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Abstract: Based on the land market transaction data and city-level carbon emission data of
282 prefecture-level cities from 2005 to 2018 in China Land Market Network, this paper discusses
the effect of land resource misallocation on carbon emissions and its influencing mechanisms. The
research finds that, the local government’s strategy of “seek development with the land” has made a
large amount of urban construction land being allocated to the industrial field, leading to the price of
industrial land to be underestimated and obvious land resource misallocation. The land resource
misallocation has significantly increased the level of urban carbon emissions through mechanisms
such as hindering the upgrading of industrial structure, restraining technological innovation and
weakening the effect of economic agglomeration. Moreover, the results are still robust after replacing
the core variable indicators, considering extreme values and controlling endogeneity. Additionally,
further study finds that land resource misallocation not only evidently aggravates the city’s own
release of carbon emissions, but also has a remarkable spatial spillover effect on adjacent cities.
Meanwhile, except for small cities, the misallocation of land resources in Type-I large cities and above,
Type-II large cities and Medium-sized cities noticeably exacerbates urban carbon emissions, and
the effect increases with the upgrading of city size. Regionally, the land misallocation on carbon
emissions has significantly increased the carbon emissions in the eastern and central regions but has
no significant impact on the carbon emissions in the western region. Finally, the conclusion of this
paper will have important practical significance for further promoting the standardization of China’s
land market and realizing the green and high-quality development of the urban economy.
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1. Introduction

“Low-carbon life, green development” is the common pursuit of all countries in the
world, and it is also an important goal of China’s development in the new era. The resolu-
tion raised in the Sixth Plenary Session of the 19th Central Committee of the Communist
Party of China made an essential statement on economic green development, emphasizing
the importance of green development in future economic development. It means that
accelerating the green transformation of the economy has become a key part of promoting
high-quality economic development in China. However, due to industrial development
plays a vital role in boosting economic growth rapidly, under the incentive of economic
growth competition and fiscal revenue maximization, local governments tend to preferen-
tially allocate a large amount of urban construction land to the industrial field by relying
on their monopoly and dominance on land supply, so as to stimulate regional economy
growth and increase fiscal revenue through the methods of “attracting capital from the
land” and “inducing capital to generate tax”. Although this development strategy of “seek
development with the land” can improve the economic performance and fiscal revenue
of local governments in the short term and enables local government officials to obtain
more opportunities for promotion, it has led to excessive investment and homogeneous
development of industries in various regions. This situation will further aggravate energy
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consumption, extensive utilization of resources and carbon dioxide emissions, and in turn
have adverse effects on urban environmental quality. According to World Bank statistics, in
2005, China’s carbon emissions surpassed that of the United States and become the world’s
largest carbon emitter. In 2016, China’s carbon emissions accounted for 29% of the world’s
total. In 2019, China’s total carbon emissions directly doubled from 5.407 billion tons in
2005. These figures indicate that land resource misallocation has become a crucial factor in
determining China’s carbon emission level. Accordingly, in order to facilitate the rational
allocation of land resources in China, realize the transformation of economic development
mode and high-quality development of economy, it is of great theoretical and practical
significance to deeply understand the mechanism of the land resource misallocation’s
impact on urban carbon emissions.

Regarding the generation mechanism behind carbon emissions, the existing literature
mainly focuses on economic growth (Mi et al., 2017) [1], industrial structure (Wei and Zhang,
2020; Xiao et al., 2021) [2,3], technological level (Okushima et al., 2012; Zhao et al., 2021) [4,5],
energy structure transformation (Lin and Li, 2015; Andersson and Karpestam, 2013; Yin
et al., 2021) [6–8], urbanization and industrial layout (Zhang and Chen., 2021; Zhang and
Xu, 2017) [9,10], traffic congestion (Hachem et al., 2021; Xie et al., 2019) [11,12], domestic and
foreign trade (Zhang and Hewings, 2014; Dou et al., 2021; Song et al., 2021) [13–15], energy
utilization (Zhang, 2009; Qu et al., 2017) [16,17], fiscal decentralization (Yang et al., 2021;
Du and Sun, 2021; Shan et al., 2021) [18–20], environmental regulation (Safi et al., 2021) [21]
and other aspects to carry out discussions on the driving factors, spatial characteristics
and influencing mechanism of carbon emissions. However, few of studies have deeply
analyzed the mechanisms and determinants of carbon emissions from the perspective of
factor allocation that affects economic operation. Since the reform and market opening
up, in order to scientifically define the relationship between the government and the
market, China has gradually implemented a series of market-oriented reform measures for
promoting the market to play a decisive role in resource allocation. However, the effects
of these market-oriented reform measures are typically concentrated in the final product
market, and the market-oriented reform of the factor market is still relatively lagging
behind, which inevitably leads to price distortions in the factor market, serious resource
misallocation and loss of economic efficiency (Tan, 2015; Atkinson and Cornwell, 1994;
Hsieh and Klenow, 2009) [22–24]. Especially in the land factor market, the government,
as the sole supplier of the primary land market, basically monopolizes the right of land
development and supply, and has a decisive dominance over the mode, structure and
quantity of land resource allocation (Zhang and Yu, 2011) [25]. On the one hand, the
excessive intervention of the local government in the land market weakens the role function
of the market in the allocation of land resources, and exacerbates the price distortion of land
factors and the misallocation of resources. On the other hand, the misallocation of land
resources will further affect the development mode of the economic activities which land
carries (Mc Millan et al., 1989; Li and Luo, 2017) [26,27], and then works on environmental
quality. However, there are few literatures that directly detect the influencing mechanism
of carbon emissions from the perspective of land resource allocation. Even if a few scholars
have paid attention to the impact of land element allocation of resources and environment
(Zhang and Xu, 2017) [10], they only concentrate on the impact of land scale expansion in
the process of urbanization, and does not conduct in-depth and systematic investigations
on whether land resources are misallocated and the impact mechanism of land resource
misallocation on carbon emissions. Hence, based on the analysis and summary of the
impact mechanism of land resource misallocation on carbon emissions, with the hope of
providing useful reference for the government to effectively optimize the land resource
allocation and reduce carbon emissions, and finally helping to reach the goal of carbon peak,
carbon neutrality and high-quality development of green economy as soon as possible, this
paper intends to take the panel data of 282 prefecture-level cities in China from 2005 to
2018 as a sample and constructs an econometric model to comprehensively explore how
land resource misallocation specifically affects carbon emissions.
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Compared with the existing literature, the contributions of this study are following.
First, this paper empirically tests the influence mechanism of land misallocation on urban
carbon emissions in depth, which provides a new angle for understanding the underlying
causes of carbon emissions from the perspective of resource allocation in factor markets. Sec-
ond, this paper analyzes the theoretical mechanism of land resource misallocation affecting
carbon emissions from three aspects: industrial structure upgrading, technological progress
and agglomeration effect, which provides a new theoretical framework for understanding
the causes of carbon emissions from the perspective of land resource allocation. Third, this
paper applies web crawler technology to collect the actual transaction data of commercial
land, residential land and industrial land covering 282 prefecture-level cities nationwide
in China Land Market Network from 2005 to 2018, and uses marginal output method to
calculate the misallocation index of industrial land combined with the production function,
so as to directly estimate the current misallocation degree of construction land in each city.
Fourth, this paper not only examines the spatial spillover effect of land resource misal-
location on carbon emissions, but also analyzes the differential impacts of land resource
misallocation on carbon emissions from the perspective of heterogeneity in different cities
and regions, which is helpful to grasp the deep mechanism of carbon emission pollution
in land resource allocation. The rest of this paper is arranged as follows. Section 2 is the
analysis of the influence mechanism and the theoretical hypothesis. Section 3 is the model
and data. Section 4 is results and discussion. Section 5 is drawing conclusion.

2. Influence Mechanism and Theoretical Hypothesis
2.1. Land Resource Misallocation Affects Carbon Emissions by Hindering the Upgrading of the
Industrial Structure

In addition to incomplete factor markets and defects in the property rights system,
fiscal decentralization and excessive government intervention are also critical reasons
for the misallocation of land resources in China (Restuccia and Rogerson, 2008; Huang
and Du, 2017) [28,29]. Since the reform of the tax-sharing system in 1994, the central
government has sharply decreased the local financial power, but the expenditure of local
governments is not much different from before and even increase relatively, which causes
local governments’ financial burden becoming increasingly heavy. Under the performance
appraisal system based on fiscal and tax maximization and reginal economic growth,
capital-intensive industrial industries that can tremendously promote GDP growth in the
short term have become the top priority for local governments to drive regional economic
growth (Tan and Zheng, 2012; Wang et al., 2021) [30,31]. The local government expands
the scale of land acquisition and supply through the establishment of new urban areas,
various industrial parks and development zones to attract industrial investment at low
or zero land prices. Consequently, urban construction land mainly flows into productive
infrastructure construction and industrial fields that match the industry, which leads to the
excessive development of capital-intensive industries and heavy industries, aggravates
energy consumption and distorts resource allocation, and brings about detrimental effects
on the low-carbon transformation and development of the urban economy. At the same
time, driven by the competitive pressure of economic growth and the motivation of tax
maximization, in order to gain advantages in attracting investment, local governments have
strong incentive to invest in capital-intensive infrastructure construction fields, and give
priority to the development of capital-intensive industries or heavy industries (Chen and
Yao, 2011; Liu et al., 2021) [32,33]. As the most fundamental and critical economic resource
in local development, land has become an important guarantee for local governments
to gain a competitive advantage in attracting investment. Owing to the monopoly and
control rights in the primary land market, local governments are scrambling to make
use of industrial land concessions, infrastructure construction subsidies and other means
to reduce the cost of land for investment companies, and launching fierce competition
in the process of attracting investment and obtaining external industrial capital, thus
causing serious distortion of land market price and resource misallocation (Restuccia
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and Rogerson, 2008; Ulph, 2000; Fredriksson et al., 2003) [28,34,35]. Although capital-
intensive and heavy industries can bring about fast economic growth in the short term,
they are often featured with low productivity, high pollution, high emissions and high
energy consumption. Therefore, excessive transfer of industrial land will not only generate
extensive and inefficient use of industrial land, but also increase the emission of pollutants
such as smoke and carbon dioxide in the atmosphere, thus enhancing the level of urban
carbon emissions. In the meantime, the government-biased industrial land allocation
model endogenous to fiscal decentralization and political tournament, will act on corporate
location decisions (Clark and Hunter, 1992; Dustmann and Okatenko, 2014) [36,37], and
accelerate industrial enterprises to cluster in cities, thereby reinforcing the rigidity of the
industrial structure dominated by capital-intensive industries and hindering the upgrading
of the urban industrial structure (Hanson and Slaughter, 1999) [38]. In essence, the over-
assignment of industrial land is exactly the misallocation of land resources. According
to the theory of inputs misallocation across firms (Hsieh and Klenow, 2009) [24], when
the land is excessively sold to industrial land, the combination of land factor input will
deviate from the optimal choice, which will cause the actual output of the land to be
lower than the effective output, that is, the output efficiency of land factors is lost in the
land resource misallocation. Wang et al. (2021) [31] found that low-priced industrial land
supply can lead to excessive development of the secondary industry in cities, strengthen the
rigidity of the urban industrial structure dominated by low-value-added manufacturing,
and curb the industrial structure from climbing to high-end development. Although the
land finance model of selling commercial and residential land at a high price is conducive to
fostering the development of the real estate market and increasing the fiscal revenue of local
governments, the high cost of land use will further restrain the development of the service
industry. Hence, this land price distortion is not beneficial to the upgrading of the industrial
structure. Not only that, as a means for local governments to compete for economic
development, the biased allocation of land resources in the industrial fields of various
regions will also lead to industrial development in a way of violating the advantages of each
region’s resource endowments, resulting in repeated investment in similar industries, low-
level similarity in structure and low efficiency of land use. Accordingly, this land supply
strategy solidifies the industrial structure dominated by capital-intensive manufacturing or
industry in various regions (Du and Peiser, 2014, Cai et al., 2009; Qu and Tan, 2010) [39–41],
thereby causing waste of resources and allocation of factors distortion, inhibiting the
advanced process of manufacturing and intensifying carbon emissions in various regions.

In addition, it is generally accepted that the modern service industry has the char-
acteristics of high technology content, significant economies of scale, rapid productivity
improvement, low energy consumption and low pollution (Duan et al., 2016; Liu et al.,
2017) [42,43]. The growth of modern service industry not only has the function of reducing
environmental pollution and improving environmental quality, but also can helpfully form
synergistic agglomeration and linkage development with the manufacturing industry, gen-
erating significant economies of scale and technology spillover effects (Gaulier et al., 2007;
Ke et al., 2014) [44,45], thereby improving knowledge and technology content, extending
the industrial value chain and other channels to help manufacturing industry save the cost,
optimize the structure, strengthen the feedback effect of the modern service industry on
the manufacturing industry (Preissl, 2007; Francois and Hoekman, 2010; Goe, 2002) [46–48],
and achieve green development. To sum up, promoting the development of modern service
industry and raising the proportion of modern service industry in the economic structure
has important practical significance for reducing carbon emissions and improving air qual-
ity. However, with the continuous expansion of urban space, local governments usually
allocate 40–50% of the acquired construction land to the industrial sector at low or zero land
prices, and only sell 20–30% of the construction land at high prices for commercial service
development and housing construction (Zhang and Xu, 2017) [10]. Since the total amount
of land resources is limited, if a large amount of land is allocated to infrastructure and
industrial fields, it means that the land reserved for modern service industries, especially
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productive services, is fairly restricted and expensive (Chen and Kung, 2016) [49]. In this
case, it not only directly leads to insufficient development of the modern service industry,
but also increases the production and operating costs of the modern service industry, which
is unfavorable to the full development and agglomeration of the modern service industry.
Not only that, under the land allocation strategy of “seek development with the land”, local
governments are both beneficiaries and users of land fiscal revenue. Local governments
prefer to use land revenue for productive infrastructure construction that can accelerate
industrial development (Zhong et al., 2019; Huang and Chan, 2018) [50,51], especially
manufacturing-related projects, while there is little or no capital to support the modern
service industry, thus leading to the excessive development of capital-intensive industries
and heavy industries, and the development of the modern service industry lags behind. As
a result, the biased allocation of urban land resources in infrastructure construction and
industrial development will delay the service-oriented process of industrial structure, and
thus reduce the level of urban carbon emission control.

2.2. Land Resource Misallocation Affects Carbon Emissions by Inhibiting Green Innovation and
Technological Progress

Technological progress and innovation can validly alleviate energy consumption and
carbon emission pollution, which are the determinants of promoting carbon emission control
and environmental quality improvement (Braun and Wield, 1994; Gu et al., 2019) [52,53]. In
particular, land is a vital tool for local governments to seek development in response to huge
financial pressures and competition for inter-regional economic growth, and its preferential
allocation in the industrial field can affect carbon emissions by acting on technological progress
and corporate innovation. The behavior that local governments compete to cut down the price
of industrial land and expand the scale of industrial land transfer to attract investment is quite
frequent. On the one hand, it will lead to a large number of low-efficiency enterprises entering
the jurisdiction to invest due to low land prices, thereby decreasing the total factor productivity
and innovation capabilities of the overall industrial enterprises in the city. On the other hand,
it is not conducive to low-carbon technology research and development (R&D), promotion
and application of technology, and thus have a negative impact on carbon emission control.
Holmstrom and Milgrom (1991) [54] pointed out that GDP-oriented assessment mechanism
will promote local governments to use their administrative power to divert various resources
such as land, to industries that are only in favor of economic growth. The industries that can
rapidly stimulate economic growth in the short term are often capital-intensive industries
with low efficiency but large investment scale, so these industries are mostly listed as the
key investment targets by development zones and industrial parks. Under the pressure of
economic growth competition and political promotion, the phenomenon of local governments
attracting investment at low prices is still serious. Extensive use of land resources may not
only lead to the rapid development of industries with high-emission and high-pollution, but
also give rise to low-quality repetitive construction of some industries, thus making companies
underpowered to technological innovation (Gao et al., 2021; Wu et al., 2014) [55,56]. At the
same time, because local governments pay more attention to the scale of short-term investment
rather than the quality of long-term investment when selling industrial land, a large number
of low-efficiency enterprises invest in scarce industrial land, forming some industries such
as low-end production capacity with backward technology, low technology content and
bleak development prospects, which is harmful to the overall improvement of urban R&D
capabilities and the continuous improvement of technological progress. Therefore, it is not
only unable to further control and reduce carbon emissions through technological progress, but
also aggravates carbon emissions by inhibiting technological progress. Research represented
by Restuccia and Santaeulalia-Llopis (2017) [57], and Adamopoulos et al. (2022) [58] both
showed that land resource misallocation has a significant inhibitory effect on the improvement
of technological innovation capabilities. The elevation of innovation level not only comes
from the increase of R&D investment, but also is inseparable from the improvement of
factor resource utilization efficiency in the innovation process (Jefferson et al., 2006) [59]. In
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the case of improper allocation of land resources, it is difficult for land resources to flow
from low-productivity enterprises to high-productivity enterprises. When the cost of low-
productivity enterprises is too low, enterprises will be limited by the current production
efficiency and technical level, and have troubles in further encouraging the progress of green
technology and innovative development (Zhang et al., 2019) [60]. Acemoglu et al. (2016) [61]
argued that the misallocation of land resources actually provides economic conditions for
local governments to implement the fiscal expenditure bias of “emphasizing production over
innovation”. Innovation has the characteristics of positive externality, large investment and
long cycle, as result of which, the improvement of urban innovation capability cannot be
separated from the support of local government financial expenditure. However, under the
influence of land resources misallocation, the government uses more land fiscal revenue to
support the construction of industrial infrastructure and infrastructure projects for the sake of
their political performance, rather than increasing education or human capital inputs that are
beneficial to the improvement of regional innovation capabilities. It disguisedly squeezes out
the expenditure of government innovation funds, resulting in insufficient improvement of
urban innovation capabilities, which exerts adverse impacts on R&D and innovation of low-
carbon technologies. Hence, in the above analysis, if local governments ignore technological
progress and long-term sustainable economic growth in the competition for land investment,
and introduce a large number of enterprises featured with high-energy-consumption and
high-emission low production efficiency, insufficient technical content and backward clean
production technology, then the level of carbon emissions may increase.

2.3. Land Resource Misallocation Affects Carbon Emissions by Reducing the Effect of
Economic Agglomeration

The theory of agglomeration economics argues that the main goal and driving force
of industrial agglomeration is the sharing of technological spillovers in a collaborative
innovation environment (Marshall, 1961, Gleaser et al., 1992) [62,63]. Moreover, the in-
dustrial agglomeration emphasized by the agglomeration economic theory should be
market-oriented, that is, under the condition of no excessive intervention of administrative
forces, enterprises spontaneously choose the optimal location agglomeration according
to the principle of market-led efficiency. Such industrial agglomeration pays more atten-
tion to the internal correlation among enterprises, the matching of corporate behavior
and local comparative advantages, so that it can effectively stimulate the economies of
scale and technology spillover effects of agglomeration, thereby improving the level of
production and the technology of carbon emission reduction (Lu and Feng, 2014; Krugman,
1998; Han et al., 2018; Hong et al., 2020) [64–67]. However, local governments compete
to cut down the price of industrial land and expand the scale of industrial land transfer
by means of the bottom-line competitive strategy to attract investment. The behavior is
actually through excessive intervention in the land factor market to implement land rent
concessions and disguised subsidies for investment enterprises, thereby greatly reducing
the production cost and investment risk of enterprises within the jurisdiction. So that a
large number of foreign companies continue to massively gather in the jurisdiction for
obtaining “land concessions” rather than market efficiency. Due to not following the laws
of the market, although the “clustering” agglomeration of enterprises induced by local
governments through preferential land policies can boost prompt economic growth and
tax revenue in the short term, it may pose greater challenges. For instance, it is probably
harder to generate technological spillover effects and economies of scale effects, so that
lowering the carbon emission reduction effects of industrial agglomeration and further
increasing carbon emissions. Driven by economic performance appraisal and financial
pressure, local government officials prefer to use biased land policies to intervene in in-
dustrial agglomeration, resulting in price distortions of the land factor market, low-level
repetitive construction of industrial investment, and hindering factor flow and effective
resource agglomeration, thereby causing extensive economic development (Brakman et al.,
2002; Liu et al., 2019) [68,69]. According to the pollution refuge theory (Schwarze, 1996) [70]
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and the race-to-the-bottom-line hypothesis (Esty and Dua, 1997) [71], the influx of a large
number of low-end manufacturing enterprises will generate “crowded” industrial agglom-
eration, which will further hasten energy consumption and carbon emissions. Wilson
(1999) [72] pointed out a kind of regional competition strategy with the characteristics of
“race to the bottom”, which aims to attract liquidity factors to the jurisdiction by provid-
ing preferential conditions at the cost of tolerating environmental damage. The “race to
the bottom” subsidy conducted by local governments that is designed to attract foreign
investment enterprises by lowering land prices and other forms can have two impacts
on the industrial agglomeration effect. Firstly, this “race to the bottom” competition will
bring about excessive economic agglomeration and even overcrowding agglomeration,
which will accelerate the consumption of resources and energy, and deteriorate the carbon
emission control environment (Ren et al., 2003; Verhoef and Nijkamp, 2002) [73,74]. Sec-
ondly, enterprises will be more concerned about obtaining “policy rent” when choosing
the location of agglomeration, while ignoring the correlation between enterprises in the
agglomeration area. This situation will further weaken the agglomeration effect (Shi and
Shen, 2013) [75], and worsen the conditions of enterprises making full use of economies of
scale and technology spillover to reduce carbon emissions. Simultaneously, it can be seen
that under the motivation of growth competition and financial maximization, when local
governments attract investment by reducing the price of industrial land and expanding
the scale of industrial land transfer, they pay more attention to the amount and investment
scale of enterprises in the jurisdictions, instead ignoring the matching between corporate
investment behavior and local comparative advantages, the correlation and coordinated
development between enterprises, thus impairing the agglomeration effect in the process
of industrial agglomeration and aggravating carbon emissions.

In summary, under the guidance of the strategy of “land for development”, local gov-
ernments have the motivation to allocate a large amount of urban construction land to the
industrial sector, resulting in land price distortion and resource misallocation, which may
further exacerbate urban carbon pollution by hindering the upgrading of manufacturing
structure, the service of industrial structure, the progress of urban green innovation tech-
nology and manufacturing agglomeration. As is shown in Figure 1, the theoretical analysis
framework diagram clearly presents the impact mechanism of land resource misallocation
on urban carbon emissions. Therefore, this paper proposes the following three hypotheses
on the impact mechanism of land resource misallocation on urban carbon emissions.
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Hypothesis 1. The biased allocation of urban land resources in the industrial field will lead to
excessive development and homogeneity of capital-intensive industries in various regions, hinder the
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process of advanced manufacturing structure and service-oriented industrial structure, and thereby
exacerbate urban carbon emissions.

Hypothesis 2. The biased allocation of land resources in the industrial field will exacerbate carbon
emissions by inhibiting urban innovation and technological progress.

Hypothesis 3. The biased allocation of urban land resources in the industrial field will adversely
affect carbon emission governance by weakening the agglomeration effect of industrial agglomeration.

3. Model and Data
3.1. Model Settings

According to the theoretical mechanism, the equation quantifying the impact of land
resource misallocation on CO2 emissions can be expressed as follows:

ln Pit = α0 + β1 ln Git + βk∑
k

Xk
it + εit (1)

In which, P represents the CO2 emissions of city i in the period of t, G represents land
resource misallocation, k is the number of control variables, X represents other control
variables affecting urban CO2 emissions, and εit is a stochastic error term. The existing
literature suggests that other variables affecting urban CO2 emissions also include industry
size (L), energy consumption (Energy), foreign direct investment (Fdi), environmental
regulation (λ), urbanization (Urban), urban sprawl (Ru) and traffic conditions (Trf ), of
which, energy consumption is associated with CO2 emissions the most directly. Using
Spatial Dubin Model (SDM), Wu et al. (2021) [76] revealed that CO2 emissions may
bring about resource curse, and energy-dependent industries and CO2 emissions are
positively correlated. In the aspect of foreign direct investment, based on a panel data of
30 provinces in China, Song et al. (2021) [15] found that FDI can both promote and curb CO2
emissions, and the combined effect is that FDI has promoted CO2 emissions. Wang et al.
(2021) [77] explored the impact of urbanization on CO2 emissions, arguing that urbanization
will reduce CO2 emissions. Furthermore, the study reveals that urbanization can affect
CO2 emissions through energy efficiency, economic growth and industrial agglomeration,
which sheds light on the green, sustainable, and low-carbon development. Nevertheless,
overpopulation and traffic congestion as a result of urbanization will certainly drive CO2
emissions. Based on the “population-economy-environment” study, Liu et al. (2020) [78]
found that urban population, economy and vehicles can indirectly drive CO2 emissions.
Zhang and Xu (2017) [10] contend that the disorderly urban sprawl and the ensuing changes
in land use and coverage not only eroded the green space of cities, undermining landscape
and compromising ecosystem services, but also increased energy and resource consumption
and CO2 emissions. Thus, urban sprawl is an also major factor affecting CO2 emissions.
Based on the above analysis, this paper further controls the above variables in the equation,
and comes up with the measurement model as follows:

ln Pit = α0 + β1 ln Git + β2 ln Lit + β3 ln Energyit + β4 ln Fdiit + β5 ln λit + β6 ln Urbanit + β7 ln Ruit + β8 ln Tr fit + εit (2)

In which, β1~β8 are the coefficients of the impact of various control variables on urban
CO2 emissions.

3.2. Variables, Indicators and Data Source

This paper uses the panel data of 282 prefecture-level cities nationwide from 2005 to
2018. To ensure the integrity and availability of panel data, more than 10 cities with serious
data missing such as Laiwu, Lhasa, Sansha, Haidong, Chaohu, Longnan and Zhongwei
have been deleted. The data mainly come from the China City Statistical Yearbook, China
Land and Resources Statistical Yearbook, China Urban Construction Statistical Yearbook,
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and China Population and Employment Statistics Yearbook from 2006 to 2019. Due to the
lack of city-level price indexes, this paper adjusts the city data with price indexes at the
provincial level which are collected from the China Statistical Yearbook. The definition and
measurement methods of relevant variables and indexes are explained as follows.

(1) Urban CO2 emissions (P). GHG Protocol divides greenhouse gas emissions into three
types. The first type is the direct emissions from fossil fuel combustion in the manufacturing
and industrial production of enterprises, including emissions from stationary combustion,
mobile combustion, chemical or production processes, or fugitive emissions. The second is the
indirect emissions generated by the power purchased by enterprises, including the emissions
from steam generation, heating, air-conditioning, etc. The third is the indirect emissions other
than the second type, including emissions generated from upstream and downstream of a
company’s supply chain or value chain, such as the extraction, production and transportation
of raw materials, and consumers’ use of products and services, etc. The first type is direct
emissions while the second and third type are indirect emissions. At present, no CO2 emission
data has been directly published by statistical agencies in China. The existing list of CO2
emissions suggests that a majority of emissions in China belong to the first type, namely,
direct emissions from enterprises (Guan et al., 2021; Shan et al., 2018/2020) [79–81]. Referring
to the approach of Chen et al. (2020a) [82], this paper measures urban CO2 emissions data
based on three satellite datasets, e.g., two nighttime light datasets, which are the DN values of
DMSP/OLS1 and NPP/VIIRS2, and terrestrial carbon sequestration data provided by MODIS
NPP3. Vegetation has a significant ability to isolate and reduce CO2 emissions, so the carbon
sequestration of terrestrial vegetation should be further deducted when calculating CO2, and
the calculation method of terrestrial carbon sequestration value in this paper is the same as
that adopted by Chen et al. (2020) [83]. Since only provincial-level energy balance sheets
are available, and energy consumption data of cities is lacking, this paper unifies the image
scale of DMSP/OLS and NPP/VIIRS with the PSO-BP approach, and obtains the scale of
nighttime light data and simulates the matching relationship related to CO2 emissions, so as
to measure urban CO2 emissions using the sum of DN values as a proxy. In addition, given
the geographic heterogeneity of some data, this paper obtains the coordinates of cities with
minimum bounding rectangle (MBR), and obtains the area of cities using Arc map 10.5, and
finally obtains the CO2 emissions4 of 282 cities by taking DN values, homogeneous dummy
variables, and the sum of years as input parameters, central coordinates (latitude X and
longitude Y) and area of city (A) as supplementary input parameters, and provincial-level
CO2 emissions as output parameters, using weighted average method (Meng et al., 2014;
Su et al., 2014; Yang et al., 2020) [84–86].

The provincial-level CO2 emission data in the above analysis is estimated based on the
CO2 emissions of 30 provinces in China (excluding Tibet, Hong Kong, Macao, and Taiwan)
from 2005 to 2018 with the method proposed in the Intergovernmental Panel on Climate
Change (IPCC). Specifically, the consumption of various fuels is converted into the unified
unit joules, and multiply by the CO2 emissions factor of various fuels to obtain the actual
CO2 emissions of various fuels, and then calculate the actual carbon dioxide emissions of
China’s provinces. The equation is as follows:

Ct
E =

30

∑
i=1

Ct
Direct,i

=
30

∑
i=1

17

∑
j=1

(
Et

ij × LCVt
ij × CCt

ij × COFt
ij ×

44
12

)
(3)

where, i represents the province and j refers to the way of energy use. Ct
E is the total CO2

emissions of the province (unit: million ton); Et
ij refers to the consumption of energy j of

each province, which are collected from the Energy Balance Sheet (Physical Quantity) in
the China Energy Statistical Yearbook over the years. The physical quantity of energy is
converted according to the Conversion Factors from Physical Units to Coal Equivalent
annexed to the China Energy Statistical Yearbook. LCVt

ij is the lower heating value of
energy j, or the calorific value of a unit of fossil fuel in combustion, which are collected from
the average lower heating value of energies in China in Appendix IV of the China Energy
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Statistical Yearbook; CCt
ij represents the carbon content in energy j, which is the coefficient

of CO2 emissions specified in IPCC (2006) [87]; COFt
ij is the carbon oxidation factor of

energy j, or the oxidation rate of a fossil fuel. CO2 contains 1 carbon atom and 2 oxygen
atoms and has a molecular weight of 44 (C-12, O-16), in another word, the combustion
of 1 ton of carbon in oxygen will produce 44/12 tons of CO2. Hence, CCt

ij ×COFt
ij × 44

12 is
the CO2 emissions per unit of net heating value of energy j, The 17 types of fossil fuels
consumed by provinces in China include raw coal, clean coal, other washed coals, briquette,
gangue, coke, coke oven gas, blast furnace gas, converter gas, other gases, other coking
products, crude oil, gasoline, kerosene, diesel fuel, fuel oil, naphtha, lubricating oil, paraffin,
mineral spirits, asphalt, petroleum coke, other petroleum products, liquefied petroleum
gas, refinery gas and natural gas.

(2) Land resource misallocation (G). Due to limited data, most of the existing studies
exploring land resource misallocation use the ratio of the assigned land by agreement to
the total assigned land, and the ratio of supplied land for industry, mining and storage to
the total assigned state-owned construction land to reflect the intensity of land resource
misallocation (Li and Luo, 2017; Li et al., 2016) [27,88]. However, such ratios actually
emphasize more on the different ways of assignment or the different structures of land,
and fail to accurately reflect the essence of misallocation. Misallocation is, in essence,
the deviation from the optimal value, which, if merely reflected by ratios, may result in
spurious relationship in the empirical analysis, due to the control of land by agreement
or industrial and mining land. To obtain the “optimal value” and the deviation, referring
to the method proposed by Hsieh and Klenow (2009) [24], this paper measured land
resource misallocation with marginal product. Classical microeconomic theory holds that
factors can achieve the optimal allocation in a totally competitive market, at which point,
the marginal product will be consistent with marginal costs and factor prices. In a fully
competitive market, the marginal product of land can be represented by the optimal price
when land resources are optimally allocated, and the deviation of the actual price from such
optimal price can directly reflect the intensity of land market distortion and land resource
misallocation. This paper uses Cobb–Douglas production function to measure the marginal
product of land as follows:

ln Yit = ∑
k

ρi,kUk
it + ηi,1 ln Lit + ηi,2 ln Kit + ηi,3 ln Sit + ξit (4)

where, Uit reflects the technological progress of a city, and is represented by the percentage
of employees in information technology, computer services and software industries, and
scientific research and technical services in the total employees; Yit is the value added of
industry in a city, and is represented by the total output of the secondary industry; Lit is the
labor in the industrial sector, which is represented the urban employees in the secondary
industry. Kit refers to the capital stock in the industrial sector, which is calculated using
the annual fixed asset investment of a city with the equation Kit = (1− ψ)Ki,t−1 + It/wi,t,
whereψ is the annual depreciation rate which is assumed as 5%, It is fixed asset investment,
and ωi,t is the cumulative capital price of each city. Referring to the practice of Ke and
Feser (2010) [89], this paper estimated the capital stock in the industrial sector with the
current assets and net fixed assets of large industrial enterprises in each city. S is the area of
industrial land of each city which is collected from the China Urban Construction Statistical
Yearbook. η1~η3 are elasticity coefficients, and returns to scale are assumed to be constant,
ηi,1 + ηi,2 + ηi,3 = 1; ξit is a stochastic error term. By transforming Equation (4), we obtained
the following equation which can measure the elasticity coefficients of various factors:

ln
Yit

Lit
= ρiUit + ηi,2 ln

Kit

Lit
+ ηi,3 ln

Sit

Lit
+ ξit (5)
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By estimating Equation (5) using fixed effects model, the estimated value of ηi,1, ηi,2,
ηi,3 can be obtained, which are η̂i,1, η̂i,2, η̂i,3, respectively. Thus, we can further calculate the
marginal output of the industrial land of each city as follows:

MPS = η̂i,3
Y
S

(6)

where MPS is the marginal output of industrial land. r represents the price of industrial
land. The ratio of the marginal output of industrial land to the price is:

G =
MPS

r
(7)

in which, if G is equal to 1, it means there is no misallocation of industrial land; if G is
greater than 1, it means the due value of industrial land is greater than its actual price, or
the land is underpriced, and the land resource is negatively misallocated. If G is less than 1,
the due value of industrial land is less than its actual price, or the land is overpriced, and
the land resource is positively misallocated. τs represents the intensity of land resource
misallocation, then:

G =
MPS

r
= 1 + τs (8)

where τs can measure the intensity of misallocation. If τs is equal to 0, there is no
misallocation, otherwise, there exists misallocation. Take the logarithm of Equation (8)
ln G = ln(1 + τs) ≈ τs, the estimation result of lnG reflects the impact of land resource
misallocation.

The calculation of r is complicated. Since the published data does not reveal the
complete price information of different types of land in prefecture-level and above cities,
this paper uses web crawling to collect all the transaction data of commercial land, resi-
dential land and industrial land of 282 prefecture-level cities of China from 1 June 2005
to 31 December 2018 from the website of the Ministry of Land and Resources. These data
detail relevant information of each land transaction, including the supply object, location
and area of land, transaction price, land supply method, land use, etc. In August 2006,
China’s State Council promulgated the “Notice of the State Council on issues related to
strengthening land regulation”, which stipulates that the transfer of industrial land must
adopt market-oriented methods such as bidding, auction and listing. More importantly,
“the code for the transfer of state-owned land use rights by bidding, auction and listing
(Trial)” issued by the Ministry of land and resources on 31 May 2006, clearly requires the
land authorities of the municipal and county governments to publish the transfer plan of
each state-owned land use right in advance on the China land market network online, and
publish the transfer results of each land afterwards. Therefore, the land transaction data
published on China land market website is complete and accurate. This paper adds up the
area and price of assigned land which are supplied through tender, auction and listing, and
obtained the average price (10,000 yuan/km2)5 of commercial land, residential land and
industrial land after calculating the ratio of transaction price to the total area of assigned
land. At last, this paper obtains the land resource misallocation of 282 prefecture-level cities
with the annual price of industrial land through Equation (8).

(3) Other variables. Referring to the method proposed by Han and Ke (2013) [90], this
paper calculated the foreign direct investment (Fdi) using perpetual inventory method, the
fixed price takes the price of 2003 as benchmark and the depreciation rate is assumed as
5%. This paper uses the ratio of non-agricultural population to total population in a city
to represent its urbanization level (Urban). Since the data of non-agricultural population
is updated only to 2010 in the China City Statistical Yearbook, the data of the following
years are made up according to that of the China Population and Employment Statistics
Yearbook. Urban sprawl (Ru) is represented by the ratio of built-up area to the construction
land, which is directly collected from the China City Statistical Yearbook. The population
of the secondary sector can be measured using the labor in the industrial sector (L), which,
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to a large extent, reflects the development status of industry in the cities. Environmental
regulation (λ) reflects a city’s emphasis on environmental pollution control, and is repre-
sented by the frequency of the word “environment” in the policy documents and work
reports of the prefecture-level municipal government. In general, the higher the frequency,
the more attention the local government pays to environmental pollution, the stronger
the environmental regulation, and the greater the pressure faced by enterprises. The cal-
culation of energy consumption (Energy) is complicated as well. Currently, the available
statistics of energy mainly include natural gas, liquefied petroleum gas, and electricity,
etc. As the China City Statistical Yearbook does not publish data on the consumption
of industrial natural gas and liquefied petroleum gas, in order to minimize the loss of
samples, this paper uses the total electricity consumption (10,000 kWh), the total supply
of natural gas (10,000 m3) and liquefied petroleum gas (ton) of the whole society in the
Yearbook to calculate the energy consumption of the whole society. The said consumption
is converted into standard coal according to the “Conversion Factors from Physical Units
to Coal Equivalent”6. At last, the standard coal consumption converted from natural gas,
liquefied petroleum gas and electricity are added up. Traffic conditions (Trf ) measured
by road area per capita (m2/person) is directly collected from the China City Statistical
Yearbook, which, to some extent, reflects the potential traffic pressure faced by the city
and the possibility of traffic congestion. Table 1 shows the values of CO2 emissions, land
resource misallocation and other variables in prefecture-level cities in China.

Table 1. Descriptive statistics of land resource misallocation, carbon emissions and other variables in
prefecture level cities in China.

Variable Mean Std. Dev. Minimum Maximum

P (Carbon emission, 10,000 tons) 2701.814 2387.78 172.334 23,071.172
G (Misallocation degree of land resources) 0.8902 9.9475 −0.9726 1619.0260

L (Labor force in industrial sector, 10,000 people) 15.813 27.87 0.0000 297.59
Ru (Ratio of built-up area to construction land area) 1.096 1.831 0.1710 105.344

λ (Proportion of environmental word frequency) 0.051 0.027 0.0000 0.253
Fdi (Foreign direct investment stock, 10,000 yuan) 2,734,581.3 11,483,099 0.0000 345,300,000

Urban (Urbanization rate) 0.353 0.239 0.038 1
Energy (Energy consumption, 10,000 tons of standard coal) 149.811 303.498 0.726 4034.828

Trf (Road traffic density, m2/person) 11.542 10.088 0.31 348.656

4. Results and Discussion
4.1. Benchmark Regression and Analysis

In order to test the impact of land resource misallocation on urban CO2 emissions,
this paper tests the measurement model with appropriate estimation method in the first
place. As the Hausman test rejects the null hypothesis of the random effects (RE) model
at the 1% level, the fixed-effects (FE) model proves to be more appropriate for the panel
data in this paper. Under the controlled fixed effects of city and year, this paper estimated
the measurement model with cluster-robust standard errors at the city level. While using
fixed effects model, this paper also conducts estimation using mixed effects model (OLS).
The results of benchmark regression are shown in Table 2. Columns (1) and (3) shows
the results of the OLS model and the fixed effects model, respectively, when no control
variable is introduced. The results suggest that in both models, the coefficient of land
resource misallocation (G) is significant at the 1% level, which preliminarily verifies the
hypothesis that land resource misallocation exacerbates urban CO2 emissions pollution.
Land resource misallocation as a result of the strategies of local government such as the
supply of industrial land on a large scale at low prices, restricting the supply of high-priced
residential land, significantly increases urban CO2 emissions by hindering the improvement
of manufacturing structure and industrial structure, stifling technological innovation, and
weakening the agglomeration effect. Columns (2) and (4) shows the estimation results
after introducing control variables, which shows that the coefficient of land resource
misallocation in the mixed effects model is positive, but insignificant, while in the fixed
effects model, the coefficient of land resource misallocation is still significantly positive
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at the 1% level, and the degree of fitting has improved, suggesting that the fixed effect
factors at the city level have obviously impacted CO2 emissions, and it is rational to control
both the fixed effect of city and year. The result further confirms the conclusion that land
resource misallocation can increase the level of urban CO2 emissions. For a long period
of time, due to the local governments’ development model of making profit from land,
urban construction land in many regions is widely used for industrial purposes at prices
much lower than the market value or even at no price. A large number of low-efficiency
industrial enterprises rushes into the city in order to obtain lease concessions rather than
market efficiency, which hampers the improvement of green technology innovation and the
agglomeration effect, and hinders the optimization of industrial structure for a long time,
and exacerbated CO2 emissions. The elasticity coefficient of land resource misallocation
on CO2 emissions is 0.0179, significantly positive at the 1% level, meaning that for every
10% increase in land resource misallocation, the CO2 emissions will increase by 0.179% on
average. This requires that all regions should optimize the allocation of land resources,
improve the assessment and competition mechanism of local governments, and correct the
allocation bias of local governments in the treatment of CO2 emissions pollution, in order
to lay a solid foundation for achieving low carbon, zero carbon and even negative carbon.

Table 2. Baseline regression results.

Variable
(1) (2) (3) (4)

OLS OLS FE FE

lnG 0.2207 *** 0.0062 0.0607 *** 0.0179 ***
(8.39) (0.33) (7.28) (3.39)

lnL 0.3760 *** 0.0746 ***
(35.13) (10.68)

lnEnergy 0.0686 *** 0.1634 ***
(8.39) (26.67)

lnTrf 0.2982 *** 0.1671 ***
(18.63) (21.19)

lnFdi 0.0182 *** 0.0398 ***
(5.34) (16.01)

lnλ 0.0145 0.0351 ***
(0.84) (6.93)

lnUrban −0.3464 *** 0.1049 ***
(−22.14) (6.72)

lnRu −0.0096 0.0051
(−0.30) (0.50)

_cons 7.6801 *** 5.2797 *** 7.6206 *** 6.1420 ***
(486.86) (62.16) (1628.72) (131.34)

Ctiy FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes

N 3948 3948 3948 3948
R2 0.0175 0.5233 0.0142 0.5876
F 70.3975 510.2356 52.9610 612.5457

Note: T-values calculated using the robust standard error of city-level clustering are in parentheses. All regressions
control for city and year fixed effects. *** represents statistical significance at the 1% levels.

In terms of various control variables, the impact of labor in the industrial sector (lnL) is
significantly positive, suggesting that the mode of driving industrial development through
intensive use of labor in various regions has significantly exacerbated CO2 emissions
pollution. The impact of energy consumption (lnEnergy) is also significantly positive,
suggesting that energy consumption is still an important source of CO2 emissions pollution;
road density (lnTrf ) is estimated to be significantly positive as well, suggesting that the
density of the roads in most cities is too high, there has been obvious congestion, which has
caused the increased CO2 emissions in the cities; foreign direct investment (lnFdi) has also
significantly driven CO2 emissions, suggesting that foreign direct investment will, to some
extent, aggravate CO2 emission pollution; the impact of environmental regulation (lnλ) is
also significantly positive, indicating that while environmental regulation has strengthened
environmental governance, it will also increase the cost of pollution control and treatment
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of enterprises, thereby reducing the investment in technological research and development,
which hampered the improvement of green innovation of enterprises or cities; the impact
of urbanization level (lnUrban) is significantly positive, meaning industrial development
boosting urbanization will exacerbate urban CO2 emissions; yet urban sprawl (lnRu) does
not have any evident impact on CO2 emissions, suggesting that urban sprawl in China has
been improved, urban expansion becomes more intensive and integrated, thus does not
significantly increase CO2 emissions.

4.2. Robustness Test
4.2.1. Substitution of Core Explanatory Variables

In order to test the reliability of the result and compare the robustness of the impact
of different indicators on CO2 emissions, this paper substitutes some core explanatory
variables to examine the robustness of the results. Since the data of assigned industrial land
of the prefecture-level cities is not provided in the China Land and Resources Statistical
Yearbook, and only the data of assigned land by agreement is available, most of the existing
research regards “assignment by agreement” as a synonym for “industrial land” and
“low-price assignment” (Yang et al., 2014) [91]. This paper carries out the robustness test
by substituting the indicator in Equation (8) with the per capita area of assigned land
by agreement (Rjxycr). The larger the area of assigned land by agreement, the higher
the ratio of industrial land and development zone to the total land, the more intense the
misallocation of land resources in the cities. Moreover, drawing on the experience of Xie
(2020) [92], this paper further testes the robustness by substituting the indicators measured
by marginal output method with the ratio of supplied land for industry, mining and storage
to the total land assigned (Gk1) and ratio of per capita area of supplied land for industry,
mining and storage (Rjgk). The purpose of using these substituting indicators is to probe
into the impact of land resource misallocation on CO2 emissions from the perspective of
the huge amount of industrial land assigned or supplied. As the data of land for industry,
mining and storage is only available from 2009 in the China Land and Resources Statistical
Yearbook, the sample in this paper is from the year 2009 to 2018. The robustness test results
are as shown in Table 3.

Table 3. Robustness test of replacement land resource mismatch index.

Variable (1) (2) (5)

Rjxycr 0.0017 ***
(12.56)

lnGk1 0.0095 **
(2.25)

Rjgk 0.0001 *
(1.65)

lnL 0.0766 *** 0.0616 *** 0.0619 ***
(11.22) (10.87) (10.92)

lnEnergy 0.1561 *** 0.0681 *** 0.0678 ***
(25.88) (12.44) (12.39)

lnTrf 0.1576 *** 0.0833 *** 0.0831 ***
(20.29) (12.48) (12.44)

lnFdi 0.0382 *** 0.0252 *** 0.0253 ***
(15.64) (8.81) (8.87)

lnλ 0.0423 *** −0.0110 ** −0.0111 **
(8.46) (−2.18) (−2.19)

lnUrban 0.1189 *** 0.0511 *** 0.0497 ***
(7.75) (4.20) (4.09)

lnRu 0.0071 0.0161 * 0.0170 **
(0.72) (1.92) (2.03)

_cons 6.2044 *** 6.8045 *** 6.7946 ***
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Table 3. Cont.

Variable (1) (2) (5)

(135.18) (146.01) (146.31)
Ctiy FE Yes Yes Yes
Year FE Yes Yes Yes

N 3948 2820 2820
R2 0.5714 0.3140 0.3134
F 656.9408 140.4780 140.0547

Note: T-values calculated using the robust standard error of city-level clustering are in parentheses. *, **, and
*** represent statistical significance at the 10%, 5%, and 1% levels, respectively.

Column (1) in Table 3 shows that after substituting the indicator of Equation (8) with the
ratio of per capita land by agreement (Rjxycr), the impact of land resource misallocation on
CO2 emissions is significantly positive at the 1% level, indicating that the more the assigned
land by agreement per capita, the more severe the misallocation of land resources, significantly
increasing CO2 emissions in the cities. After using the ratio of land for industry, mining and
storage to the total land assigned (lnGk1) or the ratio of supplied land for industry, mining
and storage (Rjgk) to reflect land resource misallocation, the coefficients of land resource
misallocation in Column (2) and (3) are still significantly positive, which shows that the
empirical results of this paper do not depend on the specific form of the variables, and the
substitution of the core explanatory variables will not have a fundamental impact on the
robustness of the estimated results. In general, after substituting the indicator of Equation
(8) with indicators such as per capita area of assigned land by agreement, per capita area of
supplied land for industry, mining and storage and the ratio of land for industry, mining
and storage, the conclusion that land resource misallocation has exacerbated CO2 emissions
still stands, yet the effect of the impact measured using marginal output method is more
significant. Thus, the land resource misallocation indicators measured using marginal output
method adopted by this paper has obvious advantages in defining the connotation of variables
and the estimation of effect.

4.2.2. Analysis after Winsorization and Truncation of Outliers

To eliminate the effect of outliers, this paper further carries out regression analysis
after winsorizing and truncating the outliers. Column 1 and Column 2 in Table 4 show the
result of urban CO2 emissions (P) at the 1% level after winsorization and truncation, re-
spectively. Although the coefficient of land resource misallocation on urban CO2 emissions
has changed, it is still significantly positive at the 0.01 level, which verifies the robustness
of the result of benchmark regression, namely, land resource misallocation tremendously
contributes to the increase in urban CO2 emissions.

Table 4. Results after winsorization and truncation of outliers.

Variable (1) Truncated on Both Sides 1% (2) Tail Contraction on Both Sides 1%

lnG 0.0219 *** 0.0202 ***
(4.23) (3.92)

lnL 0.0670 *** 0.0695 ***
(9.72) (10.20)

lnEnergy 0.1629 *** 0.1631 ***
(26.74) (27.30)

lnTrf 0.1660 *** 0.1657 ***
(21.23) (21.54)

lnFdi 0.0376 *** 0.0385 ***
(15.21) (15.86)
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Table 4. Cont.

Variable (1) Truncated on Both Sides 1% (2) Tail Contraction on Both Sides 1%

lnλ 0.0339 *** 0.0346 ***
(6.76) (6.99)

lnUrban 0.1111 *** 0.1075 ***
(7.23) (7.06)

lnRu 0.0114 0.0099
(1.13) (1.00)

_cons 6.1972 *** 6.1753 ***
(133.90) (135.40)

Ctiy FE Yes Yes
Year FE Yes Yes

N 3728 3948
R2 0.5890 0.5933
F 603.6165 627.2193

Note: T-values calculated using the robust standard error of city-level clustering are in parentheses. *** represents
statistical significance at the 1% levels.

4.2.3. Endogeneity Test

The endogeneity of the model in this paper mainly comes from two aspects. First, some
variables may be missing. Although some core variables affecting CO2 emissions have
been controlled in the model of this paper, there may exist some missing variables that not
only affect CO2 emissions, but are also highly correlated with land misallocation indicators,
causing endogeneity and biased estimations in the regression model. Second, there are
reciprocal causal effects between some explanatory variables and explained variables.
For example, land resource misallocation has impacted CO2 emissions in cities, yet the
increased CO2 emissions will also have an impact on the local government’s environmental
performance assessment, which in turn will affect the local government’s allocation of
land resources in promoting economic development. To overcome the endogeneity and
better estimate the impact of land resource misallocation, this paper uses the following two
variables as instrumental variables to carry out two-stage least-squares (2SLS) test. The first
instrumental variable is the interaction term between average slope and elevation of cities
(Ygcpd). The reason for choosing this instrumental variable is that the geographic features
such as terrain, slope and elevation are closely related to land use, but will not have a direct
impact on CO2 emissions. Specifically, the elevation and slope of cities will directly affect
the location selection of industrial parks, development zones and construction zones. Cities
with higher elevation and greater slope will be less likely to be chosen for construction of
industrial zones, and less land will be assigned for industrial purpose. Even if the industrial
land is assigned at a low price or even no price, enterprises will not choose to invest and
build factories in the area with high elevation and steep slope due to the consideration of
development, construction, and transportation cost and risks of natural disasters. Natural
and geographic factors such as elevation and terrain slope are strictly exogenous to the
operation of economic system, and will not directly affect CO2 emissions, which meets the
requirements of selecting instrumental variables. The second instrumental variable is the
total supplied land for industry, mining and storage (Gk2). Drawing on the research by
Xie (2020) [92] who studied the impact of land resource misallocation on the innovation
capability of cities, this paper selects total supplied land for industry, mining and storage
as an instrumental variable, since under the current land supply policy in China, the total
land supplied of each city is strictly controlled and planned by the central and provincial
governments. For a single city, the total supplied land for industry, mining and storage
is exogenous, in addition, the total land supplied is closely related to the structure of
land supply, thus meeting the requirements of instrumental variable. Table 5 shows the
first-stage and second-stage results using the interaction term between average slope and
elevation, and the total supplied land for industry, mining and storage as instrumental
variable, respectively.
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Table 5. Land resource misallocation and carbon emissions: two stage least square method (2SLS).

Variable
First Stage Regression Second Stage Regression

lnG lnP

lnG 1.0525 ***
(4.77)

lnYgcpd 31.0513 ***
(3.88)

lnGk2 0.0401 ***
(3.48)

lnL 0.0333 0.0105
(1.44) (0.39)

lnEnergy 0.0237 −0.0007
(0.95) (−0.02)

lnTrf −0.0440 0.0850 ***
(−1.51) (2.95)

lnFdi 0.0053 0.0038
(0.43) (0.29)

lnλ −0.0313 0.0181
(−1.52) (0.80)

lnUrban −0.0601 0.0436
(−1.14) (0.83)

lnRu 0.0255 −0.0194
(0.75) (−0.53)

_cons −473.7348 ***
(−3.89)

Sargen-test 0.331
[0.5652]

Wald F statistic 11.767
Ctiy FE Yes Yes
Year FE Yes Yes

N 2820 2820
R2 0.0220 −11.8303

Note: *** represent statistical significance at the 1% levels. In the first stage regression, the value in parentheses is
t; in the second stage regression, the value in parentheses is Z, and in square brackets is the adjoint probability of
the corresponding statistics.

The 2SLS result in Table 5 shows that the interaction term between average slope and
elevation (lnYgcpd) and the total area of supplied land for industry, mining and storage
(lnGk2) are highly correlated with land resource misallocation (G) at the 1% level, where
the statistic value of Wald F is 11.767, which is greater than the critical value 10.00 of Stock-
Yogo weak ID test at the 10% level, there is no weak instrumental variable. In addition,
the Sargan test result also accepts the null hypothesis that the instrumental variables are
effective, thus, the instrumental variables selected in this paper are rational. The second-
stage result in Column (2) also suggests that the misallocation of land resources with the
basis toward industrial land has significantly increased CO2 emissions in the cities. To sum
up, the estimation results after the controlling the endogeneity of explanatory variables are
basically consistent with Table 2, which further verifies the robustness and reliability of the
result of benchmark regression.

4.3. Mechanism Test

The theoretical analysis of this paper reveals that land resource misallocation will
tremendously increase CO2 emissions by hindering industrial structure advancement and
servitization of industrial structure, inhibiting technological innovation, and weakening
the economic effect of industrial agglomeration. Thus, referring to the mediating effect
test proposed by Hayes (2018) [93], this paper set up a mediation model to test these
mechanisms. This paper uses manufacturing complexity (Gdh) of cities at prefecture level
and above to measure industrial structure advancement, and uses the proportion of the
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tertiary industry in gross regional output (Tir) to measure servitization of industrial struc-
ture, and the number of green patent applications (Lsfmzl) and the number of green utility
model applications (Lssyzl) to reflect green technology innovation of cities, and location
quotient to reflect industrial agglomeration (Agg). Taking these variables as mediating
variables, this paper sets up the mediation model to examine the impact mechanisms
of land resource misallocation on CO2 emissions. Specifically, based on the approach of
Zhou et al. (2016) [94], this paper used manufacturing complexity to reflect the industrial
structure advancement of the cities. The paper calculated technological complexity of the
manufacturing industry by averaging the technological complexity of HS 6-digit level
products, and taking the proportion of each industry in the total manufacturing output as
the weight, and finally obtained the city’s manufacturing complexity7 with the weight. The
calculation of manufacturing complexity needs the data of industrial enterprises in China,
and only the data up to 2013 are available in the database, this paper uses the sample from
2005–2013 for the mediating effect test. The proportion of the tertiary industry in gross
regional output used to measure the servitization of industrial structure and the number of
employees in the manufacturing sector used to measure location quotient come from the
China City Statistical Yearbook over the years. The number of green patent applications and
the number of green utility model applications are mainly collected and collated from the
China National Intellectual Property Administration and Google Patent in accordance with
the patent classification criteria published by the World Intellectual Property Office. As the
use and application of green patent is zero in some cities, this paper takes the logarithm
after adding 1 to the value. The mediation model is as follows:

ln Pit = ∆ + θ0 ln Git + φν

v

∑
ν=1

Zv,it + ξit (9)

Tit = Θ + θ0 ln Git + φν

v

∑
ν=1

Zv,it + ζ (10)

ln Pit = ∆ + θ0 ln Git + ϕTit + φν

v

∑
ν=1

Zv,it + ξit (11)

where, Θ and ∆ are constant terms, T represents various mediating variables, including
servitization of industrial structure (Tir), industrial structure advancement (Gdh), industrial
agglomeration (Agg), and the number of green patent applications (Lsfmzl) and the number
of green utility model applications (Lssyzl) which can reflect green technology innovation
of cities. Z is a control variable;$ is the number of control variables; ξ and ζ are random
errors. Firstly, the paper measures the result of Equation (9) to test whether the impact of
land resource misallocation on CO2 emissions is significantly negative, if yes, it will be
treated as a mediating effect, if no, it will be treated as a suppression effect. Secondly, the
paper carries out regression analysis with Equations (10) and (11) to examine whether both
the impact coefficient θ0 of land resource misallocation on mediating variable T in Equation
(10) and the coefficient ϕ in Equation (11) are significant. If both coefficients are significant,
the indirect effect is significant; if at least one coefficient is insignificant, Bootstrap will be
used to verify the null hypothesis θ0 ϕ = 0 , if the null hypothesis is rejected, the indirect
effect is significant, otherwise, the indirect effect is insignificant. Thirdly, the significance of
coefficient (θ0) is tested after various mechanism variables are introduced in Equation (11).
If θ0 is insignificant, there is only mediating effect and no direct effect; If θ0 is significant,
the direct effect is significant, where the fourth test must be carried out. Fourthly, we need
to compare the sign of the product of θ0, ϕ and the sign of θ0, if the signs are the same, then
there is partial mediating effect; if different, the effect is suppressor effect. The test results
are as shown in Tables 6 and 7.
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Table 6. Mediation effects test of land misallocation on carbon emissions I.

Mediation
Variable Servitization of Industrial Structure (Tir) Industrial Structure

Advancement (Gdh) Industrial Agglomeration (Agg)

Type of the
Equation Equation (9) Equation (10) Equation (11_ Equation (10 Equation (11) Equation (10) Equation (11)

lnG 0.0179 *** −0.0034 0.0178 *** −0.0437 ** 0.0329 ** −0.0496 *** 0.0130 **
(3.39) (−0.62) (3.36) (−2.51) (2.12) (−3.08) (2.52)

lnTir −0.0393 **
(−2.41)

lnGdh −0.0249 ***
(−6.57)

lnAgg −0.1199 ***
(−21.98)

lnL 0.0746 *** −0.0368 *** 0.0731 *** −0.0258 ** 0.0724 *** 0.4241 *** 0.1258 ***
(10.68) (−5.05) (10.44) (−2.13) (9.02) (20.69) (18.09)

lnEnergy 0.1634 *** 0.0640 *** 0.1659 *** 0.0835 *** 0.1286 *** −0.3550 *** 0.1207 ***
(26.67) (10.03) (26.71) (5.59) (11.32) (−19.78) (19.91)

lnTrf 0.1671 *** 0.0385 *** 0.1686 *** 0.0597 *** 0.0657 *** −0.3538 *** 0.1247 ***
(21.19) (4.69) (21.33) (4.79) (4.10) (−15.32) (16.33)

lnFdi 0.0398 *** 0.0363 *** 0.0413 *** 0.0352 * 0.0545 ** −0.0777 *** 0.0305 ***
(16.01) (14.01) (16.14) (1.74) (2.35) (−10.67) (12.87)

lnλ 0.0351 *** 0.0047 0.0353 *** 0.0289 ** 0.0193 * −0.0570 *** 0.0283 ***
(6.93) (0.89) (6.97) (2.34) (1.72) (−3.84) (5.95)

lnUrban 0.1049 *** 0.0639 *** 0.1075 *** 0.0241 *** 0.0490 −0.7104 ** 0.0196
(6.72) (3.93) (6.87) (6.07) (1.02) (−15.53) (1.29)

lnRu 0.0051 0.0072 0.0054 0.0160 * 0.0113 * −0.0136 0.0033
(0.50) (0.68) (0.53) (1.76) (1.83) (−0.46) (0.34)

_cons 6.1420 *** −1.5072 *** 6.0827 *** −1.0802 *** 5.7047 *** 2.4867 *** 6.4408 ***
(31.34) (−30.93) (51.13) (−33.04) (26.66) (18.16) (40.46)

Sobel test −0.0083 *
(−1.80)

0.0259 ***
(4.96)

0.0079 *
(1.749)

Ctiy FE Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes

N 3948 3948 3948 2538 2538 3948 3948
R2 0.5876 0.1675 0.5883 0.2961 0.4479 0.3780 0.6383

Note: ***, ** and * indicate significant at the level of 1%, 5% and 10%, respectively. Except for the Z value in Sobel
test, the values in other parentheses are t values.

Table 7. Mediation effects test of land misallocation on carbon emissions II.

Variable The Number of Green Patent Applications
(Lsfmzl)

The Number of Green Utility Model
Applications (Lssyzl)

Type of the Equation Equation (10) Equation (11) Equation (10) Equation (11)

lnG 0.0414 0.0147 *** 0.0922 *** 0.0093 **
(1.46) (3.06) (3.65) (1.97)

lnLsfmzl 0.0768 ***
(26.54)

lnLssyzl 0.0929 ***
(29.08)

lnL 0.3878 *** 0.0448 *** 0.2763 *** 0.0489 ***
(10.34) (6.93) (8.27) (7.74)

lnEnergy 0.8975 *** 0.0945 *** 0.8865 *** 0.0810 ***
(27.28) (15.34) (30.25) (13.12)

lnTrf 0.9047 *** 0.0976 *** 0.8482 *** 0.0883 ***
(21.36) (12.77) (22.48) (11.67)

lnFdi 0.1645 *** 0.0272 *** 0.1940 *** 0.0218 ***
(12.31) (11.74) (16.30) (9.42)

lnλ 0.1332 *** 0.0249 *** 0.1588 *** 0.0204 ***
(4.90) (5.37) (6.55) (4.46)

lnUrban 1.3477 *** 0.0014 1.3364 *** −0.0192
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Table 7. Cont.

Variable The Number of Green Patent Applications
(Lsfmzl)

The Number of Green Utility Model
Applications (Lssyzl)

Type of the Equation Equation (10) Equation (11) Equation (10) Equation (11)

(16.07) (0.10) (17.88) (−1.31)
lnRu 0.0891 −0.0017 0.0470 0.0008

(1.63) (−0.19) (0.97) (0.08)
_cons −3.0347 *** 6.3751 *** −2.6853 *** 6.3915 ***

(−12.09) (146.54) (−12.01) (149.44)

Sobel test 0.0274 ***
(4.461)

0.0368 ***
(5.679)

Ctiy FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes

N 3948 3948 3948 3948
R2 0.5985 0.6578 0.6445 0.6690

Note: *** and ** indicate significant at the level of 1% and 5%, respectively. Except for the Z value in Sobel test, the
values in other parentheses are t values.

The estimation results of Equation (9) in Table 6 show that the coefficient of land
resource misallocation is significantly positive at the 0.01 level, indicating that the land
resource misallocation caused by the biased allocation of urban construction land toward
the industrial land has significantly driven CO2 emissions. When the mediating variable
is servitization of industrial structure (lnTir), in Equation (10), the inhibitory effect of
land resource misallocation on servitization of industrial structure is insignificant, and in
Equation (11), servitization of industrial structure has a significant inhibitory effect on CO2
emissions at the 5% level. The Bootstrap method further reveals that, the test result rejects
the null hypothesis θ0 ϕ = 0 at the 5% level. Therefore, the indirect effect of land resource
misallocation by hindering servitization of industrial structure is significant. In Equation
(11), the impact of land resource misallocation on CO2 emissions is significantly positive
at the 0.01 level, and the sign of the product term of θ0 ϕ and θ0 are the same, meaning
there exists partial mediating effect, which verifies the mechanism that land resource
misallocation exacerbated CO2 emissions by hindering servitization of industrial structure
of the cities. When the mediating variable is industrial structure advancement (lnGdh),
the coefficient of the impact in Equation (10) is significantly negative, indicating land
resource misallocation has significantly hindered industrial structure advancement, and
the impact coefficient of industrial structure advancement on CO2 emissions in Equation
(11) is significantly negative, suggesting that industrial structure advancement can reduce
CO2 emissions. Thus, land resource misallocation has a significant indirect impact on
CO2 emissions by hampering industrial structure advancement. The impact coefficient of
land resource misallocation on CO2 emissions in Equation (11) is significantly negative,
indicating land resource misallocation has a direct effect on CO2 emissions. Furthermore,
the sign of θ0 ϕ and θ0 are the same, suggesting that industrial structure advancement
has a mediating effect in the impact of land resource misallocation. When the mediating
variable is industrial agglomeration (lnAgg), the estimated parameter of land resource
misallocation in Equation (10) is significantly negative at the 0.01 level, and the estimated
parameter of industrial agglomeration in Equation (11) is significantly negative, indicating
that land resource misallocation has a significant indirect effect on increasing CO2 emissions
by hindering industrial agglomeration. In Equation (11), the parameter of land resource
misallocation is significantly negative, suggesting that the direct effect of land resource
misallocation on CO2 emissions is still significant. In addition, the sign of θ0 ϕ and θ0 are
the same and are significant, suggesting there exists partial mediating effect, in another
word, the biased allocation of land resources toward industrial purpose has compromised
the industrial agglomeration effect, thus increasing CO2 emissions enormously.
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Table 7 shows that when the mediating variable is the number of green patent applica-
tions (lnLsfmzl), the estimated parameter of land resource misallocation in Equation (10) is
negative but insignificant, and the number of green patent applications in Equation (11) is
significantly negative. By further using Bootstrap method, we found that the product term
θ0 ϕ is significant and not zero, suggesting land resource misallocation has a significant
indirect effect on CO2 emissions by hindering green technology innovation of the cities. The
impact of land resource misallocation on CO2 emissions in Equation (11) is positive, and the
sign of θ0 ϕ and θ0 are the same, suggesting there exists partial mediating effect, i.e., green
technology innovation has a significant mediating effect on the impact of land resource
misallocation on exacerbating CO2 emissions, which verified the mechanism that land
resource misallocation exacerbates CO2 emissions by inhibiting technological innovation.
When the mediating variable is green utility model applications (lnLssyzl), the estimated
parameter of land resource misallocation in Equation (10) is significantly positive, and the
number of green patent applications in Equation (11) is significantly positive, indicating
that there exists an indirect effect in the impact of land resource misallocation on CO2
emissions by affecting green technology innovation. The coefficient of the impact of land
resource misallocation in Equation (11) is significantly positive, and the sign of product
term θ0 ϕ and θ0 are the same, meaning green technology innovation, represented by green
utility model applications, has a significant mediating effect in the impact of land resource
misallocation on CO2 emissions.

It is not hard to tell from the above results that although various mediating variables
have different mediating effects, they all have partial mediating effects on the impact
of land resource allocation on CO2 emissions, which sufficiently verifies the mechanism
that the biased allocation of land resources toward industrial sector has exacerbated CO2
emissions by cementing the rigidity of the industrial-based economic structure in various
regions, hindering the upgrading of the industrial structure, inhibiting the improvement of
innovation capabilities, and reducing the effect of economic agglomeration.

4.4. Further Analysis
4.4.1. Spatial Spillover Effect Test

In addition to affecting CO2 emissions of the city itself where land resources are misal-
located, land resource misallocation may have significant spatial spillover effect as well. As
an important environmental issue, CO2 emissions have obvious external features. Such
external feature of CO2 emissions determines that aside from local impact, surrounding
areas will also be affected by the spatial spillover effect of CO2 emissions. In addition, as a
means of competition amongst local governments for economic development and fiscal
revenue, land resource misallocation also brings about strategic interaction featured by
competition and imitation. This feature leads to the continuous spread of the impact of land
resource misallocation in space through the strategic interactions among local governments,
resulting in a spatial spillover effect. Under the centralized political and decentralized
economic system of China, in pursuit of revenue growth or promotion, competitions for
GDP, social welfare, infrastructure investment, FDI, and talents are prevalent among local
governments. In order to attract new domestic and foreign enterprises and create more jobs,
local governments have resorted to various preferential policies such as low or zero land
prices, lowering the quality of investment and environmental access and emission stan-
dards to attract investment, resulting in fierce competitions in industrial land assignment.
Such strategic interaction not only leads to the booming of capital-intensive industries
and heavy industries in various regions, but also causes industrial homogeneity and the
distortions in resource allocation in various regions, which intensifies the competition of
CO2 emissions among cities, and magnifies the spillover effect. To this end, this paper
draws on the practice of Han et al. (2018) [66], and uses SDM to explore the spatial spillover
effect of land resource misallocation on CO2 emissions by setting up a geographic distance
weights matrix between cities, which can be expressed as Wd = 1/dij, where dij is the
distance between cities calculated using latitude and longitude data, and i 6= j. Referring
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to the test adopted by Elhorst (2014) [95], this paper examined the spatial model with
Lagrange multiplier (LM) and likelihood ratio (LR), and discovered that the SDM with
spatio-temporal fixed effects is the optimal model. Since SDM contains many spatial in-
teraction terms of explained variables, the estimation results of the explanatory variables
cannot represent the marginal impact on CO2 emissions. It is necessary to further estimate
the direct and indirect effects of land resource misallocation and other explanatory variables
in SDM on CO2 emissions by using partial differential method based on the SDM. Direct
effects can reflect the impact of explanatory variables such as land resource misallocation
on the city’s CO2 emissions, including the spatial feedback effect, e.g., changes in the city’s
factors will affect the CO2 emissions of adjacent cities, which in turn affects the city’s CO2
emissions, so on and so forth. Indirect effects represent the spatial impact of variables such
as land resource misallocation in adjacent cities on the city’s CO2 emissions, or vice versa,
reflecting the spatial spillover effect. The estimation results of the direct effect and spatial
spillover effect of land resource misallocation on CO2 emissions are as shown in Table 8.

Table 8. Estimation results of direct and indirect effects of land misallocation on urban carbon emissions.

Variable
Direct Effects Indirect Effects Total Effects

Coefficient t Value Coefficient t Value Coefficient t Value

lnG 0.0395 *** 2.87 0.0957 ** 2.38 0.1352 *** 2.69
lnL 0.1542 ** 2.41 −0.0534 *** −2.64 0.1008 ** 2.49

lnEnergy 0.0954 *** 3.72 0.0707 * 1.85 0.1661 ** 2.55
lnTrf 0.0211 * 1.91 0.0075 1.08 0.0286 0.96
lnFdi 0.0225 ** 2.13 0.0371 * 1.68 0.0596 * 1.83
lnλ −0.0136 * −1.86 0.0089 0.68 0.0047 1.09

lnUrban −0.0681 *** −4.92 −0.1253 *** −3.85 −0.1934 *** −4.11
lnRu 0.0539 1.58 0.0385 * 1.79 0.0924 1.19

Note: *, **, and *** represent statistical significance at the 10%, 5%, and 1% levels, respectively.

Table 8 shows that, land resource misallocation (lnG) not only significantly increases
CO2 emissions of the city, but also significantly increases CO2 emissions of adjacent cities.
For a long period of time, due to the local governments’ development model of making
profit from land, urban construction land in many regions is widely used for industrial
purposes at prices much lower than the market value or even at no price. A large num-
ber of low-efficiency industrial enterprises rushes into the city in order to obtain lease
concessions rather than market efficiency, which hampers the technology innovation and
stifles the agglomeration effect, and hinders the optimization of industrial structure, in-
creases energy consumption and exacerbated CO2 emissions. The diffusion characteristic
of CO2 emissions and the strategic interactions among local governments in the growth
competition continuously pass the impact of land resource misallocation on CO2 emissions,
resulting in a significant spatial spillover effect in a larger scope. Therefore, in the process
of optimizing land resource allocation and strengthening the control of CO2 emissions,
all regions should make overall plans and push forward with concerted efforts, improve
the assessment and competition mechanism between local governments, and rectify the
deviation of misallocation by local governments, and achieve joint control and regulation
among regions.

4.4.2. Heterogeneity Analysis Based on Different City Levels

Due to the different levels and patterns of economic development, the modes and
efficiencies of land resource allocation of cities at different levels vary a lot as well. In order to
further explore the impact of land resource misallocation on CO2 emissions in cities of different
sizes, this paper categorizes 282 sample cities across China according to their population of
permanent residents. Specifically, according to the Notice of the State Council on Adjusting
the Standards for Categorizing City Sizes released on November 21, 2014, cities in China
are divided into four categories, namely, Type-I large cities and above cities (population
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over 3 million), Type-II large cities (population 1~3 million), medium-sized cities (population
0.5 million~1 million) and small cities (population less than 0.5 million). The purpose of
classifying Type-I large cities and megacities into one category is that there are only few such
cities in China and they basically serve the same functions in the development of city clusters
or a certain region as central cities. The heterogeneous impacts of land resource misallocation
on CO2 emissions in cities at different levels are as shown in Table 9.

Table 9. Heterogeneity test results based on cities of different levels.

Variable (1) Type-I Large and
above Cities (2) Type-II Large Cities (3) Medium-Sized Cities (4) Small Cities

lnG 0.0647 *** 0.0221 ** 0.0146 * 0.0045
(3.31) (2.45) (1.80) (0.33)

lnL 0.0380 * 0.0423 *** 0.0957 *** 0.0798 ***
(1.76) (4.06) (7.38) (4.44)

lnEnergy 0.1158 *** 0.2135 *** 0.1288 *** 0.1559 ***
(5.71) (19.80) (13.01) (10.52)

lnTrf 0.1592 *** 0.1092 *** 0.1597 *** 0.2033 ***
(4.98) (7.87) (13.30) (9.32)

lnFdi 0.1484 *** 0.0680 *** 0.0555 *** 0.0290 ***
(7.48) (10.25) (10.23) (7.77)

lnλ 0.0229 0.0354 *** 0.0333 *** 0.0154
(1.59) (4.65) (4.06) (1.01)

lnUrban −0.0208 0.0537 ** 0.0956 *** 0.1765 ***
(−0.38) (2.12) (4.14) (2.96)

lnRu 0.0032 0.0230 −0.0115 0.0321
(0.13) (1.38) (−0.69) (1.17)

_cons 5.2914 *** 5.7177 *** 5.9460 *** 6.1655 ***
(17.16) (58.70) (76.33) (43.92)

Ctiy FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes

N 294 1596 1470 588
R2 0.6737 0.6232 0.5789 0.5803
F 65.3040 287.3865 220.6190 84.3424

Note: *, **, and *** represent statistical significance at the 10%, 5%, and 1% levels, respectively.

Table 9 shows that the impacts of land resource misallocation on CO2 emissions are
heterogeneous for cities at different levels. Generally speaking, cities of different sizes and
levels are in fierce competition for growth driven by the pursuit of promotion and revenue,
which lead to cities’ adoption of various land policies to attract investment and gain growth
advantages, resulting in different impacts of land resource misallocation on CO2 emissions.
The estimated parameters of Type-I large cities and above cities, Type-II large cities and
medium-sized cities land resource misallocation are significantly positive at the 1%, 5%
and 10% level, respectively, and the coefficients of land resource misallocation decrease
progressively. While the coefficients of land resource misallocation of small cities have not
passed the significance test, indicating that the smaller the city size, the weaker the impact
of land resource misallocation. Furthermore, land resource misallocation significantly
increases the CO2 emissions of medium-sized cities and above cities but has no significant
impact on the CO2 emissions of small cities. Compared with small cities, medium-sized
and above cities have more large-scale development zones and new districts, the biased
allocation of construction land at low prices in these areas will inevitably result in more
serious land resource misallocation and efficiency losses, thus, more likely to see increased
CO2 emissions. On one hand, medium-sized cities and II-type large cities are the bonds
connecting large cities and small cities in the urban system. Their agglomeration effect
and attractiveness to enterprise investment are far less than Type-I large cities and above
cities, yet much greater than small cities, thus becoming important carriers for the transfer
of manufacturing industry and the development of industry. Local governments take
advantage of the abundant construction land of medium-sized cities and Type-II large cities
to provide preferential land policies for the transfer of manufacturing industries, thereby
increasing CO2 emissions in the cities. On the other hand, under the possible bottom-up
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imitation mechanism of land allocation behaviors in which the cities at lower levels will
imitate those at higher levels, the former will refer to the preferential land policies adopted
by the latter in order to attract business investment, stimulate industrial development
and economic growth, leading to the exacerbation of land resource misallocation and
CO2 emissions of medium-sized cities and cities at above levels. Meanwhile, due to the
limited market size and low agglomeration effect of small cities, it is difficult for small cities
to undertake large-scale manufacturing transfer even with more favorable land policies.
Therefore, the impact of land resource in small cities is not significant.

4.4.3. Heterogeneity Analysis Based on Different Regions

In China, different regional land allocation and carbon emissions will face different
constraints, we further divided the samples of 282 cities across the country into three
aspects: the East, the middle and the west, and analyzed the regional heterogeneity of the
impact of land resource misallocation on carbon emissions in this section. The estimated
results are shown in Table 10.

Table 10. Heterogeneity test results based on different regions.

Variable The Eastern Region The Central Region The Western Region

lnG 0.0379 *** 0.0226 ** 0.0087
(4.58) (2.37) (1.23)

lnL 0.0355 * 0.0692 *** 0.0815 **
(1.90) (2.98) (2.52)

lnEnergy 0.1308 *** 0.1743 *** 0.0857 ***
(5.59) (15.17) (4.33)

lnTrf 0.0704 *** 0.0553 *** 0.0703 ***
(7.93) (5.55) (8.65)

lnFdi 0.1524 *** 0.0680 *** 0.0570 ***
(8.98) (6.16) (3.17)

lnλ 0.0342 0.0459 *** 0.0427 *
(1.41) (5.85) (1.76)

lnUrban −0.0607 * −0.0243 0.0631 **
(−1.68) (0.91) (2.07)

lnRu 0.0203 0.0182 0.0166
(1.04) (1.61) (1.44)

_cons 2.3017 *** 2.4759 *** 4.7006 ***
(13.69) (9.74) (7.55)

Ctiy FE Yes Yes Yes
Year FE Yes Yes Yes

N 1400 1400 1148
R2 0.7086 0.6295 0.5916

Note: *, **, and *** represent statistical significance at the 10%, 5%, and 1% levels, respectively.

Table 10 shows that, the coefficients of land resource misallocation on carbon emissions
in the eastern and central regions are significantly positive, but the impact on the western
region is not significant. This shows that the biased allocation of land resources in the indus-
trial field has significantly increased the carbon emissions in the eastern and central regions,
but has no significant impact on the carbon emissions in the western region. Compared
with the western region, the eastern and central regions of China have more development
zones and industrial parks, and the degree and quantity of biased allocation of urban
construction land in the industrial field are more obvious, which has a more significant
role in promoting carbon emissions. However, the level of economic development in the
western region is relatively backward, and the degree and quantity of biased allocation of
urban construction land in the industrial field are low, so the impact on carbon emissions is
not obvious.
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4.5. Policy Suggestions

In conclusion, this paper comes up with the policy suggestions as follows. First,
land supply behaviors of local governments are the fundamental cause of land resource
misallocation, and political promotion and fiscal revenue are the main drivers for local
governments’ allocation of land for industrial use in the process of economic growth. There-
fore, on one hand, it is necessary to strengthen and improve the performance evaluation
system of local governments, increase the proportion of multiple evaluation indicators that
can reflect the quality of economic development, such as environmental quality, upgrade
of growth drivers, and structural adjustment, and change the existing GDP-oriented per-
formance evaluation system, so as to guide the government to value the quality of urban
development and long-term economic development, and reverse the policy and tendency
of local governments where land resources are over-allocated for industrial use in order
to promote short-term economic growth. On the other hand, it is necessary to push the
tax-sharing reform, so that local governments can obtain the fiscal revenue that matches
their powers, and change the situation that local governments supply industrial land at a
low price due to over-reliance on revenue from land by appropriately easing the financial
pressure of local governments.

Second, further advance the market-based allocation of land factors, invigorate land
factor market, break the monopoly of local governments in land supply, and enable the
market to play a fundamental role in the allocation of land resources. Give full play to the
synergy effect led by the market and guided by the government, so that urban construction
land can be optimally allocated among different industrial types and purposes according
to the principle of efficiency, and all types of land can obtain due benefits in economic
development, and land prices can return to a reasonable range.

Third, the conclusion shows that land resource misallocation will not only aggravate
the CO2 emissions of the city, but also tremendously increase CO2 emissions of surrounding
cities, such spatial spillover effect may be subject to the spatial diffusion characteristics
of CO2 emissions, or the strategic interaction of local governments in terms of land use
due to growth competition. Hence, in order to effectively control and treat CO2 emissions
and substantially promote environmental and air quality, all regions need to make efforts
on the following two fronts: on the one hand, strive to build a productive interaction and
cooperation mechanism among the regions, and strengthen the joint prevention and control
of CO2 emissions; on the other hand, reduce the low-quality homogeneous competition
in land investment, follow the laws of industrial development and market principles, sci-
entifically identify and fully tap local comparative advantages, and introduce industries
that best fit local conditions and development stages by creating a sound business environ-
ment, encourage regions to develop competitiveness with heterogenous structures, distinct
characteristics, close ties, and economies of scale, thus, alleviating the spatial misallocation
of land resources, blocking the transmission of land resource misallocation in various
regions due to the imitation and demonstration effect, and reducing the diffusion scale and
intensity of CO2 emissions.

Fourth, Due to the different effects of land resource misallocation on different types
of cities, differentiated optimal allocation methods and CO2 emissions control strategies
should be adopted for different types of cities. For Type-I large cities and above cities, since
land resource misallocation has the strongest impact on CO2 emissions, correcting land
resource misallocation and promoting effective and rational allocation of construction land
according to market principles may contribute to the overall reduction of CO2 emissions.
Focus on the market-oriented reform of land factors in these cities, and strengthen the
government’s guidance and supervision on the use of construction land, and promptly
rectify all land allocation behaviors that are not compliant with market efficiency, so that
construction land can be effectively and fully utilized under market leadership and gov-
ernment guidance. For Type-II large cities, land resource misallocation has significantly
increased CO2 emissions, and they are the important bonds between Type-I large cities and
above cities on one hand, and medium-sized cities and small cities on the other, Therefore,
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while advancing the marketization of urban construction land assignment, it is also nec-
essary to further strengthen their economic ties with Type-I large cities and above cities,
medium-sized cities and small cities, and maximize the scale economy effect and technol-
ogy spillover effect in the process of urban agglomeration, give full play to the structural
upgrading, technological innovation and agglomeration economy brought about by the
market-oriented allocation among cities of different scales and levels, thereby promoting
the transformation of economic development patterns, strengthening CO2 emissions con-
trol, and reducing CO2 emissions pollution. Medium-sized cities, as important carriers
for undertaking the transfer of manufacturing and developing the industry, shall reverse
the tendency of developing manufacturing industries by relying excessively heavily on
preferential land policies, and further explore the comparative advantages and agglomera-
tion advantages of the cities while increasing the proportion of land supply that complies
with market rules, undertake and develop manufacturing industries according to local
advantages, realize structural adjustment, magnify agglomeration effect, thereby reduc-
ing the impact of land resource misallocation on CO2 emissions. For small cities, due to
their limited market size and insufficient infrastructure, they do not enjoy advantages
in undertaking large-scale projects and manufacturing, thus, the impact of land resource
misallocation on CO2 emissions is not obvious, which means there may be no obvious
misallocation in small cities. Such cities should strive to cultivate and develop special-
ized industries with their comparative advantages, and rationally allocate land according
to the needs of the specialized industries so as to realize the productive interaction and
coordinated development of industrial development and land supply.

5. Conclusions

Stimulated by financial profit and political promotion, local governments use their
monopoly on the land market to attract investment through favorable land prices, and
allocate a considerable amount of construction land to industrial purposes, which, although
propels the rapid local economic growth and increases fiscal revenue in the short term, has
brought enormous pressure on the ecological environment. This paper collects land market
transaction data using web crawling and calculates land resource misallocation indicators
of prefecture-level cities using the marginal output method based on production function,
and obtains the CO2 emissions of prefecture-level cities based on the nighttime light data
and terrestrial primary productivity provided by satellite images, and further explores the
impacts and mechanisms of land resource misallocation on CO2 emissions with the panel
data of prefecture-level cities. To sum up, the results show that, firstly, the biased allocation
of urban construction land toward industrial use severely underprices the industrial land,
which leads to the misallocation in which the due price of urban construction land should
be higher than the actual price. Secondly, land resource misallocation has significantly
increased urban CO2 emissions. This conclusion still stands after substituting measurement
indicators and taking into account the issues of outliers and endogeneity. Thirdly, land
resource misallocation has increased CO2 emissions through mechanisms such as cementing
the rigidity of the industrial-based economic structure, hindering the upgrading of the
industrial structure, inhibiting green innovation capabilities of the cities and reducing the
effect of economic agglomeration, etc. Fourthly, the impact of land resource misallocation
on CO2 emissions has spatial spillover effect, namely, land resource misallocation does not
only exacerbate the CO2 emissions of the city, but also increases the CO2 emissions of its
adjacent cities. Finally, the impacts of land resource misallocation on different cities are
heterogeneous. Driven by the pursuit of promotion and fiscal revenue, cities at different
levels and regions have seen distinct heterogeneous impacts of land resource misallocation
on CO2 emissions. Land resource misallocation has significantly increased CO2 emissions
in Type-I large cities and above cities, Type-II large cities and medium-sized cities, and the
larger the size of city, the greater the impact. Yet, land resource misallocation does not have
an obvious impact on small cities. Regionally, the land misallocation on carbon emissions
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has significantly increased the carbon emissions in the eastern and central regions but has
no significant impact on the carbon emissions in the western region.
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Notes
1 National Centers for Environmental Information https://ngdc.noaa.gov/eog/download.html (accessed on 17 June 2022).
2 National Centers for Environmental Information https://ngdc.noaa.gov/eog/download.html (2006) (accessed on 17 June 2022).
3 Running, S. et al. MOD17A3 MODIS/Terra Net Primary Production Yearly L4 Global 1km SIN Grid V055. NASA EOSDIS Land

Processes DAAC https://lpdaac.usgs.gov/products/mod17a3v055/ (2011) (accessed on 17 June 2022).
4 All results in this paper are generated using MATLAB (R2017b) and Arc GIS (10.5).
5 The transaction land area used to calculate the price of industrial land r is different from the area of industrial land S in Equation

(4), where, S is the stock of industrial land, used to measure the marginal output of industrial land, which serves for the same
purpose as the capital stock in the product function. while the area of transacted land obtained using crawler is the flow, which is
used to measure the actual transaction price of land in each city.

6 The factors for converting natural gas, liquefied petroleum gas and electricity into standard coal are1.3300kg standard coal/m3,
1.7143kg standard coal/kg, and 0.1229kg standard coal/kWh, respectively.
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