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Abstract: Many scholars are skeptical about the poverty reduction effect and the ecological effect of
poverty alleviation resettlement (PAR). This study evaluates the spatial and temporal evolution of
the ecological environment quality (EEQ) to analyze the effectiveness of ecological restoration from
PAR. Based on cloud computing using the Google Earth Engine platform, remote-sensing data were
obtained and reconstructed from 2000 to 2020. The remote-sensing ecological index (RSEI) was used
to analyze the spatial and temporal evolution of EEQ. The results show that the RSEI of the study area
increased by 13.07% after the implementation of PAR, and the rate of increase was higher than that in
the period before PAR; the Pu’an and Qinglong areas improved most obviously, in terms of the fragile
ecological environment and the prominent contradiction between peasants and land. The residual
trends method indicated that the contribution rate of improvement in RSEI due to PAR was 70.56%,
88.38%, and 82.96% in 2017, 2018, and 2020, respectively. An increase in RSEI was more obvious in
the area with a greater relocated population and a higher corresponding coupling coordination level.
PAR has a promoting effect on EEQ improvement but does not have ecological restoration benefits in
every region. It is not satisfactory in terms of the degeneration of the LST indicator and the ecological
impact of human wells.

Keywords: poverty alleviation resettlement; ecological environment quality; remote sensing ecological
index; karst ecologically fragile areas

1. Introduction

Climate change and human activities have an overall impact on global ecology [1,2]: on
the one hand, human activities such as urban expansion and deforestation affect ecosystem
degradation in most parts of the world [3,4]; on the other hand, human activities such
as ecological restoration can improve ecosystems to a certain degree [5,6]. Ecological
environment quality (EEQ) is the degree of suitability of the ecological environment for
human survival and sustainable social–economic development within a certain space–time
range [7]. Scientific monitoring and the evaluation of the impact of human activities on
EEQ and temporal and spatial changes have shown important theoretical and practical
significance to coordinate the relationship between human activities and the ecological
environment, and to promote the sustainable development of society.

The United Nations identified poverty eradication as the primary goal of sustain-
able development, having invested 600 billion CNY in PAR from 2016 to 2020, involving
10 million extremely poor farmers; this is one of the flagship projects to eliminate poverty in
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China [8]. The area of PAR is typical of the vicious circle of poverty and ecological environ-
ment deterioration, with a high overlap of ecological fragility and extreme poverty [9,10].
At the same time, the PAR areas also belong to the spatial poverty trap [11], and the task
of eradicating poverty in situ is extremely difficult. The PAR is a better development
opportunity for farmers who live below the poverty line in ecologically fragile areas, by
moving them to cities and towns.

The Chinese government believes that China’s PAR has positive significance for
eradicating poverty and improving the ecological environment [12]. Should we consider
PAR as an effective human activity to improve ecology? However, the existing research
on PAR has basically focused on the social effectiveness of its mechanisms of participation
and poverty reduction [13,14], with few studies being related to ecological restoration.
Similar to the ecological resettlement policy, most scholars are skeptical of the ecological
protection effect of the large-scale implementation of ecological resettlement in ecologically
fragile areas, despite the effectiveness of ecological restoration or the welfare of relocated
farmers [15,16]. However, different from ecologically fragile areas such as Tibet and Inner
Mongolia, the climate conditions in the southwest karst mountainous area where PAR is
mainly implemented are more suitable for plant growth (the annual average rainfall is
approximately 1100–1300 mm, and the average annual temperature is approximately 16 ◦C),
so the dominant biophysical limiting factor is not the climate, but the soil resources [17], and
human interference is the main factor influencing ecological restoration [18,19]. According
to peasants–land coordination theory, in regions with limited resources, human constraints
and natural interference are the best choices to coordinate the relationship between peasants
and land [20]. PAR reduces human disturbance to natural resources (soil resources),
resulting in ecological improvement and the rapid shrinkage of inefficient agricultural
production space in the relocated area, which is in line with the Environmental Kuznets
Curve theory of ecological economics [21,22]. This paper aims to explore whether the PAR
really contributes to the improvement of EEQ as a human activity and actually improves
the living environment for human beings. If the EEQ improves the study area, can we
consider it to be caused by PAR? We need to quantify the effectiveness of PAR-driven
eco-environmental improvements, among which we must distinguish the influence of
human activities from natural factors, which will be the focus of this paper.

Due to remote-sensing data being timely and effective, covering a wide area, and
being objective and sustainable, the application of remote-sensing technology in ecological
environment assessment has increasingly attracted attention from scholars [23]. Using
the normalized difference vegetation index (NDVI) to assess ecological environment is
the most common method [24], and most scholars use land surface temperature (LST) in
evaluating the effect of the urban heat island [25]. Similarly, the wet components form
tasseHed captransform (WET), and the normalized difference impervious surface index
(NDISI) indicators are the most important indicators for the intuitive human perception
of ecological conditions [26,27]. Compared with a single indicator, the ecological status
reflected by the comprehensive indicator is more complex and diverse. RSEI, which is
based on the Ecological Index (EI) from the Ministry of Ecology and Environment of
China, reflects the Technical Criterion for Ecosystem Status Evaluation (HJ 192e2015). EI
is authoritative and extensive in regional EEQ assessment in China [28]. Many scholars
have verified that RSEI and EI are highly comparable in the ecological sense [29]. The
RSEI (Remote Sensing Ecological Index) model integrates intuitive and key influence
factors, including greenness, wetness, dryness, and heat. It has the advantages of real and
effective evaluation data sources, objective and fair evaluation conclusions, and intuitive
and visual evaluation results [30,31]. Additionally, many scholars have evaluated the EEQ
improvement effect by using RSEI as a technical means in projects such as Northwest
Beijing Ecological Containment Area [32], the Northern Sand-Prevention Belt [33], and the
Three-North Shelter Forest Program [34]. Existing research results show that the model
of the trend of normalized residuals enables distinguishing between climatic factors and
ecological effects caused by human activities [35]. It is necessary to clarify the turning point



Land 2022, 11, 1150 3 of 20

where PAR causes obvious changes in RSEI; a regression model was constructed using
weather factors and human-activity factors during the time before the turning point to
predict the RSEI trends during the period of PAR implementation, which was not affected
by PAR, and the residual between the observed RSEI and the predicted RSEI, which was
thought to be caused by PAR. Because the conclusion of the regression model is predictive,
no PAR data are involved, so a correlation analysis model needs to be constructed with
PAR implementation data and period RSEI variables to further explain the EEQ effect of
PAR. The overall objective of this study is to evaluate the effectiveness of PAR on long-term
EEQ dynamics in the study area, by the following means: (1) the analysis of the spatial
and temporal evolution trend of long-series RSEI; (2) the elimination of the impact of
climate factors and ecological restoration projects such as the Karst Rocky Desertification
Restoration Project, to analyze the ecological contribution of the PAR; and, (3) establishing
a coupling model between RSEI changes and the village-level PAR population to determine
the association.

Southwest Guizhou Autonomous Prefecture, located in the Yunnan, Guizhou, Guangxi,
concentrated, contiguous special-hardship area, is one of the most ecologically fragile
regions in China, with few resources, a low environmental carrying capacity, a fragile eco-
logical environment and human–land conflict [36]. From 2016 to 2019, 74,600 households
with 338,600 people were relocated for the purposes of poverty alleviation, accounting for
3.38% of the total relocated population in China. This paper takes Southwest Guizhou
Autonomous Prefecture as the study area, and first applies the Google Earth Engine (GEE)
processing platform and cloud computing to obtain and reconstruct remote sensing data
from 2000 to 2020, then applies the RSEI model to quantitatively evaluate the spatial and
temporal evolution of EEQ in the study area. The ecological contribution of the PAR to
the study area is quantified using the model of the trend of normalized residuals, and the
association between the PAR and RSEI changes is further determined with a coupled model.
Furthermore, we quantitatively reveal the changes in EEQ spatial distribution and the trend
of ecological environment improvement caused by PAR, and provide theoretical support for
coordinating ecological environment protection and social and economic development in
ecologically fragile regions to achieve harmonious development between man and nature.

2. Materials and Methods
2.1. Study Area

The Guangxi, Yunnan, and Guizhou areas are located in the karst mountains of
southwest China, with a combined population of 220 million people. They span across
0.54 million km2 of carbonate rock area, which is one of the most ecologically fragile and
densely populated areas in the world [37]. The Southwest Guizhou Autonomous Prefecture
is located in the southwestern part of Guizhou Province between 104◦35′–106◦32′ E and
24◦38′–26◦11′ N. It has eight counties under its jurisdiction and a land area of
16,800 km2. The area belongs to the subtropical humid monsoon climate and has the
most widely distributed carbonate rock layer containing magnesium in the Triassic marine.
The karst area in the region is spread across 10,200 km2, accounting for 60.28% of the total
land area. Dominant ecological problems in Southwest Guizhou Autonomous Prefecture
are stone desertification and soil erosion. The potential stone desertification is spread
across 0.21 million km2, where the known stone desertification area is 0.50 million km2,
accounting for 42.51% of the land (Figure 1), making it one of the most severely ecologically
compromised areas of China [38]. With a rural-poor population of 432,300 in 2015 and a
poverty incidence rate of 13.75%, the problem of poverty is relatively prominent. Southwest
Guizhou Autonomous Prefecture is a region with high overlap between ecological fragility
and extreme poverty.



Land 2022, 11, 1150 4 of 20Land 2022, 11, x FOR PEER REVIEW 4 of 20 
 

 
Figure 1. Distribution of degree of stone desertification in the study area. 

PAR is the flagship project of the Chinese government’s poverty alleviation project. 
For people living in areas where local resources cannot effectively carry them out of pov-
erty, they relocate to urban areas with better education, medical care, transportation, com-
munication, employment and other improved conditions. Here, they enjoy the favorable 
development resources of the city, which help them to become free of poverty. The Chi-
nese government concluded that PAR has 9 key achievements, including improved living 
conditions, broader employment prospects, and the relief of ecological environment pres-
sure [12]. PAR in Southwest Guizhou Autonomous Prefecture involved 1222 villages, 
74,600 households and 338,600 people from 2016 to 2019, all of whom were farmers living 
below the poverty line. The areas from which people were relocated, from low-resource 
areas to high-resource areas, were Xingyi, Xingren, Anlong, Pu’an, Zhenfeng, Wangmo, 
Qinglong, and Ceheng, which are concentrated in the north and southeast (Figure 2). The 
relocated farmers were resettled in 65 resettlement sites in cities and towns, accounting 
for 99.74% of the total relocated population (the other 0.26% were resettled in centralized 
rural areas, being relatively scattered), and 26 resettlement sites, with more than 5000 peo-
ple each, resettled a total of 242,567 people, accounting for 71.66% of the total resettlement. 
Southwest Guizhou Autonomous Prefecture is dominated by centralized resettlement in 
cities (Figure 2). 

  

Figure 1. Distribution of degree of stone desertification in the study area.

PAR is the flagship project of the Chinese government’s poverty alleviation project.
For people living in areas where local resources cannot effectively carry them out of poverty,
they relocate to urban areas with better education, medical care, transportation, commu-
nication, employment and other improved conditions. Here, they enjoy the favorable
development resources of the city, which help them to become free of poverty. The Chi-
nese government concluded that PAR has 9 key achievements, including improved living
conditions, broader employment prospects, and the relief of ecological environment pres-
sure [12]. PAR in Southwest Guizhou Autonomous Prefecture involved 1222 villages,
74,600 households and 338,600 people from 2016 to 2019, all of whom were farmers living
below the poverty line. The areas from which people were relocated, from low-resource
areas to high-resource areas, were Xingyi, Xingren, Anlong, Pu’an, Zhenfeng, Wangmo,
Qinglong, and Ceheng, which are concentrated in the north and southeast (Figure 2). The
relocated farmers were resettled in 65 resettlement sites in cities and towns, accounting for
99.74% of the total relocated population (the other 0.26% were resettled in centralized rural
areas, being relatively scattered), and 26 resettlement sites, with more than 5000 people
each, resettled a total of 242,567 people, accounting for 71.66% of the total resettlement.
Southwest Guizhou Autonomous Prefecture is dominated by centralized resettlement in
cities (Figure 2).
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2.2. Data Resources and Pre-Processing

The remote-sensing data were mainly obtained from Landsat in the GEE platform
database, including Landsat 8 (OLI) data for 2013–2020 and Landsat 5 (TM) data for
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2000–2012, with a spatial resolution of 30m and a temporal resolution of 16 d. In addition,
considering the cloudy climatic attributes of Guizhou Province, effective remote-sensing
images of low cloud cover could not be collected in the summer. Therefore, the study
screened automatic synthetic Landsat images from April to October for the target years. The
GEE official programming algorithm was then used to pre-process data, and to complete
geometric correction, radiation correction and atmospheric correction. We achieved cloud-
removal processing through the cloud-mask algorithm. In addition, the updated mask
was implemented by code to avoid the effect of water area on the load distribution of the
principal components. After using the GEE programming calculus to obtain standardized
remote-sensing data on the study area from April to October, vector data on the admin-
istrative regions at all levels in Southwest Guizhou Autonomous Prefecture State were
obtained from the Resource and Environment Science Data Center of the Chinese Academy
of Sciences (http://www.resdc.cn, 15 December 2021), the Grain to Green Project, the Karst
Rocky Desertification Restoration Project from the Master Plan of National Forestry and
Grassland Administration (http://www.forestry.gov.cn, 12 March 2022), and the National
Development and Reform Commission (http://www.rdrc.gov.cn, 12 March 2022). The
meteorological data were obtained from the China Meteorological Administration Network
(http://www.cma.gov.cn, 12 March 2022), and population data for the PAR were obtained
from the Ecological Migration Bureau of the Guizhou Province (10 September 2021).

2.3. Methodology

The RSEI model first proposed by Xu et al., was related to four indicators—greenness,
wetness, heat, and dryness—which can be visually determined and are widely used to
understand the quality of the ecological environment.

The entire data calculation process was based on the GEE online platform, ArcGIS
software, and ENVI software. GEE is the most critical platform for original data acquisition,
preprocessing, and RSEI calculation. The GEE operation process was as follows: determine
the scope and timeliness; clarify the image type; function cloud mask; function remove
cloud; calibrated radiance; function normalization; use unit scale to normalize the pixel
values; calculate the NDWI; calculate the NDVI, WET, LST, and NDISI (formula 1–9);
collection merge; visualization; map; function PCA model; eigenvalue, eigenvector; return
result; normalize the RSEI; and export image to drive (see attachment for original data).
ArcGIS and ENVI further process the original data in order to meet the research needs.

(1) Calculation of component indexes. Among the four indexes, the greenness index
reflects the regional vegetation coverage, and the normalized difference vegetation index
(NDVI) is closely related to the leaf area index and vegetation coverage. The wetness indi-
cators (WET) reflect the moist conditions of the regional surface objects and are expressed
as the wet components of a tasseHed captransform of the surface vegetation, soil, etc. Here,
the formulae used to calculate EM and OLI were somewhat different. The dryness index
reflected the surface drying condition; the soil index and the index-based built-up index
IBI were expressed as the normalized difference impervious surface index (NDISI). Heat
indicators reflected the surface temperature conditions and were expressed by the land
surface temperature (LST). Based on the existing research results, the four indicators were
calculated as follows:

NDVI =
BNIR − Bred
BNIR + Bred

(1)

WETTM = 0.0315Bblue + 0.2021Bgreen + 0.3102Bred + 0.1594BNIR − 0.6806BSWIR1 − 0.6109BSWIR2 (2)

WETOLI = 0.1511Bblue + 0.1972Bgreen + 0.3283Bred + 0.3407BNIR − 0.7117BSWIR1 − 0.4559BSWIR2 (3)

NDBSI =
SI + IBI

2
(4)

SI =
(BSWIR1 + Bred)− (BNIR + Bblue)

(BSWIR1 + Bred) + (BNIR + Bblue)
(5)

http://www.resdc.cn
http://www.forestry.gov.cn
http://www.rdrc.gov.cn
http://www.cma.gov.cn
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IBI =
{

2× BSWIR1/(BSWIR1 + BNIR)− [BNIR/(BNIR + Bred) + Bgreen/
{
(Bgreen + BWIR1)]

}
/2× BSWIR1/(BSWIR1 + BNIR)

+[BNIR/(BNIR + Bred) + Bgreen/(Bgreen + BWIR1)]
} (6)

LST =
K2

ln(K1/B(TS) + 1)
(7)

B(TS) =
L10 − Lup − τ10(1− ε10)Ldown

τ10ε10
(8)

L10 = τ10[ε10B(TS) + (1− ε10)Ldown] + Lup (9)

Here, NDVI indicates greenness, WET indicates humidity, NDISI indicates dryness,
and LST indicates heat. The specific meaning of each variable in the equation is referred to
in reference [29].

(2) Calculation of RSEI. Based on the results of the four indicators, NDVI, WET,
NDSI, and LST, they were first normalized by using positive normalization to standardize
their values. The initial RSEI values were calculated using NEVI software by principal
component analysis of the standardized data from the four indicators for PC1. Indicator
weights that were not dictated by humans were considered in the calculation of the initial
RSEI value. The final RSEI value was obtained using the forward normalization process,
where the value was between 0 and 1. The higher the numerical value, the better the EEQ.

NI =
I − Imin

Imax − Imin
(10)

RSEI0 = PC1[ f (NDVI, WET, NDBSI, LST)] (11)

RSEI =
RSEI0 − RSEI0−min

RSEI0−max − RSEI0−min
(12)

In the above formula, NI denotes the standard index value after processing; I is
the index value; and Imax and Imin are the maximum and minimum values of the index,
respectively. RSEI denotes the final remote sensing ecological index; RSEI0 denotes the
primary remote sensing ecological index. RSEI0-max and RSEI0-min are the maximum and
minimum values of the primary remote-sensing ecological index in the current period,
respectively. PC1 denotes the first principal component.

(3) Residual trends method. RSEI changes are influenced by climatic conditions
and human activities. We used the residual trends method to calculate the extent to
which PAR contributes to RSEI. Based on the mean value of RSEI from 2000 to 2020, the
turning point of RSEI was determined according to linear trend analysis. A multiple linear
regression analysis model was established with RSEI (dependent variable) and four factors
(independent variables). These were the natural factors—mean annual temperature (MAT)
and annual total precipitation (ATP)—and the human activity factors, outlined in the Grain
to Green Project and the Karst Rocky Desertification Restoration Project, that may affect
EEQ changes during the reference period (before the turning point).

VD,T(RSEI) = a × VI,T(MAT) + b × VI,T(ATP) + c × VI,T(funds of the Grain to Green Project) +
d × VI,T(funds of the Karst Rocky Desertification Restoration Project)

(13)

where VD,T denotes the dependent variables at a specific time, VI,T denotes the independent
variables at a specific time, a and b are multivariate regression standardization coefficients
of climate conditions, while c and d are multivariate regression standardization coefficients
of human activities. Formula (13) was used to calculate the predicted RSEI value during
project implementation (only affected by four factors) with a 95% confidence interval; the
residual between the observed RSEI mean value and the predicted RSEI mean value was
calculated. If the residual value was positive, PAR was assumed to have a positive impact
on EEQ over time. If the residual was negative, PAR was assumed to harm the local ecology.
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(4) Analysis of coupling coordination degree. To test the degree of spatial and temporal
correlation between PAR and EEQ, this study used the coupling coordination degree to
analyze and describe the spatial characteristics between PAR and ecological environment
variables. The range of values was [0, 1], where a larger coupling coordination degree
indicated a stronger correlation between the two variables [39].

C =

√
U1 ×U2

[(U1 + U2)/2]2
(14)

D =
√

C× T; T = α×U1 + β×U2 (15)

Using formula C in particular, the system coupling degree was calculated. Here, U1
and U2 are the RSEI variables, and the data were normalized for the size (number of people)
of the relocated population. T is the comprehensive evaluation index of U1 and U2; α and
β are the undetermined coefficients, where α = β = 0.5; D is the coupling coordination
degree. The coupling coordination degree is based on SPSS software, which normalizes
and standardizes the analysis data. The conclusion of calculations is between 0 and 1,
which the software automatically divides into 10 levels. According to the trend in the
level distribution and the existing method of dividing the research results, the coupling
coordination level is divided into 4 levels: extreme detuning (0–0.3), general detuning
(0.3–0.5), general coordination (0.5–0.7), and extreme coordination (0.7–1) [40].

3. Results
3.1. Ecological Environment Quality, Spatial and Temporal Evolution, and Driving Forces
3.1.1. Evolution Trend Analysis

According to the statistical analysis of the average EEQ value from 2000 to 2020
(Figure 3), the overall EEQ of the study area showed an increasing trend. The mean value
of RSEI increased from 0.5329 in 2000 to 0.6363 in 2020, i.e., an increase of 0.1034 or 19.40%
in 20 years. The overall trend of EEQ in the research area is still improving steadily. The
overall trend of RSEI from 2000 to 2011 was relatively stable, although there were some
fluctuations. From 2011 to 2016, the RSEI began to improve, although, again, there were
still some fluctuations. The overall trend showed a steady improvement. From 2016 to 2020,
RSEI in the study area began to improve significantly and remained stable. According to
the evolution trend, the turning point of RSEI in the study area was determined to be 2016.
In combination with the human activity in the area, we focused on analyzing the spatial
and temporal distribution of RSEI to achieve the research objectives of this paper. The
Grain to Green Project began in 2000; the Karst Rocky Desertification Restoration Project
was implemented in 2008; and the PAR was implemented in 2016. Considering the time
interval of the study period and that the effect of ecological restoration projects is somewhat
delayed, we focused on data of the spatial and temporal distribution of RSEI for the years
2000, 2005, 2010, 2015, and 2020.

3.1.2. Spatial–Temporal Evolution Analysis of EEQ

For convenient comparison, the average RSEI value was divided into five grades
according to the average value: poor (0–0.2), relatively poor (0.2–0.4), moderate (0.4–0.6),
good (0.6–0.8), and excellent (0.8–1.0) [41]. The spatial distribution of RSEI values in the
study area was characterized by higher EEQ grades in the southeastern part of Ceheng and
Wangmo, and all regions were optimized after 2010 to some extent.

During 2000–2010, the EEQ values of the study areas were generally similar, i.e.,
excellent and good grades accounted for ~44% of the subject areas, particularly in the
southeastern areas of Ceheng and Wangmo (Figure 4).
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During the period 2010–2015, the proportion of EEQ attributable to poor and relatively
poor grades decreased to 26.26%, which originated from areas mainly concentrated in
north-central Xingren, south-central Pu’an, north-central Xinyi, and other regions. The
proportion of excellent and good grades rose to 48.46%, which was attributable to the
areas that were concentrated in the southeastern area of Ceheng and Wangmo. During this
period, the EEQ grade remained the same in an area accounting for 42.48% of the total study
area. The area that saw an EEQ reduction accounted for 24.80% of the study area. This area
with reduced EEQ was mainly distributed in Wangmu, Ceheng, Pu’an, and Qinglong. In
this period, the dominant EEQ grades were excellent and good (Figures 4 and A1, Table 1).
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Table 1. The transition matrix of EEQ levels during 2010–2015.

EEQ Level I II III IV V

I 830.13 1143.01 644.35 209.61 40.58
II 261.50 1038.92 1088.78 408.93 80.93
III 93.70 600.43 1471.60 1013.50 208.03
IV 32.88 185.00 892.54 1777.49 576.91
V 11.96 51.58 294.53 1679.01 1910.32

During the period from 2015 to 2020, the proportion of areas with an EEQ grade
of poor or relatively poor decreased to 17.64%, and the distribution was mainly concen-
trated in the key areas of urban development. The proportion of areas with excellent and
good grades further increased to 63.35%, with the most concentrated contiguous areas
in Ceheng, Wangmo, and southeast of Zhenfeng. The EEQ improvement regions were
most concentrated in Qinglong and Pu’an, which were the areas with the most fragile
ecological environment areas and the most prominent peasants–land conflicts. The area of
reduced EEQ was mainly concentrated in the urban development areas, such as Xingyi,
where the population was further concentrated, and socio-economic development was
more important (Figures 4 and A1, Table 2).

Table 2. The transition matrix of EEQ levels during 2015–2020.

EEQ Level I II III IV V

I 395.94 407.33 303.77 98.76 22.56
II 337.98 830.39 1175.63 566.99 102.63
III 137.48 475.53 1383.03 1892.35 489.99
IV 41.54 127.90 497.46 2215.79 2177.92
V 10.00 29.22 99.47 541.48 2098.71

3.1.3. RSEI Result Test

The Pearson correlation coefficient was used to test the RSEI results. The results are
presented in Table 3, where the average correlation of RSEI and the four indicators reached
a maximum of 0.953, 0.964, −0.739 and −0.945, respectively. The correlation between RSEI
and NDVI, WET, NDISI was significant at the 0.01 level, indicating strong significance, and
the correlation with LST was significant at the 0.1 level, indicating general significance.

Table 3. Correlation matrix of indexes during 2000–2020.

Indicator NDVI WET LST NDISI RSEI

NDVI 1 0.969 −0.869 −0.814 0.953
WET 0.969 1 −0.804 −0.831 0.964
LST −0.869 −0.804 1 0.56 −0.739

NDISI −0.814 −0.831 0.56 1 −0.945
RSEI 0.953 0.964 −0.739 −0.945 1
Sig. 0.012 0.008 0.154 0.015

3.2. Drivers of Change in EEQ

Unlike other karst areas in the world, where the population density is low, the karst
mountains in southwest China are populous and ecologically fragile. There is sparse
coordination between peasant–land conflicts and high ecological pressure [42]. Various
ecological restoration projects have been promoted since 2000, such as the Grain to Green
Project (from 2000) and the Karst Rocky Desertification Restoration Project (from 2008) [43].
According to the mean values of the four indicators presented in Table 4, the overall indexes
were relatively stable, and the average RSEI values were also relatively stable.
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Table 4. Mean indicators of RSEI from 2000 to 2020.

NDVI WET LST NDISI RSEI

2000 0.5555 0.5286 0.5627 0.5073 0.5329
2005 0.5430 0.5266 0.5008 0.5046 0.5294
2010 0.5398 0.5411 0.5518 0.5120 0.5342
2015 0.6689 0.5642 0.4279 0.5095 0.5628
2020 0.7511 0.5952 0.4307 0.4217 0.6363

During 2010–2015, the mean value of NDVI increased by 23.92%, and the WET mean
value also increased significantly. The effectiveness of the ecological restoration project
is also highlighted during this period, having contributed to a significant decrease in the
mean value of LST. The ecological restoration project also contributed to an increase in the
mean value of RSEI in the study area (Table 4).

From 2015 to 2020, PAR was promoted and completed. During this period, NDISI
was reduced significantly, by 17.24%. Relocation to alleviate poverty caused many rural
people to move to towns and cities, while their original home base was reclaimed and
re-greened. In this case, the impact of human activities on rural areas was significantly
reduced, which directly contributed to a significant reduction in the dryness index. The
NDVI was increased, along with the WET, which means that the conflict between humans
and land was fundamentally relaxed, and the effectiveness of various ecological restoration
projects was maintained and further improved. PAR was a key factor in the improvement
of RSEI in the study area (Table 4).

3.3. The Contribution of PAR to EEQ Changes

A multiple linear regression analysis model was used to calculate the residual trends
in PAR implementation, whereby the turning point of RSEI change caused by PAR was
determined to occur in 2016. The variation in RSEI was influenced by natural factors,
including MAT and ATP, as well as human activities, including the Grain to Green
Project and the Karst Rocky Desertification Restoration Project. We took these four fac-
tors as the independent variables, i.e., the influencing factors, and RSEI was adopted
as the dependent variable, i.e., the resulting factor. Standardized coefficients of the
regression models were analyzed by the SPSS with 95% confidence (Table A1). The
results show that the observed cumulative probability and the predicted cumulative
probability were normally distributed in the linear regression analysis model (Figure 5).
Furthermore, the standardized residuals were randomly distributed without outliers
(Figure 6), and the regression model significance was 0.038 at a significance level of
95%. Therefore, the multiple linear regression equation was verified to be stable. The
analysis results show that the RSEI variable could mathematically be represented as
Variable (RSEI) = 0.273 × Variable(MAT) + 0.285 × Variable(ATP) − 0.144 × Variable
(funds of the Grain to Green Project) + 0.520 × Variable (funds of the Karst Rocky Desertifi-
cation Restoration Project). This equation predicted the mean RSEI values in 2017, 2018, and
2020 to be 0.5676, 0.5660, and 0.5701, respectively, under the influence of the four factors.
The observed RSEI values in 2017, 2018, and 2020 were 0.5942, 0.6374 and 0.6363, respec-
tively. The residual difference between the observed and predicted mean values of RSEI
was likely due to the PAR-driven RSEI improvement. The improvements in RSEI caused
by PAR were 0.0266, 0.0715, and 0.0662 in 2017, 2018, and 2020, respectively, according to
the actual increase of 0.0266, 0.0715, and 0.0662. Compared with the turning point of 2016,
the PAR contributed to the RSEI growth contribution rate of 70.56%, 88.38%, and 82.96% in
the three years, respectively. Collectively, after 2016, the RSEI values increased significantly,
and from there on, the average RSEI reached good levels and remained relatively stable.
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3.4. Correlation between PAR and EEQ Changes

The correlation between relocation and EEQ changes was analyzed by taking the
village area as the basic unit. A map showing the change in RSEI during 2015–2020 is
shown in Figure 7.



Land 2022, 11, 1150 12 of 20

Land 2022, 11, x FOR PEER REVIEW 12 of 20 
 

 
Figure 6. Scatter diagram. 

3.4. Correlation Between PAR and EEQ Changes 
The correlation between relocation and EEQ changes was analyzed by taking the vil-

lage area as the basic unit. A map showing the change in RSEI during 2015–2020 is shown 
in Figure 7.  

  

 

 

Figure 7. Change map of RSEI during 2015–2020. 

There were 1330 administrative village units in the study area. The number of vil-
lages in the area with reduced RSEI was 205, accounting for 15.41% of the total. A total of 
1125 villages exhibited improved RSEI. These villages were mostly located in the central 
and northern regions of Pu’an and Qinglong. The original EEQ of these regions was rela-
tively low, and the effect of the upgrade in terms of RESI was obvious. The relocation of 
the five counties on the northeast side of the study area of Southwest Guizhou Autono-
mous Prefecture, including the counties of Ceheng, Qinglong, Wangmo, Zhenfeng, and 

Figure 7. Change map of RSEI during 2015–2020.

There were 1330 administrative village units in the study area. The number of villages
in the area with reduced RSEI was 205, accounting for 15.41% of the total. A total of
1125 villages exhibited improved RSEI. These villages were mostly located in the central
and northern regions of Pu’an and Qinglong. The original EEQ of these regions was
relatively low, and the effect of the upgrade in terms of RESI was obvious. The relocation of
the five counties on the northeast side of the study area of Southwest Guizhou Autonomous
Prefecture, including the counties of Ceheng, Qinglong, Wangmo, Zhenfeng, and Pu’an,
was the most concentrated, whereby 74,600 households were relocated, accounting for
82.47% of the total (Figure 2).

Figure 8 shows the spatial distribution of the coupling coordination between the
relocation population density and RSEI variables in 1222 administrative villages in eight
counties. There were 247 villages with extreme coordination, accounting for 25.33% of
the area, mainly concentrated in Ceheng, Wangmo, Qinglong, and Pu’an, which are the
most densely relocated areas. There were 411 general coordination villages, accounting
for 33.90% of the area, most of which were located in the northeast and southeast of the
study area. There were 403 general detuning villages, accounting for 29.99% of the area,
and 161 extreme detuning villages, accounting for 7.63% of the total villages. These villages
were predominantly located in economically developed areas, such as Xinyi. After the
spatial analysis of the coupling coordination between relocation population density and
RSEI variables, a significant coupling coordination relationship was found between EEQ
enhancement and PAR in the study area.
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3.5. Forecast of Future RSEI

The RSEI of the study area was predicted after the implementation of the PAR to
analyze its sustained impact on regional EEQ. The ARIMA model starts from the time-
series itself and forecasts future data based on past behavioral data [44]. The expert modeler
was used for prediction, where the autocorrelation and partial correlation coefficients of
the model were all within the confidence zone of 95%. After prediction, the mean value of
RSEI in the study area was predicted to improve to 0.7355 in 2025, and to 0.8603 in 2030.
Continuous improvement and optimization were maintained from thereon. The spatial
distribution effects are shown in Figure 9.
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4. Discussion

The results show that not all areas with a large number of relocated people have
significantly increased RSEI. In northern Pu’an, Qinglong, and other severely rocky deserti-
fication areas (Figure 1) where the population density is relatively large (Figure A2) and the
contradiction between peasants and land is prominent, the RSEI increase is more obvious
in areas with a large number of people involved in PAR (Figure 7). However, in non-rocky
desertification areas such as Ceheng and Wangmo in the southeast, where the population
density is relatively small, the RSEI does not have an obvious increase, although the number
of people relocated is relatively large. This shows that the implementation of PAR is more
effective in areas with relatively poor ecology and a prominent contradiction between
peasants and land, while in areas where the ecology is better, the contradiction between
peasants and land is not prominent, and the ecological effect is not obvious (Table 5).
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Table 5. Summary table of positive and negative effects of PAR.

Indicators Positive Effects Negative Effects Remark

Society
Improved infrastructure,

education, employment and
health care, etc.

Increased cost of living,
changed way of life, blocked

cultural inheritance, etc.
Will not be discussed

Sustainability

The remaining farmers will have
more production resources, and

will obtain more
employment opportunities.

Traditional culture is
destroyed, increasing living
costs, and increased burden

on the government.

Ecology

Spatial features The RSEI of the entire study area
significantly improved.

On the southeast side where
the contradiction between
peasants and land is not

prominent, the RSEI
improvement is not obvious.

Indicator
structure

Increase in NDVI and decrease
in NDISI.

The increase in WET is small,
and the negative indicator

Lst increases.

Unbalanced
RSEI promotion

Biodiversity
Human activity is reduced in

abandoned areas, which is
beneficial to biodiversity.

After PAR, the planting
structure will tend to be

single-species, thus affecting
the biodiversity.

Human
well-being

The overall EEQ of the study
area improved, and the entire

area became greener.

There is a certain distance of
EEQ between the

ecologically improved area
and the gathering area of the

relocated farmers.

Applicability

PAR can promote ecological
improvement in karst

ecologically fragile areas where
the contradiction between

peasants and land is prominent.

PAR may not be effective in
ecological restoration in

areas where climate is the
main limiting factor (such as

water resources in
semi-arid regions).

Other aspects

The relocation area can make
more convenient and intensive

use of land, and more effectively
promote the implementation of

various ecological
restoration projects.

May possibly cause
single-species forest and the
waste of water resources (in

the context of global
warming, extreme dry

weather has already occurred
in 2011).

In terms of the effectiveness of EEQ, the improvement in RSEI in the study area
contributed by PAR is mainly due to the increase in NDVI and the decrease in NDISI.
After relocation, the large-scale management of forestland will become a trend, with
farmers moving away from contracted land, and farmland being transformed to forest,
which contributes to the substantial increase in NDVI. Whether the substantial increase
in NDVI will cause single-species forest and excessive water consumption needs further
consideration [45]. The increase in WET is significantly smaller than the increase in NDVI,
which is further verified. The RSEI of the study area is indeed significantly improved,
while the RSEI of the urban areas to which farmers are moved is reduced. Does such
an increase in RSEI really improve the living environment for local humans? During the
implementation of PAR, the overall increase in RSEI in the study area was partially reduced
(with a decrease in the more concentrated areas of population) and the comprehensive
indicators showed improvement. Whether such improvement is conducive to sustainable
social development is something our follow-up study needs to consider deeply (Table 5).

Biodiversity has an important impact on ecosystem services, and the impact of human
activities on biodiversity is the focus of various scholars and organizations such as the
United Nations Environment Programme (UNEP) [46,47]. After PAR, the number of land
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managers decreased and land-use patterns changed, which shifted the trend towards large-
scale land management. For the purpose of easy management and economic efficiency,
the planting structure of the land tends to be homogeneous after large-scale management,
which leads to an impact on biodiversity and the weakening of symbiosis among plants,
thus further affecting the ecosystem service function [48]. In contrast, some areas become
similar to ecological reserves, where the disturbance of human activities is reduced, and
biological succession proceeds in an orderly manner, which is beneficial to biodiversity.
There are many influencing factors and mechanisms of internal change of biodiversity, such
as human disturbance, environmental factors, management methods, etc. The impact of
PAR on biodiversity needs to be further studied in future work [49,50] (Table 5).

The global trend in terms of helping rural areas is to promote traditional and sustain-
able farming with nature-friendly measures, rather than relocating the rural population
to cities [51]. PAR is the transfer of farmers from rural to urban areas, which destroys
traditional rural culture, increases their cost of living and changes their way of life. The fact
that farmers move to cities to take up jobs they are not good at, and that employment train-
ing is not sufficient to help low-ability farmers relocate successfully, also greatly increases
the burden on the government, in addition to the fact that the minimum cost of living for
relocated households is approximately 70% higher in cities than in rural areas. PAR poses
a great challenge to the sustainability of farmers [17]. The owners of the relocated rural
areas are not those executing PAR, but some of the poorest farmers. The most crucial role
of PAR is to alleviate the contradiction between peasants and land. The remaining farmers
will have more production resources (such as renting the land of the relocated farmers),
and may also obtain more employment opportunities (there will be some vacancies for
forest-protection work and road-cleaning work after the relocation) and development op-
portunities. Relocating farmers to live together in a concentrated area will also facilitate the
establishment of infrastructure such as medical care, education, training, factories, etc., to a
certain extent, and it is easier to accept new knowledge, which will help farmers to achieve
sustainability (Table 5).

The GEE platform was used to address the problem of the difficult acquisition of
effective Landsat images under cloudy and foggy weather in Guizhou. With its powerful
processing capabilities, GEE provided a foundation for the accurate analysis of the temporal
and spatial patterns and evolution of EEQ. The RSEI model allows the objective analysis
of EEQ. The effects of PAR and climatic factors and other ecological restoration projects
on the EEQ changes could be distinguished scientifically using the residual trends. The
results could then be used to establish a high and low series of coupling coordination levels
between the number of relocated populations and EEQ variables, and to clarify the effective
degree of correlation between PAR and EEQ enhancement. Furthermore, based on the
ARIMA model, a prediction of future ecological trends concluded that the relocation of
impoverished residents has a significant and sustainable driving effect on the promotion
of regional EEQ. However, the RSEI model needs to use a water body mask to ensure
the normalization accuracy of RSEI [30]. The Southwest Guizhou Autonomous Prefecture
belongs to the ecological protection barrier in the upper reaches of the Pearl River, and
1.86% of the water area has important ecological services that unfortunately cannot be
effectively reflected [41]. Due to the influence of cloudy weather in Guizhou, it is difficult
to collect remote-sensing data in the same period for different years. The base data used
in this paper were Landsat data from April to October of the target years. The time span
was large, and there may be bias in the measurement of RSEI each year. There are other
shortcomings, which provide a basis for the key research directions of the future.

PAR in karst mountains can improve local EEQ to a certain extent, but there have been
some controversies. In later studies, researchers further broadened their research scope to
investigate the effect of PAR on the regional carbon neutral effect [52] from the direction of
carbon neutrality [53].
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5. Conclusions

The residual trends method eliminated the confounding effects of other influencing
factors and clarified the contribution of PAR to RSEI growth. The PAR made a contribution
to RSEI improvement with a 13.07% increase in the study area during 2015–2020; this
RESI was significantly higher than the increase noted during 2000 to 2015. The EEQ of the
most ecologically vulnerable areas, such as Qinglong and Pu’an, was most significantly
improved after the PAR. However, the EEQ of economically developed areas, such as
Xingyi, showed a decreasing trend.

After the implementation of PAR, a large number of rural houses were dismantled
and the land reclaimed as green regions. Additionally, many rural construction projects
did not advance, contributing to an obvious decrease in the mean value of NDISI (to
17.24%). Furthermore, the core population of farmers moved from cultivated land to
urban employment, leaving much farmland abandoned or available for planting trees,
contributing to a sharp increase in the NDVI (to 12.28%). The residual trends model
predicted that the mean values of RSEI in 2017, 2018, and 2020 were 0.5676, 0.5660, and
0.5701, respectively, under the influence of a multitude of factors, except for the PAR.
The observed mean values of RSEI were 0.5942, 0.6374, and 0.6363, respectively. The
improvement in RSEI caused by PAR was 0.0266, 0.0715, and 0.0662 in 2017, 2018, and
2020, respectively.

The spatial distribution of the coupling coordination between the relocation popula-
tion density and RSEI variables showed that there was a significant positive correlation
between the increase in RSEI and the relocation population density. The larger the relocated
population, the greater and more significant the increase in RSEI in the region. This also
led to a higher corresponding level of coupling coordination. As measured by the ARIMA
prediction model, the EEQ of the study area, with many people undergoing PAR and in a
cluster shape, will continue to evolve for the better. Furthermore, the EEQ of the developed
urban areas represented by Xingyi will continue to decrease.
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Table A1. Statistical table of changing EEQ image factors.

Year RSEI MAT (◦C) ATP (mm) Grain to Green
(1010 CNY)

Karst Rocky
Desertification

Restoration (1010 CNY)

2000 0.5329 15.67 1395.22 0.09
2001 16.35 1459.53 0.10
2002 0.5439 16.66 1218.52 1.02
2003 0.537 16.81 1233.95 1.73
2004 0.5326 15.92 1121.14 1.60
2005 0.5294 16.03 1259.33 1.68
2006 0.5499 16.38 1226.83 1.48
2007 0.5582 16.36 1428.46 1.37
2008 0.5322 15.61 1489.99 1.25 0.44
2009 0.5311 16.61 1011.30 1.15 0.63
2010 0.5342 16.66 1291.39 0.78 0.63
2011 0.5322 15.36 811.22 0.39 4.25
2012 15.83 1206.55 0.28 4.25
2013 0.5735 16.53 941.18 0.15 4.25
2014 0.5767 16.43 1540.23 0.88 4.25
2015 0.5628 16.93 1484.35 0.95 4.25
2016 0.5565 16.65 1270.80 0.95 6.25
2017 0.5942 16.46 1359.94 0.95 6.25
2018 0.6374 16.42 1309.58 0.95 6.25
2019 16.80 1438.02 0.95 6.25
2020 0.6363 16.43 1489.82 0.95 6.25
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