** −0.0656 ***
(0.0459) (0.0469) (0.0124) (0.0121)

pgdp 2.89 × 10−06 *** 2.34 × 10−06 ***
(6.05 × 10−07) (4.14 × 10−07)

is 0.00113 −0.00368 ***
(0.00122) (0.000834)

eii 2.05 × 10−05 4.09 × 10−05 ***
(2.03 × 10−05) (1.39 × 10−05)

pi −2.79 × 10−07 ** −4.20 × 10−07 ***
(1.38 × 10−07) (9.47 × 10−08)

pop 2.88 × 10−06 1.23 × 10−05 ***
(4.11 × 10−06) (2.82 × 10−06)

Constant 0.637 *** 0.511 *** 0.945 *** 1.007 ***
(0.0118) (0.0560) (0.00836) (0.0383)

Observations 540 540 540 540
R-squared 0.043 0.100 0.327 0.404

t statistics in parentheses * p < 0.05, ** p < 0.01, *** p < 0.001.

Based on the estimation results, in the model that uses green technology level as
dependent variable, the interaction terms of core variables in Model 1 and Model 2 pass
significance at a level of 1%, and all coefficients are positive. In the model that uses green
development effect as dependent variable, the core variable interaction term in Model 3
and Model 4 pass significance at a level of 1%, and all coefficients are positive. This shows
that the implementation of the policy promotes green development and reduces carbon
emissions, further indicating that the model has good robustness.

4.4. Further Mechanism Testing

The previous analysis shows that after implementing the policy in pilot cities, green
development was promoted and carbon emissions were reduced. However, for a better
understanding, this paper assessed which factors led to the green development of pilot
cities after the implementation of policies (Table 8).
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Table 8. Mechanism test of carbon trading policies affecting green economic growth.

(1) (2) (3) (4) (5)
Variables pgdp is eii pi pop

time 29,650 *** −2.788 *** 680.4 *** 64266 *** 171.0
(1782) (0.781) (49.13) (8473) (271.2)

city 19,211 *** −2.566 ** −158.3 ** 20776 * −625.8 *
(2301) (1.009) (63.43) (10,939) (350.1)

jc 18,362 *** −3.198 * −406.3 *** 57,325 *** 317
(3985) (1.747) (109.9) (18947) (606.4)

Constant 19,233 *** 47.00 *** 463.8 *** 18,585 *** 4465 ***
(1029) (0.451) (28.37) (4892) (156.6)

Observations 540 540 540 540 540
R-squared 0.544 0.080 0.302 0.194 0.008

t statistics in parentheses * p < 0.05, ** p < 0.01, *** p < 0.001.

The estimation results show that at a significance level of 10%, the core variables
are positively related to economic development and technology level, and negatively
correlated with the industrial structure and energy investment. This shows that the pilot
policy improved the level of economic development and technology, and inhibited the
promotion of industrial structure and energy industry investment on green development.

5. Discussion

This review of previous studies shows that certain valuable conclusions have been
obtained regarding environmental regulation and economic growth. From the concept of
green development, there is a lack of empirical research on carbon trading pilot system and
green economic growth. Based on this, this paper specifically focuses on China’s carbon
trading system, one of China’s environmental regulation policies, as the study object, and
expands existing knowledge. Although this paper has expanded the innovation in carbon
emissions and green economic growth to a certain extent, there are certain shortcomings
due to some objective reasons. First, due to the lack of relevant panel data, the accuracy
of econometric analysis results could be improved, but this does not affect the main
conclusion of this paper. Second, this paper suffers from a lack of targeted comparative
analysis with other emission trading mechanisms. Follow-up research could focus on
the development goals, compare and analyze the policy evaluation effect of the carbon
emission trading pilot system with similar emission trading pilot systems (such as SO2
emission trading and energy use right trading), and select different indicators to measure
the green transformation. Thus, more scientific and reasonable policy suggestions can be
put forward.

6. Conclusions and Policy Implications
6.1. Main Conclusions

Based on empirical analyses of the DEA-Malmquist index model using the PSM-DID
method, this paper empirically tests the impact and mechanism of the pilot policy on
green economic growth. The results show that: (1) “Economic development level”, “energy
industry investment”, and “technology level” promoted green economic growth to a certain
extent. However, “proportion of secondary industry” and “population scale” hindered
the green economic growth to a certain extent. This proves that the “Krugman Query” is
not tenable. (2) The pilot policy has a positive correlation with the growth of GTFP, but
a certain time lag emerged. (3) The pilot policy promotes the green development level
of pilot cities, but the effect was weak, with increases of only 5.2%, reduces the carbon
emission intensity of pilot cities strongly by 49.1%, and promoted economic growth.

6.2. Policy Implications

First, the intensity of environmental regulation should be moderately strengthened.
Although China’s economy has maintained rapid growth, it still faces severe pressures



Land 2022, 11, 1199 14 of 16

regarding resources and the environment. In the continuous innovation and reform of
environmental regulation, the pilot policy is representative. The assessment of pilot policy
only provided empirical and theoretical support for environmental governance and pollu-
tion prevention and control measures but is also of great significance for promoting the
construction of ecological civilization. Through empirical tests, this paper proves that the
pilot policy was conducive to increasing GTFP. The overall goals and stage goals of carbon
trading should be defined, and the pilot policy should be promoted in an orderly and
step-by-step manner under the overall framework. Furthermore, policy encouragement,
financial support, and technical support should be emphasized, the construction of the
carbon market should be steadily promoted, and the intensity of environmental regula-
tion should be increased within an appropriate scope. These measures would not only
improve the ecological environment but also improve factor productivity and sustainable
development. Second, Green technology innovation needs to be further improved. The
potential of the carbon market should be fully tapped through technological innovation, the
independent innovation and promotion of low-carbon technologies should be improved,
and rapid green development should be promoted. Third, the low-carbon energy industry
should be further developed. The energy-intensive industries should be reduced in energy
consumption, green low-carbon energy should be continuously developed and used, and
cleaner production technology should be promoted.
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