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Abstract: The evapotranspiration (ET) in mountainous watersheds affects the security of downstream
water supply and ecological safety. Continuous time-varying ET cannot be obtained by traditional
methods such as remote sensing and ground observations. In this study, a simple biosphere model
2 (SiB2) was parameterized in a typical mountainous area, the upper Minjiang River, using field
observations and remote sensing data. The performance of SiB2 was then assessed by comparing it
with direct measurements of the evaporation dishes. The results showed that (1) at the daily scale,
the simulated ET was smaller than the measured ET. At the monthly scale, the relative errors between
the simulated and measured values ranged from 1.48% to 20.72%. The relative error between the
simulated and measured values of the total annual ET is 6.99%; (2) the ET of Minjiang River was
characterized by a “bimodal” variation, with lower daily ET from November to February (non-
growing season) and higher daily ET from March to August (growing season); (3) the ET of Minjiang
River showed the spatial characteristics of low in the northwest and high in the southeast, with
a high-value center located in Dujiangyan City. In summary, SiB2 is suitable for simulating ET in
mountainous watersheds with spatial and temporal continuity. This study can contribute to the
enhancement of water resources use planning and basin management in the upper Minjiang River.

Keywords: remote sensing; hydrothermal flux; watershed hydrology; land surface process

1. Introduction

Mountainous areas account for about 24% of the global land area and 2/3 of the land
area of China. They provide an important ecological function in regulating regional and
global climate, maintaining ecosystem biodiversity, and conserving water [1]. Currently,
global climate change and overuse of water resources by humans have led to water scarcity
and derived ecological and environmental problems, which greatly affect the healthy
development of human-land systems in mountainous areas. Evapotranspiration (ET) is
one of the key aspects of surface water and heat balance [2] and an essential component
of the hydrological cycle in watersheds. However, there are challenges in installing and
maintaining meteorological instruments in mountainous areas at high altitudes, and the
spatial resolution of the obtained meteorological data is low [3]. Therefore, an analysis
of the spatial and temporal characteristics of ET in mountainous watersheds based on
a long-term time series will be beneficial for water resources management and weather
forecasting in ecologically fragile mountainous watersheds [4–7].

The ET models for describing water consumption patterns have served as one of
the decision support tools for agricultural and forestry development. Over the years,
the ET models have evolved from single-point observations to methods with biophysical
significance. Most of the traditional methods for estimating ET are based on single-point
calculations from ground-based observation equipment, such as Bowen Ratio [8], Eddy
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Covariance [9] and large aperture scintillometer [10]. Although ground-based observations
allow more accurate acquisition of ET at single locations, field and smaller landscape
scales, it is difficult to directly extrapolate these observations to large spatial scales due to
land surface heterogeneity, especially for watersheds with LULC (land use/land cover)
variability [11]. Remote sensing technology is able to provide visible, near infrared and
thermal infrared wavelengths to extract parameters related to surface evapotranspiration
and energy transfer processes and has obvious advantages in monitoring regional ET
under non-uniform ground surfaces. Remote sensing-based methods can be divided into
two categories: surface energy balance (SEB) models and meteorological-based models.
The commonly used SEB models are SEBAL [12], SEBS [13], METRIC [14,15], S-SEBI [16],
and TESEBS [17]. Among them, SEBAL and SEBS are two representative models that
estimate the sensible heat fluxes based on the observed data and calculate the latent heat
fluxes based on the SEB equation [12,13]. Meteorological-based models are usually based
on physical methods such as the Penman–Monteith (P-M) [18] and the Priestley–Taylor [6].
Remote sensing technology allows rapid access to real-time, large-scale data [19,20], and
has facilitated the estimation and analysis of ET. However, the meteorological data, model
structures, and parameterization methods used lead to significant differences in the accu-
racy and applicability of each product. This difference is exacerbated by the complexity
of the mountainous terrain. Factors such as altitude, slope direction and gradient directly
affect the radiation income and expenditure and surface temperature distribution in the
mountain environment, which in turn affect the land surface parameters required for evap-
otranspiration inversion, such as surface albedo, and this inevitably brings some bias to the
results of remote sensing-based evapotranspiration estimation [14].

The remote sensing-based models can only calculate the land surface ET at the moment
of satellite transit and cannot produce the time-continuous ET. In this context, the Land
Surface Process Model (LSPM) has been widely used in a long series of regional ET simula-
tion to studies on the material and energy exchange between the land-atmosphere. LSPM
has evolved from a simple “bucket” model to a highly physical SVAT (soil–vegetation–
atmosphere transport scheme) [21]. Currently, typical SVAT models include BATS [22],
SiB (Simple Biosphere Model) [23], SiB2 [24], VIC (Variable Infiltration Capacity) [25], and
CoLM (Common Land Model) [26]. SiB2 is one of the most representative LSPM. It can
be used to calculate the energy, material, and momentum transport between the atmo-
sphere and vegetation surface to realize the coupling of photosynthesis and water vapor
transport. It is widely used to simulate the energy and water exchange between the land
surface and the atmosphere [27,28]. It has also been applied to watershed land surface
energy and water balance research [29]. The SiB2 requires many input parameters related
to soil and vegetation properties, which limits its application on a regional scale. To the
best of the author’s knowledge, evapotranspiration studies in high-altitude watersheds
are limited, and SiB2 has only been applied to simulate evapotranspiration from some
watersheds [30] and agricultural lands [31]. Therefore, this approach needs more validation
in mountainous areas.

Basin water resources management, hydrological processes and climate change impact
studies need to be supported by large-scale, continuous dynamic ET data. The upper
Minjiang River is a typical ecologically fragile area in southwest China and an important
ecological barrier in the upper reaches of the Yangtze River. Previous studies have in-
vestigated ET in this region based on different modeling approaches. Zhang [32] used a
modified Thornthwaite model [33] to calculate potential evapotranspiration (PET) for four
watersheds from 1992 to 1998. Other studies used the Fu Baopu model [34–36] based on
the complementary correlation theory, but few studies have explored intra-annual evapo-
transpiration. Given the labor- and cost-intensive nature of in situ ET measurements and
the transient shortcomings of remote sensing inversion, LSPM is considered a promising
alternative method for estimating ET in this region. The continuous ET characteristics of
the upper Minjiang River are less explored, and the applicability of LSPM in this region
needs further investigation. In this context, the main objective of our study was to assess



Land 2022, 11, 1141 3 of 18

the ability of SiB2 to simulate ET in the upper Minjiang River and the spatial and temporal
characteristics of ET in this region.

In this study, field measurements and model simulations of ET are integrated and
analyzed. (1) The continuous ET is estimated based on SiB2 using the meteorological forcing
data of China to investigate the intra-annual dynamic characteristics of the watershed ET;
(2) The applicability of SiB2 under mountainous areas is verified using daily-scale ET
observations from the meteorological station in Lixian and the simulated ET results; (3) The
relationship and differences between ET and temperature, precipitation and elevation in the
upper Minjiang River are investigated. This study has two main contributions. First, unlike
previous studies on ET based on remote sensing, this paper validated the applicability of
SiB2 in complex mountainous areas in terms of temporal continuity. Second, compared
with the existing studies on ET in the upper Minjiang River, this paper analyzed the spatial
and temporal characteristics of intra-annual ET and its relationship with meteorological
and environmental factors.

2. Study Area

Minjiang River is the largest tributary of the upper reaches of the Yangtze River.
The upper Minjiang River is located in the northwestern part of the Sichuan Basin and
the eastern part of the Qinghai-Tibet Plateau (Figure 1). It includes the five counties of
Wenchuan (WC), Lixian (LX), Maoxian (MX), Heishui (HS), Songpan (SP) and Dujiangyan
(DJY). The mountainous area of this region is over 40%, and the average slope is over
30◦. The entire area has a large topographic elevation difference (ranging from 764 m to
6250 m), sloping from northwest to southeast. There are many water systems in the area,
mostly developing plume water systems. It has a high vegetation cover and is the “green
barrier” of the Chengdu Plain. In the classification of fragile ecosystem types in China,
it is classified as a fragile ecosystem in the southern mountainous areas. Its climate is
characterized by a highland monsoon, in which the mountain temperate and mountain
subtropical climates predominate. It is strongly influenced by the high westerly circulation
as well as the southwest and southeast monsoons, resulting in distinct wet and dry seasonal
characteristics. The recharge of water sources is dominated by rainfall [37]. The average
annual temperature in this basin ranges from 5 ◦C to 15 ◦C.

Figure 1. Study area.
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3. Data and Methods
3.1. Dataset

The data used in the study include: CMFD (China Meteorological Forcing Dataset),
DEM, LULC (Land use/Land cover), soil type, NDVI and daily evapotranspiration from
meteorological stations.

CMFD was downloaded from the National Tibetan Plateau/Third Pole Environment
Data Center [38] and was mainly used to provide six forcing variables such as downgradi-
ent shortwave radiation, downgradient longwave radiation, air temperature, water vapor
pressure, horizontal wind speed at anemometer height, and precipitation for the SiB2
simulation. The CMFD dataset uses Princeton reanalysis data, GEWEX-SRB (Global Energy
and Water Exchanges-Surface Radiation Budget), GLDAS (Global Land Data Assimilation
System) and TRMM (Tropical Rainfall Measuring Mission) as background fields and inte-
grates meteorological observations from the CMA (China Meteorological Administration).
The CMFD covers the period 1979–2015 with a temporal resolution of 3 h and a spatial
resolution of 0.1◦.

SRTM (Shuttle Radar Topography Mission) were downloaded from the RESDC (Re-
source and Environmental Science Data Center of the Chinese Academy of Sciences) [39]
and used to extract the average slope required for SiB2. LULC maps for 2010 were down-
loaded from the NCDC (national cryosphere desert data center) [40] and used to extract
the nine vegetation types needed in the SiB2 model. The Chinese soil data set at 1:1 million
were downloaded from the NCDC [40] and used to establish the required soil type parame-
ters in the SiB2 model. Soil texture data were downloaded from the RESDC [39]. Monthly
vegetation index (NDVI) data from December 2012 to December 2013 were downloaded
from the RESDC [39] and used to calculate vegetation parameters with time dynamics. The
available links for the above data are shown in Appendix A Table A1.

3.2. Methods

In this study, remote sensing, meteorological, land use/land cover, soil and DEM data
were first processed using GIS technology. This step is the basis of the SiB2 simulation
process. The SiB2 model was then run hourly with prepared input parameters to obtain
output variables. Both of these steps serve the subsequent analysis step, which is the most
important part of this study. The data preparation process and the key components of the
ET simulation in SiB2 are described below (as shown in Figure 2).

Figure 2. Flow chart of the research methodology.

3.2.1. Data Preparation and Parameter Setting

Numerical simulations using the SiB2 model require a parametric approach. SiB2
includes six forcing variables: downward longwave radiation, downward shortwave
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radiation, air temperature, precipitation, water vapor pressure, and wind speed at the
anemometer height.

First, to facilitate the reading and writing of the SiB2 program, each pixel value in the
CMFD data was converted to ASCII format and the driving data such as downgradient
shortwave radiation, downgradient longwave radiation, air temperature, water vapor
pressure, horizontal wind speed, and precipitation at the measured height were extracted
for the study period. The water vapor pressure was obtained by converting the air pressure
and specific humidity variables in CMFD.

v = qP/(0.622 + 0.378q) (1)

where v is water vapor pressure (Pa), q is near-surface air specific humidity (Kg/Kg), and
P is surface air pressure (Pa).

Second, the terrain slope in the study area was obtained using the DEM data, and the
gridded data of the study area was created according to the resolution 0.1◦ × 0.1◦ as well
as the average slope within each grid was extracted using the zoning statistical analysis
tool in ArcGIS 10.1.

Third, based on the collected LULC data, the LULC types were aggregated according
to the nine vegetation types defined by the SiB2 model, and the final vegetation types in the
study area were determined as 1 (Evergreen Broadleaf Forest, EBF), 2 (Deciduous Broadleaf
Forest, DBF), 4 (Evergreen Coniferous Forest, ECF), 6 (Short Vegetation/C4 Grassland,
SVCG), 7 (Broadleaf Shrubs on Bare Soil, BSBS), and 9 (Agricultural Land/C3 Grassland,
ALCG) (shown in Appendix A Table A2), in addition to morphological parameters, optical
property parameters, and physiological parameters of vegetation (as shown in Appendix A
Tables A3–A6). Considering the uneven LULC in each region after gridding, the area
proportion of each vegetation type in each grid was calculated by using the zoning statistics
tool in ArcGIS, and the vegetation type with largest area was selected as the vegetation
type as the grid value for simulation.

Fourth, since the soil data had some missing values which were gap-filled with
reference to the soil texture data, the soil data were simplified according to the seven soil
types defined by SiB2, and the soil texture types in the study area were finally determined
to include 1 (Sandy), 2 (Sandy Loam), 3 (Loam), 4 (Clay Loam-Sandy Clay Loam), and
5 (Clay-Clay Loam). The soil texture type with the largest area in each grid was selected
using the zoning statistics tool in ArcGIS. Finally, the average NDVI values within each
grid were extracted using the zoning statistical tool.

3.2.2. Model Simulation

SiB2 is mainly used to simulate the energy (including net radiation, sensible and latent
heat fluxes), evapotranspiration, and CO2 exchange between the land surface and the
atmosphere. In the SiB2 structure, the vegetation types in the SiB model are integrated,
while the two vegetation canopy layers are simplified into a one-layer structure. There are
eight control equations and several diagnostic equations in the SiB2, which are described in
Sellers’ paper [23,24]. The control equations mainly control the energy and water balance
between the canopy and the land surface and the soil and determine the energy and water
exchange between them and the atmosphere. The diagnostic equations are used to calculate
the energy, water and momentum exchange between vegetation and atmosphere, soil and
vegetation, and the soil-atmosphere interface. The land surface flux simulation of SiB2
is borrowed similar to Ohm’s law to describe the energy and water exchange between
vegetation, soil and the surrounding air. The simulation process of SiB2 is shown in
Figure 3.
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Figure 3. The simulation process of SiB2.

First, vegetation parameters such as canopy photosynthetic active radiation (FPAR),
vegetation cover index (VCI), leaf area index (LT) and green canopy percentage (N) are gen-
erated, which vary dynamically with time. They are closely associated with the normalized
vegetation index (NDVI). FPAR is calculated by:

FPAR =
(SR − SRi,min)(FPARmax − FPARmin)

SRi,max − SRi,min
+ FPARmin (2)

SR =
1 + NDVI
1 − NDVI

(3)

where FPARmax and FPARmin are taken as 0.950 and 0.001, respectively. FPARmax and
FPARmin are independent of the vegetation type, and i is the vegetation type, SRi,max and
SRi,min are SR values corresponding to 98 and 5% of NDVI values distribution, respectively.

The green leaf area index Lg is as follows:

Lg = (1 − Fcl)Lg,i,max
log(1 − FPAR)

log(1 − FPARmax)
+ Fcl

Lg,i,maxFPAR
FPARmax

(4)

where, Fcl is the proportion of clumped vegetation in the grid area and Lg,i,max is the maxi-
mum green leaf area index of vegetation. The leaf area index LT is the sum of vegetation
stem area index, green leaf area index and dead leaf area index.

LT = Ls + Ld + Lg (5)

where, Ls is stem area index, Ld is dead leaf area index.
The green ratio of the canopy (N) is expressed as:

N = Lg/LT (6)

where,
Ld = Lgn−1 − Lgn , Ld ≥ 0 (7)

The morphological parameters of the vegetation and the length of the ground rough-
ness are input into the SiB2 parameter program to finally obtain the air roughness (Z0),
the zero-surface displacement of the plants (D), the overall boundary layer impedance
coefficient (C1), the impedance coefficient between the soil and plant layers (C2), and the
canopy heating height (ha) for different vegetation types.

Second, after the above offline data and parameters are set up, it will move to online
analysis, such as Adjust aerodynamic properties. In this process, latent heat flux will be
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generated. It is the sum of the latent heat flux between vegetation canopy and canopy air
and the latent heat flux between bare ground and canopy air, which is calculated as follows:

λE = λEct + λEgs (8)

where, λE is the latent heat flux, λEct is the canopy latent heat flux, λEgs is the latent heat
flux on bare ground surface. λEct is calculated as:

λEct =

[
e∗(Tc)− ea

rc + 2rb

]
ρcp

γ
(9)

λEgs is calculated as:

λEgs =

[
hsoile∗

(
Tg
)
− ea

rsoil + rd

]
ρcp

γ
(10)

where, Tc, Tg = canopy, soil surface temperature, respectively, (K); e∗(Tc), e∗
(
Tg
)

= saturated
vapor pressure at temperature Tc and Tg (Pa), respectively; ea = canopy air space vapor
pressure (Pa); ρ, cp = density, specific heat of air, respectively (kg/m, J/kg/K); γ = psychro-
metric constant (Pa/K); λ = latent heat of vaporization; rc = bulk stomatal resistance of
upper-story vegetation (s/m); rc = bulk canopy boundary layer resistance (s/m); hsoil = rel-
ative humidity within pore space of surface soil layer; rsoil = bare soil surface resistance
(s/m); rd = aerodynamic resistance between ground and canopy air space (s/m).

Finally, the ET is converted from latent heat fluxes:

ET =
(ea − er)

λra
×

ρcp

γ
(11)

where, λ = (3150.19 − 2.378 × Tm)× 1000, Tm is the temperature at the reference height.
ra is aerodynamic resistance between canopy air space and reference height (s/m).

4. Results
4.1. Simulation Results Validation

We established an initialized parameter scheme for the study area based on the data
in the references and the climatic characteristics of the upper Minjiang River (Appendix A
Table A7) and input the forcing variables required for SiB2 to simulate the hour-by-hour
ET in 2013. To verify the accuracy of SiB2 at the daily scale, the 3-hourly step-by-step
calculation results of SiB2 were combined into daily ET, and the simulated results for
February, May, August, and November 2013 during the vegetation growth period were
selected for comparison with the daily ET observations at the meteorological station in
Lixian during the corresponding time periods (as shown in Figure 4). On about half of the
days in February and May, the simulated values were larger than the observed values, while
on about 80% of the days in August and November, the simulated values were smaller than
the actual measured values in the evaporation dishes. The correlation coefficients between
the simulated and actual observed values for February, May, August, and November are
0.708, 0.747, 0.58, and 0.637, respectively (all significant with p-values < 0.05). As can be seen
from the figure, the simulated results were consistent with the trend of the observed values
of evapotranspiration from the evaporation dishes. The simulated and measured values of
the four months were analyzed separately by one-sided T-test, and the differences between
simulated and measured values were not significant in February and May (p-values 0.24
and 0.16, respectively), while the differences between simulated and measured values were
significant in August and November (p-values < 0.05). Since the results of SiB2 simulations
were averaged over the pixels where the stations were located, the observation scale may
be a potential reason for the discrepancy between the simulated and measured values.
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Figure 4. Comparison of simulated and observed values. (a–d) are the observed and simulated
values in February, May, August, and November, respectively.

To test the accuracy of the model results on the monthly scale, we compared the
monthly simulated ET of SiB2 and the measured ET by evaporation dishes at the mete-
orological station in Lixian. Figure 5a shows that the monthly simulated ET is generally
smaller than the measured ET, and the relative errors between the two range from 1.48% to
20.72%. Since the measured ET was influenced by the environment, if the wind speed was
higher, the measured ET would be higher than the actual ET, which may be the reason for
the large relative errors between the simulated and measured results. Figure 5b shows a
comparison of the monthly accumulation of simulated and measured values. Although
the simulated errors may be larger in some months, the cumulative errors were smaller on
monthly or seasonal time scales. The annual simulated total ET was 1469.1 mm and the
annual measured total ET 1579.5 mm, with a relative error of 6.99%. Overall, the simulated
results of SiB2 correlate well with the measured results, indicating the feasibility of SiB2 in
the study area.

Figure 5. Comparison of simulated and observed values. (a) is the monthly simulated and measured
ET. (b) is the monthly accumulation of simulated and measured ET.
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4.2. Temporal Variation in Vegetation ET
4.2.1. Daily Characteristics in Vegetation ET

Figure 6a–d shows the daily ET for each type of vegetation from 1 to 10 February
(winter), 1 to 10 May (spring), 1 to 10 August (summer), and 1 to 10 November (autumn),
respectively.

Figure 6. Daily ET for six type of vegetation. (a–d) are the daily ET of the EBF, ECF, DBF, SVCG,
BSBS, ALCG in February, May, August and November, respectively.

In February, daily ET was relatively small for all vegetation types (Figure 6a), with
the maximum ET occurring between 9 a.m. and 12 p.m. SVCG has the smallest variation
in daily ET, and its peak within a single day is 0.17 mm/h. This may be due to the weak
vegetation transpiration during the non-growing season, when most of the grassland is
in a dead state. The ET curves of the remaining vegetation types were multi-peaked
and irregular in a single day. During this period, the maximum average daily ET was
1.81 mm/d for EBF and the minimum average daily ET was 1.16 mm/d for SVCG. In
May, the magnitude of daily ET was similar for all vegetation types except for SVCG,
which had a smaller daily ET (Figure 6b). During this period, DBF had the highest average
daily ET (6.24 mm/d) and SVCG the lowest (2.14 mm/d). the average daily ET of EBF
(4.47 mm/d) and BSBS was relatively similar (4.43 mm/d). In August, daily ET was
generally high for all vegetation types (Figure 6c), with the highest peak daily ET for EBF,
DBF and ECF. During this period, EBF had the highest average daily ET (9.64 mm/d),
which was relatively close to DBF (9.57 mm/d), and SVCG had the lowest average daily
ET (3.62 mm/d). In November, the peak daily ET was smaller for all vegetation types
(Figure 6d), and SVCG and ALCG had the lowest daily ET, with relatively similar average
daily ET values, probably because most of the agricultural fields in the study area were
paddy fields and were harvested during this period. Similar to SVCG, ET was mostly
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surface evaporation. The highest average daily ET (2.38 mm/day) was observed in EBF,
and the lowest average daily ET (0.95 mm/day) was observed in SVCG during this period.

4.2.2. Seasonal Variation in the ET in Dominant Vegetation

The main vegetation types in the upper Minjiang River were SVCG, ECF and BSBS,
which account for 35.72%, 30.71% and 25.66% of the study area, respectively, and had a
significant influence on the ET pattern. Figure 7a shows the monthly average ET values for
each vegetation type in the study area. After summing up the months on an annual scale
(as shown in Figure 7b), the magnitude of annual ET was in the order of BSBS (988.56 mm)
> ECF (984.37 mm) > SVCG (846.74 mm). During the growing season, the sum of monthly
ET was in the order of ECF (623.5 mm) > BSBS (622.06 mm) > SVCG (510.11 mm) and they
accounted for 63.34%, 62.93% and 60.24% of the total ET, respectively. The ET reached its
peak in summer, and the sum of monthly ET in summer was ECF (376.13 mm) > BSBS
(372.16 mm) > SVCG (302.63 mm) in order, and they accounted for 60.33%, 59.83% and
59.33% of the total ET during the growing season and 38.21%, 37.65% and 35.74% of the
total annual ET, respectively. During the non-growing season, the sum of monthly ET was
BSBS (366.5 mm) > ECF (360.87 mm) > SVCG (336.63 mm) in order, and they accounted for
37.07%, 36.66% and 39.76% of the total annual ET, respectively. To sum up, the vegetation
evapotranspiration in the upper Minjiang River region showed obvious seasonal variations.
During the growing season, the ET was larger due to the strong transpiration of vegetation,
and accounted for more than 58% of the total annual ET; during the non-growing season,
the ET was smaller, and accounted for less than 40% of the total annual ET.

Figure 7. Seasonal dynamics of ET for different vegetation. (a) is the monthly ET of the six vegetation
types. (b) is the sum of the monthly ET of the six vegetation types for the growing season and in
a year.

4.3. Spatial Variation in ET

Figure 8a–l shows the spatial distribution of the average daily ET for each month using
the natural breaks method. The daily ET in the upper Minjiang River was small in winter,
with the average daily ET of 0.87 mm and 1.4 mm in January and February, respectively,
and 0.97 mm and 0.76 mm in November and December, respectively. The average daily ET
was more vigorous from March to October, peaked in July, and then declined (as shown in
Figure 9).
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Figure 8. Spatial and temporal of ET in six counties. (a–l) are the average daily ET in six counties.

Figure 9. The sum of the average daily ET for each county in 12 months.

In the six counties, DJY had the highest average daily ET (6.42 mm/d) in spring. There
was no significant difference in the average daily ET of the remaining five counties (the
average daily ET was 3.33 mm/d), with the highest being MX (3.67 mm/d) and the smallest
being HS (3.13 mm/d). In summer, the average daily ET of DJY was 6.2 mm/d, while
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the average daily ET of the other five counties was 3.82 mm/d, with the highest being
MX (4.75 mm/d) and the lowest being SP (3.27 mm/d). In autumn, the average daily ET
decreased significantly in all counties, and the average daily ET in DJY was 2.39 mm/d,
while the average daily ET in the remaining five counties was 1.86 mm/d. In winter, the
average daily ET in DJY was 1.62 mm/d, while the average daily ET in the remaining five
counties was 1.01 mm/d. Among the five counties of HS, SP, WC, MX and LX, MX had
the highest average daily ET in spring and summer, and the vegetation distribution in its
territory was mostly evergreen coniferous forest, evergreen broad-leaved shrub forest and
deciduous broad-leaved shrub forest, and its temperature was also higher. Overall, the
average daily ET was higher in spring and summer with little variation, and it was smaller
in autumn and winter with less fluctuation between the two seasons. The highest regional
average temperature, lowest elevation, and more distribution of water bodies may explain
the higher ET in DJY.

In terms of elevation (as shown in Table 1), the variation in ET in the study area
decreases with increasing elevation. The key point where ET decreases sharply is at 3000 m.
This may be related to the elevation distribution of vegetation in the upper Minjiang River.
Forests are concentrated below 3000 m, while shrubs and meadows are mainly distributed
above 3000 m, and their ET characteristics are different from those of forests. In addition,
the temperature and other hydrothermal conditions change significantly with increasing
elevation, leading to significant changes in ET in areas above 3000 m.

Table 1. Variation in ET with elevation (mm).

Elevation January February March April May June July August September October November December Annual ET

[500,1000) 58 61 227 267 178 181 196 215 105 79 41 40 1648
[1000,1500) 51 60 170 157 174 191 221 211 114 106 51 38 1544
[1500,2000) 35 57 154 128 123 138 180 143 87 81 34 28 1188
[2000,2500) 31 51 140 124 121 139 181 141 95 79 32 25 1159
[2500,3000) 29 48 127 128 115 132 169 147 95 71 33 27 1121
[3000,3500) 24 33 124 124 96 95 130 103 80 63 29 22 923
[3500,4000) 25 34 116 106 82 81 124 98 75 51 26 23 841
[4000,4500) 24 32 104 100 77 74 116 94 66 48 27 20 782
[4500,6000) 19 34 96 90 70 67 94 74 54 39 22 16 675

4.4. Correlation of ET with Environmental Factors

At the annual scale, SiB2 results showed significant correlations with temperature
and elevation, 0.785 and 0.733, respectively, and weaker correlations with precipitation,
with correlation coefficients below 0.36. At the monthly scale, the correlations between
ET and elevation, temperature and precipitation of the study area in 2013 are shown
in Figure 10. The correlation between ET and air temperature and elevation gradually
decreased from the growing season, while the correlation between ET and precipitation
was weak and fluctuated greatly. In November and December, the correlations between ET
and air temperature, elevation, and precipitation tended to be close.

Figure 11 shows the dynamics of ET and precipitation, temperature and the correla-
tions for the six counties. In Figure 11a–g, the temperature shows a single-peaked pattern,
with a sharp increase in the study area in March and April. However, the ET exhibited a
double-peak pattern. The correlation coefficients between ET and air temperature for each
county ranged from 0.772 to 0.919. Among these counties, DJY has the lowest correlation co-
efficient between ET and air temperature. Compared with air temperature, the correlations
between ET and precipitation were lower at 0.529–0.773 (as shown Figure 11h–l). From
the simulation results, the ET in the non-growing season was less than the precipitation.
Among them, the ET in HS and SP counties was greater than precipitation in summer.
Similar to air temperature, the correlation between ET and precipitation was the lowest
in DJY.
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Figure 10. Correlation of ET with temperature, altitude and precipitation.

Figure 11. Correlation of daily average ET with temperature and precipitation for the simulated
months. (a–f) are the correlations of daily average ET with temperature for DJY, HS, LX, MX, SP, and
WC counties, respectively; (g–l) are the correlations of daily average ET with precipitation for DJY,
HS, LX, MX, SP, and WC counties.
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5. Discussion

From the comparison of the simulated and observed ET, the difference between the
two was not significant in the early stage of the simulation but it was significant in the later
stage of the simulation at the intra-annual scale, but the two were still well correlated. The
difference in scales between simulations and observations was a factor for the significant
difference in the later stage.

The annual difference in temperature in the upper Minjiang River was small, with a
rapid rise in temperature in spring and a rapid fall in autumn, making a clear distinction
between wet and dry seasons. The areas with high ET in spring were mainly concentrated in
low elevation counties such as DJY. Surface temperatures in these areas were relatively high,
and crops and water bodies were widely distributed. The high ET may be due to the fact
that the snow melted in the early spring when the temperature just rose above 0 ◦C. In May,
the ET gradually increased in the sub-basins of Mogunao and Heishui with the gradual
increase in surface temperature. The evergreen coniferous forest, evergreen broadleaf forest,
deciduous broadleaf forest, evergreen broadleaf shrub forest and deciduous broadleaf
shrub forest distributed in these sub-basins may be one of the potential reasons for the
higher daily ET. During summer, the ET showed high values throughout the study area.
Into early autumn, the ET in the study area remained at a high level, with the distribution
of high and low value areas close to that of summer. By November, the ET declined sharply
in all areas except for slightly higher ET in the eastern part of the study area at lower
elevations. Despite the low ET of the agricultural fields in winter, the unique topographic
and climatic conditions made DJY the highest ET of all regions.

The distribution of ET in the upper Minjiang River was uneven within one year. The
multi-year average ET showed a trend of gradual decrease from southeast to northwest,
and the spatial variation in ET in DJY was large [34]. Our simulation results were consistent
with this study in terms of spatial trends. However, the annual ET obtained from the
observation station in Lixian and the simulation results of SiB2 also found that the annual
ET of all vegetation types were greater than the results of Fu Baopu model [34]. The upper
Minjiang River afforestation and forest conservation program was initiated in 1998 and
increased forest cover to 34% by 2006 [41]. After reforestation, trees were in a rapid growth
phase [42], which, combined with lack of management and rising air temperatures, may
lead to an increase in ET [43].

Whether regional-scale ET estimates are based on remote sensing models or surface
process models, their validation at the regional scale is a challenge. This requires detailed
observations of the surface property fields at the regional scale. In this study, the simulation
results were only validated locally at the point scale. Future evaluations of SiB2 ET simu-
lations in mountainous areas will seek data from large-aperture scintillators. At present,
the applications of land surface process models are mostly in flat terrain areas, and the
applicability of SiB2 in mountainous areas has not been well investigated. Improving the
SiB2 model based on DEM data and considering the influence of topographic factors on
water-heat exchange will included in future work to simulate ET in mountainous areas.

6. Conclusions

In this study, the spatial and temporal variation in ET in the upper Minjiang River was
simulated using the SiB2 model with the Chinese regional surface meteorological element
dataset as the data source, and its correlation with temperature, elevation and precipitation
was analyzed. (1) The simulated results of ET by the SiB2 model in the study area are
validated at the daily, monthly, and annual scales, respectively. At the daily scale, the
simulated ET is generally smaller than the measured ET. At the monthly scale, the relative
errors between the simulated and measured values varies from 1.48% to 20.72%. The
relative error between the simulated and measured values of total annual ET is 6.99%. The
application of the SiB2 model in the study area is feasible. (2) The ET dynamics of different
vegetation in the upper Minjiang River are analyzed. At the daily scale, each vegetation
shows obvious daily variation characteristics, and there are obvious seasonality of daily ET,
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with smaller daily ET in February and November (non-growing season) and larger daily
ET in May and August (growing season). At the monthly scale, the vegetation ET in the
upper Minjiang River shows obvious seasonal variation with the change in climate. The
growing season ET accounts for more than 58% of the total annual ET, and the non-growing
season ET accounts for less than 40% of the total annual ET. (3) The spatial and temporal
characteristics of ET in the study area are analyzed. The ET is higher in areas with more
intensive growth of crops and at lower elevations. In the whole study area, the ET is highest
in spring and summer, followed by autumn, and is the lowest in winter.
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Appendix A

Table A1. All data sets used and their sources.

Datasets Sources

CMFD (China Meteorological Forcing Dataset) http://www.tpdc.ac.cn/zh-hans/data/7a35329c-c53f-4267
-aa07-e0037d913a21/ (accessed on 20 April 2020)

SRTM (Shuttle Radar Topography Mission) https://www.resdc.cn/data.aspx?DATAID=284 (accessed on 20
April 2020)

Chinese soil data set based on world soil database (hwsd) (v1.1) http://www.ncdc.ac.cn/portal/metadata/a948627d-4b71-4f6
8-b1b6-fe02e302af09 (accessed on 20 April 2020)

LULC (Land use/Land cover) http://www.tpdc.ac.cn/zh-hans/data/f1aaacad-9f42-474e-
8aa4-d37f37d6482f/ (accessed on 20 April 2020)

NDVI https://www.resdc.cn/DOI/doi.aspx?DOIid=50 (accessed on
20 April 2020)

Table A2. Mapping between LULC vegetation types and SiB2 vegetation types.

LULC Vegetation Types SiB2 Vegetation Types

Evergreen Broadleaf Forest Evergreen Broadleaf Forest
Deciduous Broadleaf Forest Deciduous Broadleaf Forest
Evergreen Coniferous Forest, Mixed Coniferous Forest Evergreen Coniferous Forest
Grasslands, Herbaceous Marshes, Meadows Short Vegetation/C4 Grassland
Deciduous Broad-leaved Shrub Forests, Sparse Shrub Forests Broadleaf Shrubs on Bare Soil

Paddy Field, Dry Land, Grass Agricultural Land/C3
Grassland

https://data.tpdc.ac.cn/en/data/7a35329c-c53f-4267-aa07-e0037d913a21/
https://data.tpdc.ac.cn/en/data/7a35329c-c53f-4267-aa07-e0037d913a21/
https://www.resdc.cn/data.aspx?DATAID=284
https://www.resdc.cn/data.aspx?DATAID=284
http://www.ncdc.ac.cn/portal/metadata/a948627d-4b71-4f68-b1b6-fe02e302af09
http://www.ncdc.ac.cn/portal/metadata/a948627d-4b71-4f68-b1b6-fe02e302af09
https://www.resdc.cn/DOI/doi.aspx?DOIid=50
http://www.tpdc.ac.cn/zh-hans/data/7a35329c-c53f-4267-aa07-e0037d913a21/
http://www.tpdc.ac.cn/zh-hans/data/7a35329c-c53f-4267-aa07-e0037d913a21/
https://www.resdc.cn/data.aspx?DATAID=284
http://www.ncdc.ac.cn/portal/metadata/a948627d-4b71-4f68-b1b6-fe02e302af09
http://www.ncdc.ac.cn/portal/metadata/a948627d-4b71-4f68-b1b6-fe02e302af09
http://www.tpdc.ac.cn/zh-hans/data/f1aaacad-9f42-474e-8aa4-d37f37d6482f/
http://www.tpdc.ac.cn/zh-hans/data/f1aaacad-9f42-474e-8aa4-d37f37d6482f/
https://www.resdc.cn/DOI/doi.aspx?DOIid=50
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Table A3. Vegetation morphological parameters.

Morphological Parameters Related to Vegetation Type

Morphological parameters Symbol Vegetation type
1 2 4 6 7 9

Top height of crown (m) Z2 35.0 20.0 17.0 1.0 0.5 1.0
Height of crown base (m) Z1 1.0 11.5 8.5 0.1 0.1 0.1

Leaf density bending height (m) Zc 28.0 17.0 10.0 0.55 0.3 0.55
Canopy coverage ratio (%) V 1.0 1.0 1.0 1.0 0.1 1.0

Foliar angle distribution factor χL 0.1 0.25 0.01 −0.3 0.01 −0.3
Leaf width (m) lW 0.05 0.08 0.001 0.01 0.003 0.01
Leaf length (m) ll 0.1 0.15 0.055 0.3 0.03 0.3
Soil depth (m) DT 3.5 2.0 2.0 1.5 1.5 1.5
Root depth (m) Dr 1.5 1.5 1.5 1.0 1.0 1.0

Morphological parameters not related to vegetation type
Morphological parameters Symbol Value

Ground roughness length (m) Zs 0.05
Momentum transfer parameter increase

factor G1 1.449

Momentum transfer parameter height
conversion factor G4 11.785

Depth of topsoil layer (m) D1 0.02

Table A4. Vegetation optical properties parameters.

Optical Properties Parameters Symbol
Vegetation Type

1 2 4 6 7 9

Living Plants

Foliar reflectance in the visible wavelength band αV,l 0.1 0.1 0.07 0.105 0.1 0.105
Foliar reflectance in the near-infrared band αN,l 0.45 0.45 0.35 0.58 0.45 0.58

Transmission in the visible wavelength band δV,l 0.05 0.05 0.05 0.07 0.05 0.07
Transmission in the near-infrared band δN,l 0.25 0.25 0.1 0.25 0.25 0.25

Dead plants

Foliar reflectance in the visible wavelength band αV,d 0.16 0.16 0.16 0.36 0.16 0.36
Foliar reflectance in the near-infrared band αN,d 0.39 0.39 0.39 0.58 0.39 0.58

Transmission in the visible wavelength band δV,d 0.001 0.001 0.001 0.22 0.001 0.22
Transmission in the near-infrared band δN,d 0.001 0.001 0.001 0.38 0.001 0.38

Soil
Visible wavelength reflectance αsV 0.11 0.11 0.11 0.11 0.11 0.1
Near-infrared band reflectance αsN 0.225 0.225 0.225 0.225 0.225 0.15

Table A5. Vegetation physiological parameters.

Physiological Parameters Related to Vegetation Type

Physiological parameters Symbol Vegetation type
1 2 4 6 7 9

The catalytic rate of photosynthesis RuBisCO
(mol·m−2·s−1) Vmax0 1 × 10−4 1 × 10−4 4 × 10−5 3 × 10−5 6 × 10−5 1 × 10−4

Parameters of internal quantum effects of photosynthesis
(mol mol−1) ε 0.08 0.08 0.08 0.05 0.08 0.08

Stomatal slope factor m 9.0 9.0 9.0 4.0 9.0 9.0
Minimum stomatal conductivity(mol m−2s−1) b 0.01 0.01 0.01 0.04 0.01 0.01

Photosynthetic coupling factor βce 0.98 0.98 0.98 0.8 0.98 0.98
High temperature shear factor in photosynthesis (K) S2 313 311 303 313 313 308
Low temperature shear factor in photosynthesis (K) S4 288 283 278 288 283 281

Semi-obstructed water potential parameters (m) ψc −200 −200 −200 −200 −200 −200
Leaf respiration impact factor fd 0.015 0.015 0.015 0.025 0.015 0.015

Physiological parameters not related to vegetation type
Physiological parameters Symbol Value

RuBisCO catalytic capacity for CO2 fixation (Pa) S 2600 × 0.57Qt

Michaelis-Memen constants for CO2 by RuBisCO (Pa) Kc 30 × 2.1Qt

The inhibition constants for O2 by RuBisCO (Pa) Ko 30, 000 × 1.2Qt

Photosynthetic coupling factor βps 0.95
High temperature shear factor in photosynthesis (K) S1 0.3
Low temperature shear factor in photosynthesis (K) S3 0.2

High temperature shear factor in respiration (K) S5 1.3
High temperature shear factor in respiration (K) S6 328

Q10 temperature factor Qt (Tc − 298)/10
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Table A6. Soil properties parameters.

Soil Properties Parameters Symbol
Soil Type

1 2 3 4 5

Soil moisture index B 4.05 4.90 5.39 7.12 8.52
Soil water potential ψs −0.04 −0.07 −0.15 −0.12 −0.36

Saturated water conductivity (m s−1) Ks × 106 176.0 35.0 7.0 6.3 2.5
Soil porosity (%) θs 0.40 0.44 0.45 0.42 0.48

Table A7. Initial parameters of SiB2.

Initialization Parameters
Vegetation Type

1 2 4 6 7 9

Reference height temperature (K) 263.0 263.0 263.0 263.0 263.0 263.0
Reference height (m) 45.0 45.0 45.0 2.0 2.0 2.0

Vegetation temperature (K) 262.0 262.0 262.0 262.0 262.0 262.0
Canopy air temperature (K) 262.0 262.0 262.0 262.0 262.0 262.0

Surface temperature (K) 265.0 265.0 265.0 265.0 265.0 265.0
Deep earth temperature (K) 262.0 262.0 262.0 262.0 262.0 262.0

Soil surface layer moisture (%) 0.4 0.4 0.4 0.4 0.4 0.65
Root domain humidity (%) 0.4 0.4 0.4 0.4 0.4 0.7

Exchange domain humidity (%) 0.4 0.4 0.4 0.4 0.4 0.6
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