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Abstract: Risk mapping is a crucial part of spatial planning, as it optimizes the allocation of resources
in its management. It is, therefore, of great interest to build tools that enhance its production.
This work focuses on the implementation of a susceptibility model for different types of spatially
distributed risk in a geographic information systems (GIS) Python plugin. As an example, the
susceptibility model was applied to study the occurrence of wildfires in the municipality of Vila
Nova de Foz Côa, Portugal. The plugin was developed to simplify the production and evaluation
of susceptibility maps regarding the available geographical information. Regarding our case study,
the data used corresponds to three training areas, ten years of burned areas and nine environmental
variables. The model is applied to different combinations of these factors. The validation, performed
with receiver operating characteristic (ROC) curves, resulted in an area under the curve (AUC)
of 74% for a fire susceptibility model, calculated with the same environmental factors used in
official Portuguese cartography (land use and slope) and with the optimal training area, years of
information on burned area and level of land use classification. After experimenting with four
variable combinations, a maximum AUC of 77% was achieved. This study confirms the suitability
of the variables chosen for the production of official fire susceptibility models but leaves out the
comparison between the official methodology and the methodology proposed in this work.

Keywords: Python; spatial planning; environmental variables

1. Introduction

Wildfires constitute a phenomenon of crucial relevance in many countries. Due to a
predominantly Mediterranean climate, a large number of forest fires occurs in Portugal
mainland during the summer season, with a strong tendency to ravage shrubland [1–4].
With increasing rural abandonment, large-scale forestation programs and other climatic
factors, the frequency and intensity of these wildfires is rising [5,6], with Portugal being one
of the countries with the highest density of ignition and burned area [2,7]. The occurrence
of fire events is not, as it is frequently assumed, a strictly negative phenomenon, as it can
be essential for the regeneration of ecosystems classified as sensitive or even dependent
on fire [8]. However, the inadequacy of spatial planning and anthropic bad practices may
lead to wildfires that are prejudicial to both natural ecosystems and human civilization.
In fact, most of the known causes of wildfire in northern Portugal involve intentional tort
or negligence [9], and these events may lead to catastrophes, such as the one experienced
by Portugal in 2017, in which Portugal was affected by two major forest fire events that
occurred outside the typical forest fire season [10].

Catastrophic wildfires demand risk mapping. Here, it is important to distinguish “risk
cartography” (a generalist term) from the terms “susceptibility map” (representing the
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propensity of an area to be affected by a given event in function of its characteristics), “haz-
ard map” (representing the product between susceptibility and probability of occurrence,
as conditioned by previous events) and “risk map” (representing specifically the product
between hazard and potential damage) [11,12].

Geographical information systems (GIS) are an essential tool to generate fire risk
cartography [13–16], allowing the quick and accurate analysis and combination of data
from multiple sources, the manipulation of the resulting geoinformation and the generation
of new data. However, the generation of complex spatial models implies the use of GIS
tools that require considerable time (when using the tools one by one) and knowledge
about the respective software. It would be, therefore, of great interest to have applications
that facilitate the production of such maps, while still using GIS software.

In that context, some applications have been developed to facilitate the creation of
fire risk cartography. For instance, Baranovskiy and Yankovich (2018) [17] created an
embedded GIS software tool (under ArcGIS software) for forecasting, monitoring, and
evaluating forest fire occurrence probability in Iran, using Python language. Mahmud
et al. (2009) [13] developed an extensive Avenue programming script to deliver the fire
vulnerability mapping in Malaysia, while allowing authorized users to edit, add or modify
parameters whenever necessary, supporting fire hazard mapping using ArcView software.
Bonazountas et al. (2007) [18] developed an integrated computer system based on semi-
automatic satellite image processing (for fuel maps creation), socio-economic risk modelling
and probabilistic models for forest fire prevention, planning and management in the island
of Evoia, Greece. Gulluce and Celik (2020) [19] proposed a new fire detection method
and monitoring software, FireAnalyst, for an early warning fire detection system aimed at
valuable forested areas in Turkey, using the libraries of Google Maps’ application program-
ming interface (API) in a cloud. Volokitina et al. (2021) [20] developed a fire simulation
software to identify inventory plots ready to burn as well as to spread the rate for fire
parts dependent upon weather conditions, predict fire intensity and fire development and
calculate the required manpower and resources for fire suppression in Kazakhstan Altai.

In Portugal, a GIS open-source application [15] was already developed for the genera-
tion of risk cartography according to the specifications of the Portuguese authorities [21],
which define susceptibility maps as the product between slope maps and the Corine land
cover (CLC), according to the tabled values defined as a priori. Nevertheless, one can
conceive of a methodology that can complement those environmental variables with others
as well as using fire favorability scores that are adapted to local conditions. Based on the
literature consulted, there is no other GIS application that provides intuitive tools to ma-
nipulate and generate fire risk cartography, which underlines the novelty of the proposed
methodology for that purpose. Although there are other tools that are able to generate
susceptibility models, to our knowledge, none of them have the flexibility to experiment
with different training areas, years of occurrence and environmental variables that our
tool displays.

The main objective of this work is to implement a susceptibility model considering
environmental variables, that can be applied to different types of natural phenomena in a
GIS open-source application under QGIS software, using Python language, which is able
to: (i) be applied to different types of spatially distributed risk (such as fire occurrences,
landslides or other); (ii) generate a susceptibility model, for a given study area, by calculat-
ing the susceptibility scores associated with multiple environmental variables; (iii) evaluate
the training and prevision models generated, calculating the area under the curve (AUC)
associated to the respective regressive operational characteristic (ROC) curves [22] and
(iv) optimize the model generated by selecting different training areas, years of occurrence
information and environmental variables used in the model.

2. Materials and Methods

The methodology proposed in this work comprises the development of a GIS plugin
in an open-source environment. Figure 1 presents the workflow of the developed GIS
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plugin. The processes are further discussed in this chapter, as well as the preceding data
acquisition and treatment.
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Figure 1. Workflow of the developed GIS tool.

2.1. Study Area

The study area corresponds to the municipality of Vila Nova de Foz Côa, located on
the southern bank of the Douro river (Figure 2), being an example of a territory that should



Land 2022, 11, 1093 4 of 21

have a natural relationship to wildfires, due to its strongly Mediterranean climate, yet
suffered great loss in 2017.
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Figure 2. Framework of the study area. Municipal boundaries correspond to the Portugal official
administrative map (carta administrativa oficial de Portugal; CAOP 2020).

2.2. Dataset

Geographical information relative to the study and training areas (Figure 2) were
extracted from the national geographic information system (sistema nacional de informação
geográfica; SNIG) search engine [23].

Data on burned areas, considering 9 years (2009–2018) of occurrences in Portugal, was
obtained from institute for the conservation of nature and forests (Instituto da Conservação
da Natureza e das Florestas; ICNF) geocatalog [24]. That information was converted from
vectorial to raster format, attributing the value 1 to pixels burned in this period and the
value 0 to the remaining pixels. Although acknowledging that not all wildfires are equal,
as larger fires are more associated with extreme weather conditions and denser fuel [25,26],
this work does not make a distinction between burned areas.

This work sought to include the environmental variables, which were more plausible
of contributing to the prediction of a territory’s fire susceptibility, represented in Figure 3.
Susceptibility models created with the official Portuguese specifications [21] uses land use
and terrain slope, as do most works on fire modeling [11,27–30]. Terrain aspect is also
used often [11,26,27]. Verde and Zêzere [11,26] also explore mean average precipitation
(which in Portugal seems to have a positive correlation with fire when considering fuel
limited fire regimes, favoring the growth of fuel) and the number of days with minimum
temperatures equal or superior to 20 ◦C (assuming that night time suppression efforts
are more likely to succeed, thanks to lower temperatures and higher air humidity). Adab
(2013) [27] also suggests moisture indexes and distance to roads and urbanizations. The
normalized difference vegetation index (NDVI) is mostly used for burned area detection
but can also be used to access susceptibility (as it expresses fuel availability) recurrently
used to study fire risk [28,31–34] and is explored in this work considering both winter
and summer values. As this is a work intended to be of wider application that can be
used in several and different contexts, it does not include variables, such as elevation,
topographic roughness index, annual average and maximum temperature, demographic
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variables, fuel connectivity, fire recurrence patterns and daily climate data, mentioned in
other works [2,25,29].
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Figure 3. Environmental variables analyzed in the study: land use (a); slope (b); aspect (c); NDVI (d,e);
GVMI (f); precipitation (g); days with minimum temperature > 20 ◦C (h); distance to artificialized
territories (i). All geographical data were referenced in the European Terrestrial Reference System
Portugal Transverse Mercator 2006 (ETRS89 PT/TM06) coordinate system, and raster information
was all set to 30 m of spatial resolution, in order to match to the available altimetric information.

Land use data were obtained, in vectorial format, from Portugal’s 2018 land use map
(Carta de Ocupação do Solo; COS2018) [26]. These data were converted to raster assigning
different integer values to each class, for each of the 4 hierarchical levels of classification
available. This has resulted in four land use images, from the most general classification to
the most specific.

A map of distances to artificialized territories, representative of roads and urbaniza-
tions, was obtained from the COS2018. That map was reclassified according to Table 1.
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Table 1. Classification of distance to artificialized territories.

Distance Interval (m) Reclassified Value

Between 0 and 100 1
Between 100 and 200 2
Between 200 and 400 3
Between 400 and 800 4

Between 800 and 1600 5
Over 1600 6

A digital elevation model (DEM) with a 30 m of spatial resolution was obtained from
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite
data, available on the United States Geological Survey (USGS) [35]. The slope and aspect
maps were generated from the DEM (using slope native algorithm from QGIS software
that considers the Horn’s method by default [36]), and both were reclassified according to
Tables 2 and 3, respectively.

Table 2. Terrain slope classification.

Slope Interval (◦) Reclassified Value

Between 0 and 4 1
Between 4 and 8 2
Between 8 and 16 3

Between 16 and 32 4
Between 32 and 90 5

Table 3. Terrain aspect classification.

Aspect Interval (◦ North) Reclassified Value

Plain (999) 0
Between 315 and 360 1

Between 0 and 45 1
Between 45 and 135 2

Between 135 and 225 3
Between 225 and 315 4

Satellite images with a 10 m of spatial resolution, obtained from the Multispectral
Instrument (MSI) sensor onboard the Sentinel-2 were downloaded in the Copernicus Euro-
pean Space Agency portal [37]. Bands 8 and 4 of these images, respectively, correspondent
to near infrared (NIR) and RED bands in the electromagnetic spectrum, were used to esti-
mate NDVI for June and December 2018 (climatic extremes) according to Equation (1). That
information was reclassified according to Table 4. Bands 8 and 11, respectively, correspon-
dent to NIR and short-wave infrared (SWIR), were used to calculate the Global Vegetation
Moisture Index (GVMI) for June 2018, according to Equation (2) [38]. That information was
also reclassified according to Table 4.

NDVI =
NIR − RED
NIR + RED

(1)

GVMI =
(NIR + 0.1)− (SWIR + 0.02)
(NIR + 0.1) + (SWIR + 0.02)

(2)
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Table 4. NDVI and GVMI classification.

NDVI/GVMI Interval Reclassified Value

Between −1.0 and −0.3 1
Between −0.3 and −0.1 2
Between −0.1 and 0.1 3
Between 0.1 and 0.3 4
Between 0.3 and 1.0 5

Data on total precipitation (mean annual values, in mm, for the period 1931–1960)
was obtained from the national environmental information system (Sistema Nacional de
Informação de Ambiente, SNIAmb) [39]. That information was converted to raster with the
correspondence presented in Table 5.

Table 5. Precipitation classification.

Precipitation Interval (mm) Reclassified Value

Between 0 and 400 1
Between 400 and 500 2
Between 500 and 600 3
Between 600 and 700 4
Between 700 and 800 5

Between 800 and 1000 6
Between 1000 and 1200 7
Between 1200 and 1400 8

Hourly data on the temperature registered by the meteorological station (with relevant
data) nearest to the study area, about 29 km northwest (in Folgares), was collected from
the national hydrological resources information system (Sistema Nacional de Informação de
Recursos Hídricos, SNIRH) website for 2015–2021 [40].

A Python script was developed to automatically generate a .csv file with the daily
minimum temperatures registered in 2018. These data were associated, in vectorial format,
to the point corresponding to the station’s location. Afterward, with the DEM previously
used and Montgomery K.’s rule of thumb for the variation of temperature with altitude
(−1 ◦C for every 200 m increase) [41], 365 raster files with minimum temperatures were
generated for each day of 2018 in Vila Nova de Foz Côa (Equation (3)).

Traster = Tmeasured − ∆Tsea + ∆Talt (3)

where Traster represents the value obtained in each pixel (for each of the 365 raster files),
Tmeasured represents the minimum temperature measured by the station on each day, ∆Tsea
represent the difference in temperature expected between the average sea level and the
station (which is at a 744 m altitude) and ∆Talt represents a difference in temperature
expected between the average sea level and any specific point, whose altitude was extracted
from the DEM.

From these images, 365 other raster files were generated, reclassified with the value
0 in pixels where T <= 20 ◦C and with the value 1 in pixels where T > 20 ◦C. The sum of
the values in those images represents the number of days with a minimum temperature
equal or superior to 20 ◦C in each pixel of the study area. The maps of number of days with
minimum temperatures equal or superior to 20 ◦C contained only four values (3, 4, 5, 6 and
7 days). Therefore, it was not necessary to define intervals (as it would be for a continuous
scale, for example).

2.3. Implementation of the GIS Plugin

The GIS open-source application was developed under QGIS software, Version 3.16 [42].
Python programming language and several APIs and libraries were used. The “Plugin
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Builder” plugin was used to generate a plugin template, while the Qt Designer framework
was used to stylize its graphical user interface (GUI), as seen in Figure 4. The developed
GIS application is composed by a main scroll area where the user can browse for the input
files—shapefiles corresponding to training and modelling areas, and raster files corresponding
to a null variable (a raster image where all pixels in the extent of the study and training areas
have the value “0”), at least 2 environmental variables (up to 4) and at least 2 occurrence years
(up to 10)—and an area where the user can browse for the directory where the output files
will be created. The “Run” button assigns those paths to string variables and passes them
into the scripts described in Sections 2.3.1 and 2.3.2, which create a susceptibility model and
provide data for its evaluation.
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The plugin can be downloaded at the GitHub repository linked as “Supplementary
Materials” as well as a folder with some geographic information as examples. To execute
the plugin on a QGIS software, the instructions in the PDF included in the folder should
be followed.

2.3.1. Main Script

This work centers on the development of a Python script, named main.py, that uses
the QGIS interface and processing tools to automatically generate susceptibility models.
Besides importing the relevant libraries (“os” [43] and “pandas” [44]), all of the script’s
content involves the definition of the “main” function, which was adapted to incorporate
a plugin for QGIS (see Section 2.3). The function takes, as parameters, the instance of the
plugin’s class (self ), the “ROC” function (see Section 2.3.2.), the input file paths and the
output folder directory.
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The script starts by creating the folder where the resulting information will be saved if
it does not yet exist. In this phase, it also defines the “clip” function (used recurrently in
the script) and accommodates the variables that correspond to undefined occurrences and
environmental variables (depending on whether or not the fields marked as optional are
filled), adapting the expressions used in following calculations to those vacancies.

The script adds the geographic information corresponding to occurrences to the GIS
project and calculates the sum of occurrences for each pixel (according to the expression
initially defined). Afterward, it calculates a raster where the pixels with occurrences assume
the value 1, and the pixels without assume the value 0 (boolean.tif ) as well as a raster with
the inverse logic (antiboolean.tif ).

The information corresponding to the environmental variables and the occurrences
(boolean and antiboolean calculated in the previous phase) is added to the project. That
information is clipped by the defined training area, and the information relative to the area
with occurrences is analyzed.

To calculate the susceptibility of a given area to occurrences, the informative value
method was adopted. That method is usually used for analyzing the susceptibility of a
territory to landslides [45,46] but also to fire [47] and other types of risk, including non-
environmental [48]. The raster layer zonal statistics tool, used in the analysis mentioned in
the previous paragraph, creates a table that relates the different classes of the reclassified
variable (returned as “zone”) to statistics regarding the area with occurrences within such
class, namely “count” (number of pixels belonging to the class) and “sum” (sum of the
pixel values in the class). The function “calcular_scores”, which applies the informative
value method, calculates favorability scores for each class based on the obtained statistics
(Equation (4)).

ln
(

burned pixels in the zone
total pixels in the zone

/ burned pixels in the study area
total pixels in the study area

)
(4)

After the calcular_scores function is applied to every environmental variable, the
susceptibility map is generated according to an expression that sums the score values
assigned to the different pixels of the specified variables, defined initially. A reclassified
map is also generated, with the values “0” changed to “0.1” for them not to interfere with
the validation described in Section 2.3.2.

From that second susceptibility map, the script extracts the pixels corresponding to sus-
ceptibility in the area with occurrences (true_part.tif ) and in the area without (false_part.tif ),
which were analyzed with the rasterlayeruniquevaluesreport tool. The resulting tables are
used in the ROC function, defined in Section 2.3, to generate the first validation graph-
ics [22].

Lastly, the script uses the calculated favorability scores to generate reclassification
tables for each variable, corresponding a given score to each class. The raster files corre-
sponding to environmental variables are then clipped by the study area and reclassified
according to the scores presented in the reclassification tables. Finally, the susceptibility
map corresponding to the predictive model and the associated validation graphics are
generated similarly to what was described for the training model.

2.3.2. Validation Script

As discussed in Section 2.3.1., the main script generates two tables, each describing the
susceptibility of each pixel to a given type of risk in the areas with occurrences (positive) or
without occurrences (negative) in the study area, respectively. The information in those
tables is essential for the validation of the model with the “ROC” function, imported from
the validacao.py scrip.

The “ROC” function uses the “csv” [49], “matplotlib” [50] and “numpy” [51] libraries.
It starts by analyzing the information contained in the tables referred to in the previous
paragraph, ignoring the 0 values (in the table with the negative pixel values, the “0” corre-
sponded to positive values; in the table with the positive pixel values, the “0” corresponded
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to positive values) and afterward converting the value 0.1 into 0, correcting the reclassifica-
tion made in the main script. With these data, it also returns statistics correspondent to the
total number of positive pixels, the total number of negative pixels and the maximum and
minimum scores for the negative pixels.

The first graphic simply plots two lines, corresponding to positive and negative
occurrence pixels, which represent the frequency of each susceptibility value, as seen in
Figure 5. As for the second graphic, the function defines 100 thresholds—imaginary lines
marking the value that separates the pixels not susceptible to the risk (on the left) from the
pixels susceptible to the risk (on the right)—for the interval between the maximum and
minimum negative scores. For each, it determines the false positive ratio (1-specificity) and
the true positive ratio (sensibility), according to Equations (5) and (6).

f alse positive ratio =
negative pixels considered as positive

total negative pixels
(5)

true positive ratio =
positive pixels considered as positive

total negative pixels
(6)
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Figure 5. Graphics generated by the developed script in the wildfire susceptibility modeling with the
land use and slope variables: frequency of pixel susceptibility classification (a,b) and ROC curve for
the classifier (c,d).

This generates 100 points of ordinates (y) defined by the true positive ratio and abscissae
(x) defined by the false positive ratio, where the first point corresponds to y = 0 (no pixel
is considered to be positive) and the last point corresponds to y≈1 (nearly all pixels are
considered positive). The points are used to generate the ROC curve and, finally, the AUC is
calculated using functions from NumPy library and the corresponding graphic is generated.

As an AUC around 0.5 represents a useless classifier (success indistinguishable from
that of a random classifier), we can assume that an AUC over 0.6 is acceptable and over
0.7 is good [22]. Naturally, superior quality patterns may be used in other areas (in
epidemiology, for example, a classifier with an AUC between 0.7 and 0.9 is considered to
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be only moderately good [52]). Nevertheless, and keeping the high complexity inherent to
the theme of this study in mind, this work considers the first classification framework.

3. Results
3.1. Determination of the Ideal Training Area

To test the performance of the GIS application developed, the study area of Vila Nova
de Foz Côa was used as an example. In a first phase, with the preliminary use of 6 years
of burned areas and level 2 COS2018 land use classification, the developed application
was applied for different training areas to evaluate which one returns the best wildfire
susceptibility map for Vila Nova de Foz Côa in 2018, evaluating the AUC of the ROC curve
associated to the predictive model. The municipalities west of the municipality in the
same river margin (training area 1—TA1), the two municipalities in the northern margin
of the river (training area 2—TA2), the four municipalities adjacent at northwest (training
area 3—TA3) and the six municipalities adjacent with margins on the river (training area
4—TA4) were considered (Figure 1).

The training areas 2, 3 and 4 have produced a similar prediction AUC (Table 6).
Training area 3 was chosen as it generates the best AUC for the training model.

Table 6. Results of the validation of susceptibility models generated with 6 years of burned areas,
level 2 COS2018 land use classification and different training areas.

Training Area AUC (Training) AUC (Prediction)

TA1 0.80 0.70
TA2 0.69 0.72
TA3 0.72 0.72
TA4 0.71 0.72

3.2. Determination of the Most Adequate Wildfire Occurrence Period

The methodology was applied, according to the premise of using TA3 and level 2 of
the COS2018, for a different number of years of information on the burned area, in order
to evaluate which of them allowed the generation of a better fire susceptibility map in
Vila Nova de Foz Côa in 2018. Five options were considered: 2, 4, 6, 8 and 10 years of
information (Table 7).

Table 7. Results of the validation of susceptibility models generated with training area 3, level 2 of
COS2018 land use classification and different years of information on wildfire occurrences.

Years AUC (Training) AUC (Prediction)

2 0.70 0.67
4 0.69 0.67
6 0.72 0.72
8 0.72 0.72
10 0.72 0.72

The models generated with 2 or 4 years had a lower performance than the others—albeit
they were acceptable—perhaps because there was an extensive burned area in 2017, and
because some quality is derived from the simple fact that artificialized territories and water
bodies are largely excluded from the burned areas. In the remaining years, the quality of the
model has stabilized, indicating that the additional information becomes redundant. This may
be related to the changes in the land cover, which make the information about burned areas
less relevant. We chose to select the 6 years of information, respecting Ocam’s razor principle.
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3.3. Determination of the Environmental Variables to Use

To determine the environmental variables that generate the most adequate suscepti-
bility map, the developed script was applied using the combination of TA3 and 6 years of
information on burned areas.

3.3.1. Determination of the Ideal COS Level

To validate the susceptibility models with the different training areas, levels 1, 2, 3 and
4 of the COS2018 were considered (Table 8).

Table 8. Results of the validation of susceptibility models generated with training area 3, 6 years of
occurrences and different COS levels.

COS Level AUC (Training) AUC (Prediction)

1 0.70 0.70
2 0.72 0.72
3 0.73 0.73
4 0.73 0.5

Level 3 exhibited the best AUC for both the predictive model and the training model.
Level 4 confirmed the tendency of an excessive class specification to sacrifice the quality of
the predictive model for that of the training model (overfitting phenomenon), generating a
prediction model equivalent to a perfectly random classification.

With that, level 3 was considered as the COS2018 analysis level that allows the genera-
tion of the best wildfire susceptibility model for Vila Nova de Foz Côa in 2018.

3.3.2. Determination of the Best Individual Environmental Variables

The developed application was executed, individually, for each variable. Land use
clearly stands out as the best predictor of susceptibility to fire, while the slope is presented
as the less meaningful predictor. Table 9 presents the results of the model validation for
each environmental variable, while Table 10 presents the associated favorability scores.

Table 9. Results of the validation of susceptibility models generated with training area 3, 6 years of
occurrences and different individual environmental variables.

Variable AUC (Training) AUC (Prediction)

COS level 3 0.73 0.73
Distance to artificialized territories 0.56 0.57

Terrain slope 0.39 0.39
Terrain aspect 0.57 0.52
Winter NDVI 0.42 0.44

Summer NDVI 0.55 0.51
GVMI 0.44 0.52

Precipitation 0.60 0.35
Days with Tmin > 20 ◦C 0.56 0.46

Table 10. Wildfire favorability scores generated by the developed script with training area 3, 6 years
of occurrences and different individual environmental variables.

Variable Class Score

COS level 3

1.1.1 Continuous edified fabric −3.88
1.1.2 Discontinuous urban fabric −5.65
1.1.3 Empty spaces in built fabric −1.36
1.2.1 Industry −1.05
1.2.2 Trade −1.2
1.2.3 Agricultural facilities −2.56
1.3.1 Energy production infrastructure −3.85
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Table 10. Cont.

Variable Class Score

1.3.2 Water infrastructure and waste treatment −2.12
1.4.1 Road and rail networks and associated spaces −5.39
1.5.1 Inert extraction areas −1.74
1.5.2 Waste deposition areas −0.13
1.5.3 Areas under construction −3.51
1.6.1 Sports equipment −2.88
1.6.2 Leisure facilities and campsites −2.41
1.6.3 Cultural equipment −1.88
1.6.4 Cemeteries −1.27
1.6.5 Other tourist equipment and facilities −3.78
1.7.1 Parks and gardens −2.12
2.1.1 Temporary rainfed and irrigated crops and rice fields −0.5
2.2.1 Vineyards −3.31
2.2.2 Orchards −0.89
2.2.3 Olive groves −1.31
2.3.1 Temporary crops and/or improved pasture associated with permanent crops −4.38
2.3.2 Complex cultural and partial mosaics −1.2
2.3.3 Agriculture with natural and semi-natural spaces −0.36
2.4.1 Protected agriculture and nurseries −1.44
3.1.1 Improved pastures −0.05
3.1.2 Spontaneous grazing 0.04
4.1.1 Agroforestry 0.8
5.1.1 Hardwood forests −0.13
5.1.2 Softwood forests 0.15
6.1.1 Shrubland 0.67
7.1.2 Bare rock −1.73
7.1.3 Sparse vegetation 1.17
9.1.1 Water courses 0.41
9.1.2 Water plains −0.95

Distance to
artificialized

territories

Between 0 and 100 m −2.26
Between 100 and 200 −1.22
Between 200 and 400 −0.73
Between 400 and 800 −0.24
Between 800 and 1600 0.14
Over 1600 0.36

Terrain slope

Between 0 and 4◦ −0.14
Between 4 and 8◦ −0.05
Between 8 and 16◦ 0.09
Between 16 and 32◦ −0.01
Between 32 and 90◦ −0.04

Terrain aspect

Plain −4.52
North −0.07
East 0.27
South 0.18
West −0.38

Winter NDVI

Between −1.0 and −0.3 −0.45
Between −0.3 and −0.1 −0.58
Between −0.1 and 0.1 −0.72
Between 0.1 and 0.3 −0.54
Between 0.3 and 1.0 0.16

Summer NDVI

Between −1.0 and −0.3 1.10
Between −0.3 and −0.1 −0.69
Between −0.1 and 0.1 −0.45
Between 0.1 and 0.3 0.47
Between 0.3 and 1.0 −0.09
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Table 10. Cont.

Variable Class Score

GVMI

Between −1.0 and −0.3 0.37
Between −0.3 and −0.1 0.60
Between −0.1 and 0.1 0.22
Between 0.1 and 0.3 0.53
Between 0.3 and 1.0 0.40

Precipitation

Between 0 and 400 mm −5.58
Between 400 and 500 mm −0.27
Between 500 and 600 mm −0.00
Between 600 and 700 mm −0.26
Between 700 and 800 mm −0.32
Between 800 and 1000 mm 0.68

Days with
Tmin > 20 ◦C

3 0.15
4 0.19
5 −0.20
6 −0.83
7 −2.63

3.3.3. Determination of the Best Combination of Environmental Variables

The susceptibility modeling plugin was executed for every pair of environmental
variables with the collected data (Table 11).

Table 11. Results of the validation of susceptibility models generated with different pairs of environ-
mental variables. The value before the semicolon represents the training AUC, while the value after
represents the prediction AUC.
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Level 3 COS
Distance to

artificialized territories 75; 75
Terrain slope 73; 74 60; 64
Terrain aspect 75; 74 65; 64 58; 55
Winter NDVI 73; 74 65; 67 56; 63 61; 59

Summer NDVI 75; 74 64; 63 56; 57 60; 53 61; 59
GVMI 75; 74 67; 67 61; 64 64; 62 64; 64 63; 61

Precipitation 75; 71 67; 59 61; 50 65; 51 63; 54 63; 47 68; 56
Days with

Tmin > 20 ◦C 74; 72 67; 60 58; 50 62; 50 57; 50 61; 50 66; 59 64; 48

Of all combinations presented in Table 11, few have returned an AUC for the predictive
model greater than or equal to the one obtained with the COS2018 variable individually.
One can also verify that, indeed, the land use-slope combination (Figures 5 and 6) re-
turns one of the best predictive values. In Figure 6, the area of each category would be
approximately 20% of the total area (39,804 ha), which represents 7960.8 ha each.

Furthermore, it was decided to cross the combinations, which have resulted in pre-
dictive models classified as good in groups of three—combining the level 3 COS variable
with all others. Table 12 shows how several of the prevision models generated using
three variables exhibit a higher AUC than the one generated with the land use and slope
variables, although it is a fairly small difference. Nevertheless, it was decided to cross the
best trios (with AUC = 76%) with the variables involved in those crossings in combinations
of four.



Land 2022, 11, 1093 15 of 21

Land 2022, 11, x FOR PEER REVIEW  16  of  22 
 

Of all combinations presented in Table 11, few have returned an AUC for the predic‐

tive model greater than or equal to the one obtained with the COS2018 variable individu‐

ally. One can also verify that, indeed, the land use‐slope combination (Figures 5 and 6) 

returns one of the best predictive values. In Figure 6, the area of each category would be 

approximately 20% of the total area (39,804 ha), which represents 7960.8 ha each. 

 

Figure 6. Wildfire susceptibility map for Vila Nova de Foz Côa obtained by running the developed 

plugin with the land use and slope variables symbolized by quintiles (with linear color interpola‐

tion). 

Furthermore, it was decided to cross the combinations, which have resulted in pre‐

dictive models classified as good in groups of three—combining the level 3 COS variable 

with all others. Table 12 shows how several of the prevision models generated using three 

variables exhibit a higher AUC than the one generated with the land use and slope varia‐

bles, although it is a fairly small difference. Nevertheless, it was decided to cross the best 

trios (with AUC = 76%) with the variables involved in those crossings in combinations of 

four. 

Table 12. Results of  the modeling script combining  level 3 COS with every other environmental 

variable in trios. The value before the semicolon represents the training AUC, while the value after 

represents the prediction AUC. 

 

D
istan

ce to
  

A
rtificialized

  

T
errito

ries 

T
errain

 S
lo
p
e 

T
errain

 A
sp
ect 

W
in
ter N

D
V
I 

S
u
m
m
er N

D
V
I 

G
V
M
I 

P
recip

itatio
n
 

D
ay
s w

ith
  

T
m
in > 20 °C

 

Level 3 COS + Distance (…)                 

Figure 6. Wildfire susceptibility map for Vila Nova de Foz Côa obtained by running the developed
plugin with the land use and slope variables symbolized by quintiles (with linear color interpolation).

Table 12. Results of the modeling script combining level 3 COS with every other environmental
variable in trios. The value before the semicolon represents the training AUC, while the value after
represents the prediction AUC.
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Level 3 COS + Distance ( . . . )
Level 3 COS + Terrain slope 75; 76
Level 3 COS + Terrain aspect 76; 76 75; 74
Level 3 COS + NDVI Winter 75; 76 73; 76 75; 75

Level 3 COS + NDVI Summer 77; 76 75; 76 76; 75 75; 75
Level 3 COS + GVMI 77; 76 76; 75 76; 74 76; 75 76; 74

Level 3 COS + Precipitation 77; 74 75; 72 77; 72 75; 72 77; 72 77; 72
Level 3 COS + Days Tmin > 20 76; 74 74; 73 75; 72 73; 72 76; 73 77; 73 75; 71

Table 13 presents the combinations of four variables mentioned before, where the
highest AUC achieved for prediction models was 77%. This value resulted from several
different combinations of variables.
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Table 13. Results of the modeling script combining groups of four environmental variables. The value
before the semicolon represents the training AUC, while the value after represents the prediction AUC.

Terrain
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Level 3 COS + Distance ( . . . ) + Terrain slope 76; 76 75; 77 77; 77 77; 76
Level 3 COS + Distance ( . . . ) + Terrain aspect
Level 3 COS + Distance ( . . . ) + NDVI Winter 76; 77

Level 3 COS + Distance ( . . . ) + NDVI Summer 78; 76 77; 77
Level 3 COS + Distance ( . . . ) + GVMI 78; 76 78; 77 78; 76

Level 3 COS + Terrain slope + NDVI Winter 75; 75 78; 77
Level 3 COS + Terrain slope + NDVI Summer 76; 75 75; 76 78; 76

4. Discussion

This work has resulted in a plugin that is able to generate susceptibility models
that can be evaluated and optimized by the variation of the inputs, thus achieving the
proposed objectives.

Different susceptibility models were generated by variating the shapefile used as the
“Training area” input in the GUI (Figure 4). In theory, that shapefile could be a polygon with
any limits insofar as it is fully covered by the raster data used as the respective occurrence
inputs and environmental variable input. The same goes for the shapefile used as the
“Modelation area”: this plugin can model the susceptibility of any area, as long as it is
covered by both the occurrence and environmental data used.

Different susceptibility models were generated by variating the raster data just men-
tioned. The AUC obtained for the particular models evaluated in the results does not
matter as much as the fact that it is possible to obtain such AUC and to save it, as well as the
respective ROC curve graphic, for later comparison. No automatic decision algorithm was
adopted for choosing the best models, mainly because the computational power required
by QGIS software is substantial and programming the calculation of several models would
make it excessively slow and prone to crashing, thus limiting its utility as a plugin.

The consideration of occurrence data had the logical presupposition of a single year
of information being insufficient for building a good model, as well as that of decreasing
utility of data with increasing age. Thus, the first model produced in that consideration
involved the two earliest sets of information on risk occurrence, and the variation in the
modeling was simply made by adding earlier data to the most recent data.

The consideration of environmental variables, on the contrary, involved the com-
parison of single variable models (achieved using a null raster as the “Variable 2 raster”
input), and the variation in the number of variables used in the combination of the different
variables in the double-entry Tables 11–13. In order to avoid excessive combinations in a
work that is supposed to design and test the performance of a tool, the variables used in
combinations of three and four were limited by imposing the presence of the best individual
variable in the combinations (Level 3 COS) and later by imposing the presence of the best
previous combinations.

As for the results of this particular case study of wildfires in Vila Nova de Foz Côa,
several points may be highlighted.

In the analysis of the susceptibility of different land use classes to fire, the sparse
vegetation registered the highest score, while spontaneous grazing, agroforestry, softwood
forests and shrubland were also associated with positive susceptibility values. The classes
associated with artificialized territories and agriculture were invariably associated with
negative scores. Previous research corroborates the results in relation to the preference of
wildfires for shrubland and for softwood over hardwood [53]. The water courses class (of
COS) was surprisingly associated to high susceptibility, although it is safe to say it would
be related to wildfires on the riverbank of the affluents of Douro, which are usually steep
(inviting easier fire spread) and occupied by shrubland.
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Susceptibility generally grows with the distance. The peak of susceptibility for slope
seems to occur in the middle class (8◦ to 16◦), although the difference between the highest
and lowest scores is notably small. There were also no variations in susceptibility with
respect to terrain aspect, except for the extremely low score associated with flat territory
(probably related to large water surfaces and human occupation), corroborated by previous
studies [54]. In the winter season, the NDVI values revealed a peak in the susceptibility
score for high values (> 0.3)—although there were no considerable variations—which is
likely due to areas with a lower NDVI being associated with artificialized territories or water
bodies. In the summer season, the NDVI revealed a considerable peak in susceptibility score
for low values (< −0.3), but otherwise do not seem to exhibit a pattern. The moisture index
in summertime points out to greater susceptibility with lower values, as expected, since
dry fuel is more prone to burning. Precipitation shows a peak susceptibility value in the
highest class and a noticeable minimum in the lowest class, which may be related (as with
NDVI) to the highest growth of vegetable fuel during winter, where most Mediterranean
precipitation occurs. As for the number of annual days with a minimum temperature
above 20 ◦C, susceptibility shows a clear tendency to decrease with an increasing number
of such days, contrary to what would be expected (perhaps due to the method used for
temperature estimation, strictly related to altitude).

All training areas considered, composed by different combinations of surrounding
municipalities, proved to adequately constitute study areas, although the four adjacent
municipalities in the northwest were determined to be the best by a small margin. The
ideal wildfire occurrence period seems to involve 6 years of information, which may be
the point where there is enough information to allow the generation of a good model and
a further amount of information will not improve it significantly. Where environmental
variables are concerned, land use seems to be best used with level 3 specification when
using the Portuguese COS classification, as it was found to be the best predictor of wildfires
by far. When combining two environmental variables to generate a susceptibility map,
every model that involved land use returned a prevision AUC > 70%, while no model that
did not involve it has done so. When combining three environmental variables, several
models returned a prevision AUC > 75%. When combining four environmental variables,
six combinations returned a peak prevision AUC of 77%. These results can be verified in
the light of the scale discussed in Section 2.3.2, which would rate an AUC over 70% as good.

The use of AUC–ROC curves has been used to validate the performance of several
models [55–57]; however, to our knowledge, the methodology presented in this work
was not applied in other studies to generate a fire susceptibility model, including the
development of a GIS plugin, that enforces the use of the methodology implemented.
There are several susceptibility fire models using different techniques and methods, but not
compared to this methodology. For instance, Hong et al. (2018) [55] used genetic algorithms
(GA) to obtain the optimal combination of forest fire-related variables and apply data
mining methods for constructing a forest fire susceptibility map in Dayu County (China),
validating the model performance with AUC–ROC curves. Eskandari et al. (2021) [58] also
predicted the variables to be used in a model using the random forest (RF) algorithm, in
Golestan Province (Iran). The use of machine learning (ML) techniques has improved the
efficiency of fire prediction [59–61]. Kalantar et al. (2020) [56] applied adaptive regression
splines (MARS), support vector machine (SVM) and boosted regression tree (BRT) to
estimate fire susceptibility in Chaloos Rood (Iran), and the results were also validated using
AUC–ROC curves. Zhang et al. (2019) [62] used a deep learning algorithm, particularly
the convolutional neural network (CNN), to estimate a spatial prediction model for forest
fire susceptibility.

The main strength of this approach for modeling susceptibility is the flexibility it offers
in adapting the models to different regions, applying the methodology to different risk
types, and testing different variables in search of the best model. The main weakness would
be the more simplistic approach presented for evaluating the resulting models, as it can
leave out several possible scenarios and is still very time-consuming, although it was con-
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ceived to achieve quicker computational processes. There is also the threat of a lack of data,
particularly in terms of the past occurrence of certain types of risk, limiting the application
of this model. Furthermore, the high adaptability of this plugin means the opportunity for
replacing older methodologies that use fixed environmental variables, where scores are
defined at the national level, in the production of regional and local risk cartography. The
results obtained in this study are mostly demonstrative of the methodology implemented
in the GIS application. The selection of training areas would be different and based on their
similarity both in the fire regime and in the biophysical characteristics. The presentation of
a single performance indicator is not sufficiently informative, especially considering the
spatial homogeneity of some of the variables used in this study. Many of the ecological
processes or types of hazards are context dependent, so the training models to apply them
in another context will not always give good results and this should be considered in
future studies.

One of the main advantages of this work was to design a flexible tool with the potential
to be applied in future works. The methodology implemented in the GIS application can
be used for any study area, including several training areas, if the available dataset allows
it, considering the same study area with past land use and older occurrences as a training
area. More environmental variables, other than the ones experimented with, can be used in
search of an optimal susceptibility model, considering that the different types of wildfires
can be related to different variables, which means there should be different models built
for susceptibility to small, shrubland fires and to larger, high fuel load fires. Moreover, the
developed GIS plugin has a wide scope in both function and language, which means it can
be applied in different contexts, other than wildfires.

Risk mapping is a crucial part of land management and land planning. The possibility
of predicting which areas are susceptible to a specific type of disaster, including landslides
or forest fires, is unquestioned. This work analyzed the susceptibility of different land
use classes to fire. The GIS plugin developed in this study is an essential tool for land
management and planning, which can be used by land use planners, foresters, wildfire risk
analysts and policymakers, among others.

5. Conclusions

This work presents a new GIS application, free and open-source, for generating
susceptibility models, running as a plugin under QGIS software. The developed application
is capable of automatically generating susceptibility models and returning ROC curves
with their respective AUC values, thus facilitating the selection of the best model for use in
risk cartography.

The GIS application was used for the generation of several wildfire susceptibility
models in the municipality of Vila Nova de Foz Côa, Portugal, exploring different training
areas, occurrence periods and environmental variables. From the results obtained, it was
possible to confirm the adequacy of the environmental variables adopted by the ICNF for
the calculation of wildfire susceptibility, as the model obtained with the land use and slope
pair returned a prevision AUC of 74%. Nevertheless, this work does not compare this
model with the one that would be obtained with the methodology used by the ICNF.

In the future, it would be interesting to compare models obtained with this method-
ology with models obtained with the methodology supported by official documentation.
Furthermore, as this tool was designed for application in a great variety of risk cartography,
such comparison should not be limited to wildfire susceptibility. Such research could prove
the developed application to be useful in various contexts.

Supplementary Materials: The “Susceptibility modelator” QGIS plugin can be downloaded at:
https://github.com/Andre-Padrao/susceptibility_modelator (accessed on 16 May 2022).

https://github.com/Andre-Padrao/susceptibility_modelator
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