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Abstract: Runoff from agricultural fields during the nongrowing season is a significant factor leading
to phosphorous loading and diminishing water quality in Lake Simcoe, Ontario. Cover crops offer the
potential to alleviate phosphorous loss during the nongrowing season by minimizing soil erosional
processes and uptaking excess phosphorous; however, recent research suggests that its adoption
remains relatively low. More concern lies with the lack of cover crop adoption on areas that are
sensitive to soil erosion. This study intends to investigate the likelihood of agricultural productions
located on erosive soils to adopt cover crops. Using satellite imagery in corroboration with the
Universal Soil Loss Equation (USLE), this study reveals the frequency of cover crop production and
associates soil loss sensitivity at a 30 m resolution from 2013 to 2018. Consistent with recent literature,
this study reveals that a small portion (18%) of agricultural operations in the south Simcoe Watershed
have incorporated cover crops over the past six years. Cover crops tend to be adopted at a low
frequency in areas that have a low sensitivity to soil erosion. This study reveals that areas with higher
soil erosion sensitivity are consistent with low-frequency adoption, indicating that these areas are
less likely to adopt cover crops regularly. Promoting farm-scale benefits associated with cover crops
should target areas in the south Simcoe Watershed that are prone to soil erosion to mitigate total
phosphorus (TP) loading into Lake Simcoe.

Keywords: soil erosion severity; cover crops; phosphorus; soy corn rotation

1. Introduction

Depleted water quality and eutrophication is a growing concern in Ontario’s fresh-
water lakes, particularly in Lake Simcoe. The degraded freshwater environment in Lake
Simcoe is associated with elevated phosphorous loads from surrounding urban and agri-
culture areas [1]. The Ontario Ministry of the Environment and Climate Change [1] reports
that approximately 25% of total phosphorus (TP) entering Lake Simcoe originates from
nearby agricultural operations, the majority of which occurs during the nongrowing season
(Figure 1) [2,3] as soils are left bare and vulnerable to wind and water erosion. During the
nongrowing season, the temperate winter climate, including midwinter and spring thaws,
promotes high discharge and, in turn, TP loss on agricultural fields [2]. Lake Simcoe is
subject to such trends as peak discharge and TP loads from the surrounding subwater-
sheds occur in March and April (Figure 1)—indicative of spring thaw [4]. In combination
with discharge data from the Government of Canada [5] and TP loading data collected
by [6], Figure 1 reveals average discharge and TP loading rates into Lake Simcoe from four
subwatersheds during the nongrowing season (October–April).
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(a)Uxbridge Brook (b) Beaver River 

 

(c) Pefferlaw River 

 

(d) Black River 

Figure 1: Average discharge (1000 m3/month) (Government of Canada, 2020) with total phosphorus (TP) (kg) 

from 2011 – 2016 for the Uxbridge Brook (a), Beaver River (b), Pefferlaw River (c), and the Black River (d) [6]. 
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Figure 1. Average discharge (1000 m3/month) (Government of Canada, 2020) with total phosphorus
(TP) (kg) from 2011–2016 for the Uxbridge Brook (a), Beaver River (b), Pefferlaw River (c), and the
Black River (d) [6].

The use of cover crops is an attractive management practice to reduce soil erosion and
TP loading during the nongrowing season [7–9]. Despite the magnitude of the potential ben-
efit, research indicates a low adoption rate of cover crops across the Corn Belt—including
Ontario [10,11]. The lack of adoption of cover crops is of concern, as it suggests that fields
are left bare during the nongrowing season. Even more concerning is that low adoption
rates can extend into areas that are prone to soil erosion. Cover crop practices should
target agricultural operations located on erosion-prone soils within the Simcoe Watershed
to control TP loss from runoff during the nongrowing season. Currently, there is a need to
identify areas that are prone to soil erosion and assess the likelihood of cover crop practices
in the Simcoe Watershed. This study intends to fill this research gap by analyzing cover
crop adoption trends in correlation to areas that are prone to soil erosion.

Collecting ground cover data is a popular technique to monitor land use and classi-
fication. This method is useful and accurate at field-level scales; however, given spatial
and temporal variability of farm practices and land classifications on larger, regional scales,
this method requires a lot of time and money to collect such extensive ground cover data.
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Satellite imagery is an effective and efficient approach for collecting such data on a large
scale. This research utilizes the Annual Crop Inventory (ACI) dataset provided by Agri-
culture and Agri-Food Canada (AAFC)—a dataset that identifies all land use types at a
30 m resolution. The ACI dataset is derived from optical (Landsat-8, Sentinel-2) and radar
(RADARSAT-2) base satellite images [12]. This study used ACI datasets using ESRI ArcGIS
to analyze cover crop adoption trends over the south Simcoe Watershed.

The Universal Soil Loss Equation (USLE) is used in this study to investigate soil
erosion over the Simcoe Watershed at a 30 m resolution. The USLE and its derivatives—the
Revised (RUSLE) and Modified (MUSLE)—are widely accepted models for estimating the
sensitivity of soil erosion of certain areas based on the slope gradient, a soil erodability factor,
rainfall intensity, cropping management, and support practice factors [13–15]. KC [16] used
such a model to produce erosion-susceptible maps for an area that has suffered due to
shifting cultivation located in the mountainous regions of Northern Thailand. The KC [16]
study utilized remote sensing in corroboration with GIS methods to calculate the USLE
and further classify pixels into different soil erosion severity levels. A similar study by
Bartsch et al. [17] investigated soil loss and transport at Camp Williams in northern Utah—
identifying areas that are sensitive to soil loss in a region notorious for intense summer
storms and subsequent sediment loading of riparian zones. Bartsch et al. [17] utilized the
RUSLE to create an erosion-risk classification map by classifying the quantitative values
generated using the RUSLE and grouping them into classes. To make the USLE and its
derivatives more user-friendly to map, a study by Zhang et al. [13]) integrated the MUSLE
with ArcGIS to create a tool to identify runoff, peak flow, and soil loss for a rainfall event
within a watershed. This model requires compatible layers, including Digital Elevation
Model (DEM), Soil Layer, Rainfall Layer, and Land Cover Layer. Zhang et al. [13] ran their
application using data for Black Hawk County, Iowa, USA, and generated a useful map for
policymakers to identify problematic areas for erosion.

Currently, there is a significant amount of research examining cover crop adoption
benefits for TP control throughout the nongrowing season [2,3,7–9]. Further, there is a body
of literature identifying adoption trends of cover crops in the Corn Belt [10,11]. However, a
better understanding of the likelihood of farmers adopting cover crops based on soil erosion
would help to understand if cover crops are well-targeted to erosion-prone areas. To date,
the degree of how well-targeted cover crop adoption is toward areas where significant
erosion can take place is not known. This study intends to investigate this correlation in the
Simcoe Watershed. This paper utilizes AAFC’s ACI dataset to identify cover crop adoption
in corroboration with the USLE of the south Simcoe Watershed to investigate a correlation
between soil erosion and cover crop adoption. The objective of this study is to use USLE to
identify hot spots for soil erosion and identify the degree to which cover crops have been
adopted in these sensitive regions.

2. Methods
2.1. Study Site

Lake Simcoe is a large (722 km2 surface area) freshwater lake consisting of the central
basin, Cooks Bay, and Kempenfelt Bay located on the south and west sides of the lake,
respectively. All analyses in this study were conducted within the Simcoe Watershed, fo-
cusing on field crops grown within agricultural fields in the study site (Figure 2). The study
analyzed five subwatersheds, located south of Lake Simcoe; these include the Uxbridge
Brooke, Beaver River, Maskinonge River, Pefferlaw River, and Black River subwatersheds,
all of which discharge into Lake Simcoe, except for the Maskinonge River that discharges
into Cooks Bay. Soils across these five subwatersheds are prime for agriculture, as the
landscape comprises of Class 1, 2, and organic soils [18]. The soil types include silt loam,
clay loam, loam, sand, and loamy sand. Agriculture occupies approximately 48% of the area
across the five subwatersheds. Fallow, corn, and soybean occupy most of the agricultural
production in the study site, representing 23.6, 10.9, and 10.2% of the agricultural area in
the study site, respectively.
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Figure 2. Agricultural areas shown in green across the Uxbridge Brooke (0), Beaver River (1),
Maskinonge River (2), Pefferlaw River (3), and Black River (4) subwatersheds. Image manipulated
from AAFC annual crop inventory [12].

Across the five watersheds, the average winter and summer temperatures are −4.7 ◦C
and 18.1 ◦C, respectively. The coldest temperature occurs in January with an average of
−7 ◦C and the hottest temperature occurs in July with an average of 19.9 ◦C. Annual rainfall
and precipitation across this study site average 728.7 mm and 886.3 mm, respectively.

2.2. Universal Soil Loss Equation (USLE)

Soil erodibility sensitivity was calculated in this study using the Universal Soil
Loss Equation (USLE)—a popular soil erosion model created by Wischmeier and Smith
(1978 NBY NUMBER 14). This model explores five factors that influence soil erosion:

A = R ∗ K ∗ LS ∗ C ∗ P (1)

Variable A represents the average amount of soil loss in an area—measured in tonnes
ha−1year−1, R represents the rainfall erosivity factor, K represents the soil erodability factor,
LS is an index for slope length and steepness factors, C represents cover and management,
and P represents support practice (Equation (1)). The USLE was calculated and mapped
across the study site at a 30 m resolution. The generated map classifies the calculations
into five soil loss rates (tonnes/ha/year) thresholds, based on OMAFRA [19] USLE clas-
sifications: very low (0–6.7), low (6.7–11.2), moderate (11.2–22.4), high (22.4–33.6), and
severe (>33.6).

2.2.1. Rainfall Erosivity Factor (R)

The Rainfall Erosivity Factor (R) represents the erosive potential of rain due to the
intensity of rainfall events. This factor requires continuous site-specific rainfall intensity
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data measured in 30 min increments. Such data is difficult to acquire over a large study,
as a plethora of weather stations are required to collect continuous and detailed rainfall
data. This barrier was experienced in this research, as it encapsulates an extensive study
site. Instead, to fulfill the R factor requirement for the USLE, OMAFRA [19] estimates an
R-value of 90 for the Toronto Station and Tweed Station data. OMAFRA’s [19] R-value
estimation encapsulates the regions within this study site. This value remained constant
across the five subwatersheds in this study.

2.2.2. Soil Erodibility Factor (K)

The soil erodability factor (K) represents the vulnerability of specific soil types to
erosional forces based on the soil texture and soil organic matter (OM) content. Soil types
were mapped on ArcGIS using the Soil Landscapes of Canada Version 3.2 [20,21] for the
study site. Based on the sand, silt, clay, and percent of OM content of each soil type, a K
factor was assigned to each cell using the OMAFRA [19] K factor data.

2.2.3. Slope Gradient Factor (LS)

The slope of any given area is an essential factor for understanding the risk of erosion,
as steeper slopes influence erosional forces. In this study, the soil loss equation utilizes the
slope length (L) and steepness (S), providing the slope gradient factor (LS). The Sediment
Transport Index (STI) was used to calculate the slope gradient factor, as it characterizes the
erosion and depositional processes [22] for any given watershed based on the topography.
The index is used under the assumption that the contributing area (As) is directly related to
discharge and the slope [23]. The Sediment Transport Index is defined as:

STI = (m + 1) ∗ (As/22.13)m ∗ (sin β/0.0896)n (2)

The Provincial Digital Elevation Model (PDEM) dataset provided by OMAFRA [24]
was derived to solve for the slope and flow accumulation across the study site at a 30 m
resolution using Esri ArcMap. The generated slope and flow accumulation represent the β

and As variables, respectively. The contributing area exponent m and the slope exponent n
were assigned the constant values of 0.4 and 1.3, respectively, as they are proven to be the
best fit for the soil loss equation [25]. The STI at a 30 m resolution was generated for the
study site using White Box Geospatial Analysis Toolbox [23] across the study site.

2.2.4. Cover Management Factor (C)

Reducing erosion of a given area is dependent on land cover and management. The
Cover Management Factor (C) determines the effectiveness of soil and crop management
systems for reducing erosion and is defined as the ratio between soil loss under specific
crops with the equivalent soil loss in continuous fallow and tilled land [15]. Generally, the
C factor ranges between 0 and 1, indicating very strong vegetation cover and barren land,
respectively. Much recent research has estimated the C factor using remote sensing data
through the Normalized Difference Vegetation Index (NDVI), as it positively correlates to
the C factor [26–31]. NDVI values were calculated and averaged.

NDVI =
NIR − IR
NIR + IR

(3)

where NIR is the spectral reflectance in the near-infrared band and IR is the spectral
reflectance in the red band. The NIR and IR bands were extracted from Landsat 8 images of
the study site. NDVI values range between −1 and +1, where values closer to +1 represent
green vegetation, 0 represents bare soil, and values less than 0 represent bodies of water.
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NDVI values were calculated at a 30 m resolution for six Landsat 8 images obtained
monthly from April—September 2018. The six NDVI images were averaged and the
resulting NDVI values were scaled to approximate C-values using the following formula:

C = exp
[
−α ∗

(
NDVI

β − NDVI

)]
(4)

where α and β are parameters that determine the shape of the NDVI-C curve. Values 2 and
1 are assigned to parameters α and β, at the recommendation of Van der Kniff et al. [30].
Figure 3 reveals the relationship between NDVI and C.
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2.2.5. Support Practice Factor (P)

The support practice factor reflects the effects of practices that will reduce the amount
of erosion, including strip contouring, straight row farming up and down the slope, cross
slope cultivation, and strip cropping [19]. The p-value ranges between 0 and 1, where
0 represents very good erosion control and 1 represents no erosion control solutions.
Consistent with [32–34], the chosen value of p = 1 was selected, as obtaining conservation
practices data for estimating P was not consistently available for the areal extent of this
study site.

2.2.6. Application: Esri ArcMap

The USLE model was generated using ESRI ArcMAP, using five factors (L, S, K, R,
C) as input data. These variables were identified using elevation, soil properties, rainfall,
and vegetation data. All datasets were stored at WGS_1984_UTM_Zone_17N projection.
Figure 4 reveals the Esri ArcMAP workflow, modeling the USLE.
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2.3. Cover Crop Frequency Analysis

AAFC’s ACI dataset identifies and classifies all land cover types, with a focused
differentiation on agricultural production, at a 30 m resolution. This study utilizes ACI data
to investigate cover crop adoption from 2013–2018 in the Simcoe Watershed. ESRI ArcMap
was used to define the study site boundary (Figure 1) and reclassify ACI datasets from
2013–2018. OMAFRA [35] identifies rye, oat, and winter wheat as some common cover
crops grown in southern Ontario. This study acknowledges that rye, oats, and winter wheat
are not always grown as cover crops; however, for the purposes of this study, they will be
identified as cover crops. Additionally, this study does not investigate double-cropping
systems or off-season management cover crops, such as red clover, due to remote sensing
limitations. Using Esri ArcMAP, rye, oats, and winter wheat classifications were collapsed
into a cover crop category, and all other land uses were reclassified as null data.

The six reclassified ACI layers were added together to generate a new layer, revealing
the frequency of cover crop appearance for each pixel over the six years. The identified
pixels containing cover crops were superimposed onto the generated USLE map and
assigned the associated USLE value. Stacked bar graphs were generated to reveal trends
between cover crop frequency and soil erosion sensitivity.

3. Results
3.1. USLE Analysis

Based on the integration of LS, K, R, C, and P factors of the USLE, five classes of
annual soil loss sensitivity indexes were identified. Previous government research in On-
tario (OMAFRA, 2012) identifies these thresholds as: very low (0–6.7 tonnes/ha/year), low
(6.7–11.2 tonnes/ha/year), moderate (11.2–22.4 tonnes/ha/year), high (22.4–33.6 tonnes/ha/year),
and severe (>33.6 tonnes/ha/year) (Figure 5). The areal extent of the USLE reveals that the
majority of the study site equates to very low soil loss class, representing 86.6% of the area;
low, moderate, high, and severe represent 6.4, 5.0, 1.2, and 0.8%, respectively (Figure 5 and
Table 1). Table 1 reveals the areal extent of soil loss sensitivities at the subwatershed scale.
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tonnes/ha/year 83.1 79.5 87.3 73.7 83.9 81.5 87.3 81.1 87.2 80.1 86.6 79.2

Low (6.7–11.2)
tonnes/ha/year 7.9 9.9 6.5 14.1 8.1 9.3 5.6 8.6 5.9 9.2 6.4 10.2

Moderate
(11.2–22.4)

tonnes/ha/year
6.5 7.9 4.6 9.5 6.2 7.2 4.8 7.5 4.8 7.3 5.0 7.9

High (22.4–33.6)
tonnes/ha/year 1.6 1.8 1.0 1.8 1.3 1.5 1.4 2.1 1.2 1.7 1.2 1.8

Severe (>33.6)
tonnes/ha/year 0.8 0.8 0.6 0.8 0.5 0.5 0.9 0.8 0.9 0.8 0.8 0.8
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3.2. USLE and Agriculture Analysis

Agriculture represents a large portion of land use in the south Simcoe Watershed,
occupying approximately 49% of the total land cover. Table 1 reveals the proportion of
agriculture within each subwatershed occurring on differing soil loss classifications. The
preponderance of agricultural operations serendipitously occurs in areas classified with
very low sensitivity to soil erosion (Table 1), and a minute proportion of agriculture occurs
in areas that are classified as severe soil loss areas. Approximately 79.2, 10.2, 7.9, 1.8, and
0.8% of all agricultural operations across the study site occur in areas classified with very
low, low, moderate, high, and severe soil loss, respectively (Table 1).

3.3. USLE and Cover Crop Analysis

The application of cover crops within a crop rotation system is an underutilized soil-
conservation method in the south Simcoe Watershed, as the presence of cover crops into
rotations of corn and soybeans occur on only 18.2% of all agricultural land. This study
reveals that agricultural operations incorporate cover crops at a frequency of one year
of cover crops grown in last six years (1:6), two years of cover crops grown in the last
six years (2:6), three years of cover crops grown in the last six years (3:6), or four years of
cover crops grown in the last six years (4:6). Since this study does not consider double-
crop management practices and off-season management practices such as red clover, it is
unlikely to encounter cover crops grown at frequencies ≥ 4:6, as cover crops are adopted
into cash crop sequences and not for monoculture. The most commonly adopted crops are
cover crops, at 1:6 frequencies—representing over 90% of cover crop operations (Figure 6).
Agricultural areas that have incorporated two, three, and four years of cover crops represent
7.42, 0.57, and 0.004%, respectively.
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The comparative analysis between cover crop adoption and soil loss sensitivity classifi-
cation reveals that 82% of agricultural productions that have incorporated a cover crop (rye,
oats, or winter wheat) at 1:6, 2:6, or 3:6 frequencies over the past six years primarily occur
on fields with very low (0–6.7) soil erosion sensitivity. In comparison, 8.7, 6.8, 1.4, and 0.64%
represent the portions of agricultural land that has incorporated cover crops over the past
six years, on fields classified with low, moderate, high, and severe soil loss, respectively.

Figure 7 shows the relation between the adoption of cover crops (rye, oats, or winter
wheat) and soil erosion severity. Our result found that larger areas fall under the high
erosion severity class (Figure 7A) compared to other groups that only practice one year
of the cover crop out of the six years. In contrast, larger areas fall under the low erosion
severity class (Figure 7B and Figure 7C) compared to other groups, in the areas that
practiced two to three years of cover crops out of the six years.
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3.4. Relationship between Average Soil Loss and Cover Crop Frequency

In this study, cover crops adopted at higher frequency attribute to lower annual soil
loss (Table 2). An average rate of soil loss found for 1:6, 2:6, and 3:6 cover crop frequency
is presented in Table 2. The average soil loss for 1:6, 2:6, and 3:6 are approximately 4, 3,
and 2 tonnes/ha/year, respectively. This paper suggests that areas incorporating cover
crops at a 1:6 frequency produce much higher amounts of soil loss in comparison to
2:6 and 3:6 cover crop adoptions. Currently, agricultural operations incorporating cover
crops contribute approximately 40,358 tonnes/ha/year (Table 2); however, if all areas that
incorporate cover crops incorporate a 3:6 cover crop frequency, soil loss could be reduced
by 17,065 tonnes/ha/year (Table 2).

Table 2. Average rate of soil loss for different cover crop frequency classifications.

Cover Crop
Frequency Total Area (Ha)

Average Rate of
Soil Loss

(Tonnes/Ha/Year)

Total Soil Loss
(Tonnes/Year)

Potential Soil Loss With
a 3:6 Cover Crop

Frequency (Tonnes/Year)

Diff.
(Tonnes/Year)

1:6 9788 4 37,880 21,436 16,444
2:6 786 3 2343 1722 621
3:6 61 2 135 135 0

Total 10,636 N/A 40,358 23,293 17,065

4. Discussion

This study reveals that agricultural operations in the Lake Simcoe watershed occur
primarily on land with low soil loss sensitivity (Table 2). However, it is not limited to
such areas only, as the practice is also extended to areas with severe soil loss sensitivity.
Therefore, cover crops are an essential soil-conservation management device that should
be adopted, particularly in agriculture fields located on erosion-prone soils. Unfortunately,
this study reveals that only 18.2% of areas have incorporated a cover crop over the past
six years. Singer et al. [10] reported a similar finding in the US Corn Belt, estimating that
11% of farmers have incorporated a cover crop over five years. Burnett et al. [36] support the
lack of cover crop adoption, suggesting that farmers are more inclined to adopt other soil-
conservation methods. One possible explanation for the lack of cover crop adoption may be
a result of the majority of practices occurring on land that is not prone to soil erosion, thus
deterring farmers from adopting cover crops as a soil-conversation practice. There is a need
to adopt higher cover crops in areas prone to soil erosion. Limited research is available that
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has investigated the direct relationship between cover crop frequency and soil loss rates;
however, Gómez et al. [37] found a similar trend to this paper. Gómez et al. [37] compared
soil loss rates between conventional tillage with cover crop management in southern Spain.
They found that the cover crop management efficiently reduced soil loss compared to
conventional tillage. A similar study by Espejo-Péres et al. [38] also investigates soil loss in
southern Spain—the results concluded that cover crops diminished soil losses by 76%.

Soil-conservation innovations can be challenging for producers to adopt, as several
independent variables persist [39]. Knowler and Bradshaw [39] discuss the benefits and
costs of conservation agriculture. Benefits include the reduction of on-farm costs and
increase in soil fertility and moisture retention; stabilization of soil protection from erosion;
reduction in toxic contamination of surface and groundwater; more regular river flows,
reduced flooding and the emergence of dried wells; recharge of aquifers; reduction of air
pollution; reduction of atmospheric CO2 emissions; and the conservation of terrestrial and
soil-based biodiversity [39]). Interestingly, the discussed benefits are mainly captured by
society [39]. In contrast, costs associated with conventional agricultural are concentrated at
the farm level. Some of these costs include the purchase of specialized planting equipment,
short-term pest problems due to change in crop management, acquiring new management
skills, application of additional herbicides, formation and operation of farmers’ groups, high
perceived risk to farmers due to technological uncertainty, and development of appropriate
technical packages and training programs [39]. Similar to Knowler & Bradshaw [39],
Burnett et al. [36] discuss socioeconomic and psychological factors influencing farmers’
willingness regarding cover crop adoption in the Corn Belt. Burnett et al. [36] suggest
that farmers were more inclined to adopt cover crops if they were younger, had a stronger
conservation identity, owned more acreage, had less gross farm income, and had a higher
response to efficacy. Since conservation agriculture benefits adhere mainly to society,
ensuring the benefits at the farm scale over time will promote its adoption [36,39].

Although this research supports previous literature on low adoption rates of cover
crops, this research reveals that soil loss rates can be significantly reduced by incorporating
cover crops at a higher frequency. Since this study suggests that areas that are prone
to soil erosion tend to adopt 1:6 cover crop adoption, these areas need to be targeted to
promote higher cover crop frequencies as a soil-conservation practice. By promoting and
encouraging the farm-scale benefits of cover crops to operations located in areas prone
to soil erosion, a more significant response to adopting cover crops as a soil management
practice may be encouraged.

5. Conclusions

Cover crops are widely accepted as an efficient soil conservation mechanism to control
soil erosion and TP runoff from agriculture during the nongrowing season in Ontario [2,3].
Despite the magnitude of benefits cover crops provide, the adoption response is concerning
to operations that remain vulnerable to high erosion. While much recent research inves-
tigated cover crop benefits and adoption trends, there remains a gap in the literature to
determine the likelihood of cover crop adoption based on the soil erosion sensitivity of the
field. This paper has intended to investigate the correlation between cover crop adoption
and soil loss severity to understand if soil loss sensitivity plays a significant role in cover
crop adoption.

Using AAFC ACI data sets from 2013–2018, cover crop production trends across
the south Simcoe Watershed were investigated. The findings, consistent with previous
literature, particularly within the Corn Belt of the United States [10,36], suggest that a
small portion of agricultural operations adopt cover crop practices. Nevertheless, a more
detailed investigation of cover crop frequencies between soil loss sensitivity classifications
indicated that there is a consistent adoption trend of incorporating cover crops only 1:6
of the time, despite soil loss sensitivity differences. This study also solidifies the need to
target erosion-prone areas by incorporating higher cover crop frequencies, as it signifi-
cantly reduces soil loss rates in the Simcoe Watershed. Knowler and Bradshaw [39] and
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Burnett et al. [36] suggest many farm-level socioeconomic and psychological factors that
are deterring producers from incorporating cover crops that may be translated to the south
Simcoe Watershed.

In light of the pessimistic results for cover crop adoption in the south Simcoe Water-
shed, this research reveals the dependence of crop rotation frequency on soil loss sensitivity.
Although this dependence has a consistent dominance of low cover crop frequency adop-
tion, by promoting and encouraging cover crop benefits at the farm scale to producers
on vulnerable soil, these areas may have a more significant response to more frequently
adopting cover crops.
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