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Abstract: Nighttime light (NTL) images obtained by the Visible Infrared Imaging Radiometer
(VIIRS) mounted on the National Polar-orbiting Partnership (NPP) could objectively represent
human activities and instantly identify urban shapes on a temporal and spatial scale. From 2013 to
2020, the built-up areas of eight provincial capital cities were extracted using NPP/VIIRS NTL data to
examine the dynamic changes in city expansion and socioeconomic development in the Yellow River
Basin during the urbanization process. The spatial characteristics of urban built-up area expansion
were generated using the eight-quadrant analysis method and combined with the statistical data of
population and (gross domestic product) GDP to analyze the correlations between the light intensity
of built-up areas, population and GDP; this enables an understanding of the changes in popula-
tion and economy in the development of urban built-up area expansion. The findings show that:
(1) unbalanced city development existed in the Yellow River Basin’s upper, middle, and lower reaches,
and the expansion and light intensity of cities in the upper reaches were slower than those in the
middle and lower reaches; (2) the spatial differentiation of urban expansion was significant between
each of the reaches in the Yellow River Basin, and greatly influenced by natural geographical elements;
and (3) positive correlation exists between light intensity, population, and GDP in the built-up areas
of the middle and lower reaches, while the correlations in the upper reaches were not stable. In
conclusion, light data indirectly reflects urban development and could be used as a substitute variable
for socioeconomic development indicators under certain conditions.

Keywords: urban expansion; nighttime light; light intensity; socioeconomic development; Yellow
River Basin

1. Introduction

China’s rapid growth and the regular flow of domestic socioeconomic and population
factors have accelerated the urbanization process in the Yellow River Basin in recent years [1,2].
However, it has also brought increasing pressure and challenges to the protection of
the ecological environment [2]. The natural ecological land around cities and towns
has been encroached upon by humans as a result of the continual expansion of urban
land exacerbating the land shortage. This situation will cause the degradation of the
ecological environment, resource shortages, the pollution of soil, air, and water, and other
problems [3–5]. In 2019, “ecological protection and high-quality development in the Yellow
River Basin” was incorporated into the national strategy by the government for regional
coordination [6]. This national strategy was designed to reduce the ecological conflict
between urbanization and natural space; also to explore the ecological priority and green
development to promote green urbanization and ecological protection in the Yellow River
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Basin [4]. Therefore, clarifying the relationship between the characteristics of spatial and
temporal changes throughout the urban expansion and socioeconomic, demographic, and
physical geographical environment is thus critical for the future qualitative development
of cities of Yellow River Basin [1,7].

The emergence of Remote Sensing information technology has made it possible to
monitor the built-up area change accurately and rapidly for estimating the urbanization
process. Remote sensing data in the form of nighttime light (NTL) provide a consistent
and independent measurement of urban built-up areas [8]. The NTL images are formed
by detected light radiation induced by human activities on the earth’s surface, and they
can directly reflect artificial surface regions and locations with significant human activ-
ity [9,10]. The most often utilized long-term NTL data sources in recent years have been
Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) data
and Visible Infrared Imaging Radiometer Suite with National Polar-orbiting Partnership
(VIIRS/NPP) data. Since the DMSP/OLS nighttime light images were no longer updated
after 2013, NPP/VIIRS images with higher spatial resolution have been the most exten-
sively used [11], and many researchers have demonstrated that NPP/VIIRS data have
higher spatial accuracies than DMSP/OLS data for extracting built-up urban areas [12].
The study areas and application fields of remotely sensed NTL data, which are extremely
objective and convenient, have substantially increased with the increasing number of data
products [13–15]. NTL data have been found to have a widespread application in sectors
such as urban expansion [9,16,17], social economy, and demographic data modeling and
spatialization [18,19].

NTL data are targeted and may be utilized for rapid identification of urban forms and
extraction of urban boundaries at spatial and temporal scales, as well as a complete analysis
of urban spatial forms and expansion in urban development [20–22]. The extraction results
of urban built-up regions have become more accurate as the application of NTL data in
urban expansion and spatial structure analysis has matured [23]. At present, the threshold
approach [23], mutation detection method [24], and spatial comparison method based on
auxiliary information [15] are the most commonly used methods for extracting urban spatial
patterns. For example, Milesi et al. [13] employed land use classification data to estimate
DN thresholds of NTL images, from which urban boundary areas in the southeastern
United States were extracted. Su et al. [15] have also demonstrated the applicability of
NTL data for extracting the built-up regions in the Pearl River Delta with four periods
of DMSP/OLS data between 1996 and 2005. Zheng et al. [9] have incorporated temporal
information from the VIIRS time series and produced monthly maps of built-up areas of 30
global megacities to disentangle urban land changes into five categories.

Furthermore, except for the boundary change detection of urban expansion, NTL
data has also been utilized to monitor the socioeconomic and human activities as a result
of urban expansion [25]. Valuable studies have shown that NTL data have a positive
relationship with socioeconomic development indicators such as population, gross national
product (GNP), and gross domestic product (GDP) [26,27]. With the help of that good
correlation, traditional population and GDP statistics data based on administrative districts
can be spatialized to more intuitively depict the scale and distribution characteristics of
both, which is useful for fine management and information-based city construction, as well
as a better study of regional sustainable development [28,29]. However, some researchers
have demonstrated that the use of light intensity in urban expansion and socioeconomic
development should be implemented with limited or specific conditions, because of the
unstable relationship between light intensity and socioeconomic development factors in
different regions [30]. Therefore, this relationship should be reanalyzed in the upper,
middle, and lower reaches of the Yellow River Basin that have a regional disparity in
economic development.

Due to the sufficient satellite imagery data of long-time series NTL data and a lack
of computing resources, the urban expansion detection methods and algorithms have not
been applied in practice at a large scale. The Google Earth Engine (GEE) cloud platform is
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an integrated platform for remote sensing and geographic information data processing [31];
it centralizes cloud computing services for data analysis and consists of petabytes of
geospatial data, including full NTL archive data and algorithms for image processing with
a JavaScript, Python-based API [32,33]. In this paper, we transferred the annual NPP-VIIRS
NTL satellite images from the GEE platform with JavaScript as the data source to analyze
the evolution of urban expansion of provincial capitals in the Yellow River Basin. The
range of built-up areas of provincial capitals from 2013 to 2020 was obtained by using the
OTSU algorithm from NTL images. The quadrant analysis method was used to examine
the geographical and temporal change characteristics of provincial capital urban expansion.
The aspects of socio-economic development in the urban expansion were addressed, taking
into account indices such as population and GDP.

2. Study Area

The Yellow River rises in the central Qinghai Province and flows through nine
provinces (Qinghai, Sichuan, Gansu, Ningxia, Inner Mongolia, Shaanxi, Shanxi, Henan, and
Shandong) before joining the Bohai Sea near Kenli County and Dongying City
(Figure 1). The mainstream of the Yellow River stretches over 5734 km, with a 4480 m ele-
vation reduction between west and east. The Yellow River Basin is approximately 1900 km
long from west to east and around 1100 km wide from north to south, with a watershed
area of 795,000 km2. The huge Yellow River Basin is high in the west and low in the east,
with large height disparities along the west–east direction, noticeable climate change, and
significant regional seasonal differences within the watershed. Annual precipitation in
the basin decreases from southeast to northwest and is distributed relatively irregularly
throughout the year. The Yellow River Basin stretches across three major economic zones in
eastern, central, and western China, and the 69 cities within it differ substantially in terms
of economic growth. The provincial capitals in the Yellow River Basin are regional political
and economic centers, and their economic and social development is highly indicative of,
and has a radiating influence on, the provinces’ regional economic and social development.
As a result, this study considered eight provincial capitals (except Chengdu) in the basin for
analysis (Table 1) and used the NPP/VIIRS night-light photos from 2013 to 2020 to analyze
the pattern changes in the built-up areas of each province’s capital city.
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Table 1. The districts of each provincial capital in the Yellow River Basin.

City DEM (m) Slop (◦) District

Upper reach

Xining 2237.72 10.10 Chengbei, Chengxi, Chengdong,
Chengzhong

Yinchuan 1517.42 10.46 Xixia, Jinfeng, Xingqing
Lanzhou 1069.55 4.44 Xigu, Anning, Chengguan, Qilihe
Hohhot 1035.55 3.83 Xincheng, Huimin, Yuquan, Saihan

Middle reach

Taiyuan 783.78 6.32 Jiancaoping, Wanbailin, Jinyuan,
Xiaodian, Xinghualing, Yingze

Xi’an 378.60 5.54
Weiyang, Lianhu, Yanta, Beilin,

Baqiao, Xincheng, Chang’an, E’yi,
Lintong, Yanliang, Gaoling

Zhengzhou 83.54 4.40 Huiji, Jinshui, Zhongyuan,
Guancheng Hui, Erqi

Lower reach Jinan 68.22 8.16 Lixia, Tianqiao, Huiyin, Shizhong,
Licheng, Changqing, Jiyang, Zhangqiu

3. Data Sources and Methods
3.1. NPP/VIIRS NTL Remote Sensing Images

The VIIRS is an essential sensor operated by the National Polar-orbiting Partnership
satellite (Suomi NPP). The NPP satellite sensor has a 3000 km sweep width, traverses the
equator every four hours, and has a spatial resolution of around 500 m in nW-cm−2-sr−1.
Because the VIIRS Day/Night Band has a powerful nighttime weak light detection capacity
and can identify faint surface lights, it is extremely useful for monitoring the earth’s surface
brightness at night. The brightness values in NPP/VIIRS photos are used to quantify light
intensity, and the NTL data obtained comprised annual and monthly composite images, with
radiance values less than 0 indicating no light. In this study, we apply the mean composite
approach to generate the annual composite NTL image using monthly NPP/VIIRS composite
NTL data from 2013 to 2020. The light intensity images of the administrative boundaries
of each city were masked by light intensity thresholds and exported to extract the built-up
boundaries. Figure 2 shows an example of the light intensity of the built-up area of Zhengzhou
from 2013 to 2020.
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3.2. Basic Data
3.2.1. The Validation Data of Land Use

The validation data for extracting the urban built-up area boundary came from the land
use/cover data set’s artificial surface and impermeable layer. The land use/cover data for
the Yellow River Basin in 2015 and 2017 were obtained from Prof. Gong Peng of Tsinghua
University’s GlobeLand30 dataset FROM-GLC (http://data.ess.tsinghua.edu.cn/, accessed
on 13 May 2021) [34]. The Yellow River Basin land use classification in 2020 was derived
from GlobleLand30 land cover classification data (http://www.globallandcover.com/,
accessed on 27 May 2020) [35]. Because the urban built-up area is mostly made up of
artificial surfaces like buildings, streets, and impervious layers, the impervious layer data
from the 2015 and 2017 FROM-GLC datasets, as well as the artificial surface data from the
2020 GlobleLand30 V2020 surface cover type, were extracted as validation data to validate
the built-up area boundary results.

3.2.2. Socioeconomic Statistics

GDP and population of the urban areas of the Yellow River Basin’s capital cities were
utilized as statistical indicators of socioeconomic development, and data were acquired
from each city’s statistical yearbooks from 2014 to 2020. Given the data delay in statistical
yearbooks, where the data issued in a given year are the statistics from the previous year,
the provinces’ statistical yearbooks for 2021 have yet to be produced. As a result, statistical
data from 2013 to 2019 were used to examine the relationship between socioeconomic
development indicators and urban expansion characteristics.

3.3. Research Methodology
3.3.1. Light Threshold Extraction Using OTSU Thresholding Technique

To classify the NTL data, the threshold segmentation technique was employed for
urban built-up area boundary extraction. NTL pixels that are greater than the given light
threshold are classified as built-up areas, whereas NTL pixels that are lower than the light
threshold are classified as unbuilt-up areas. The OTSU algorithm was utilized for threshold
segmentation, which can be easily updated and employed in GEE to obtain light thresholds
for urban boundary extraction.

The OTSU algorithm is used to calculate the following: if an image comprises
N pixels, the grayscale value range is [0, L − 1], the number of grayscale pixels i is
ni, and the probability of occurrence of each grayscale pixel is Pi, then: Pi = ni/N,

(i = 0, 1, 2, 3, . . . , L − 1),
L−1
∑

i=0
Pi = 1. Using the threshold t, the image is separated

into background pixel C0 and object pixel C1. C0 consists of pixels that have grayscale values
of [0, k], whereas C1 is made up of pixels that have grayscale values of [t + 1, L − 1]. The

likelihood of occurrence of any grayscale is µt =
L−1
∑

i=0
iPi, and the probabilities of occurrence

of C0 and C1 pixels are ω0 =
t

∑
i=0

Pi and ω1 =
L−1
∑

i=t+1
Pi = 1 − ω0, and the average grayscale

is µ0 =
t

∑
i=0

iPi/ω0 and µ1 =
L−1
∑

i=t+1
iPi/ω1; thus, µt=ω0µ0 + ω1µ1. The interclass variance is

defined as δ2
t = ω0(µ0 − µt)

2 + ω1(µ1 − µt)
2 = ω0ω1(µ0 − µ1)

2, so that t takes values in
the interval [0, L − 1] and the t corresponding to maximum δ2

t is the optimal threshold to
separate the two classes of pixels [36].

3.3.2. Quadrant Analysis

The quadrant analysis method was used to analyze the spatial differentiation of cities
in the Yellow River Basin, starting with the geometric center of the extracted urban built-up
area and dividing the built-up area into 8 quadrants (N, EN, E, ES, S, WS, W, and WN) for
statistics of light intensity, slop, and urban expansion area, etc. in each quadrant, and then

http://data.ess.tsinghua.edu.cn/
http://www.globallandcover.com/
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the spatial expansion differences between cities in different periods, different directions
and different elements were compared and analyzed to reflect the dominant direction and
driving factors of the spatial and temporal changes of urban expansion.

3.3.3. Analysis of Urban Spatial Expansion

Urban spatial expansion is characterized by urban land expansion, the rate of expan-
sion and the intensity of expansion are the characteristics of urban spatial expansion.

The expansion rate is the average yearly growth rate of an urban area during a given
period, reflecting the absolute difference in the urban area’s expansion speed per unit time.
The calculating formula is:

V = ∆U/∆t × 100 (1)

where V is the expansion rate; ∆U is the urban expansion area; ∆t is the time span.
The expansion intensity N is the annual expansion ratio of the built-up area in a

certain period relative to the built-up area in the baseline year, which represents the relative
difference in the built-up area’s expansion speed throughout that time horizon.

N = ∆U/∆t/M × 100 (2)

where N is the intensity of urban expansion and M is the built-up area in the baseline year.

4. Result
4.1. Evaluation of the Accuracy of Urban Built-Up Area Extraction

The mean value approach was utilized in GEE to generate annual composite NTL
images from 2013 to 2020, and the OTSU algorithm was used to compute light thresholds for
built-up regions in cities in the Yellow River Basin in different years. Because of the Yellow
River Basin’s large spatial span, the light characteristics of different regions in different
years are affected differently by climate and human activity images, so the light thresholds
of urban built-up areas were calculated by region and year to extract the urban built-up
area boundaries. The NTL results of the built-up region of each provincial capital city
derived using the OTSU technique were validated using impervious layer and man-made
surface data (LUCC) from ground cover categorization data from 2015, 2017, and 2020
(Figure 3). The NTL extraction results correlate well with the LUCC data, with R values
larger than 0.8. The results show that the built-up areas retrieved in the GEE using the
OTSU algorithm are highly accurate and may be used to study the expansion pattern of
urban built-up regions.
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4.2. Temporal Characteristics of Urban Built-Up Area Expansion in the Yellow River Basin

The built-up areas of cities from 2014 to 2020 were superimposed onto the built-up areas
in 2013, and the quadrant analysis method was used to divide the built-up areas of provincial
capitals into equal sectors to objectively reflect the dynamic change characteristics of urban
built-up area expansion in the Yellow River Basin (Figure 4). From 2013 to 2020, the built-up
areas of cities in the upper, middle, and lower parts of the Yellow River Basin increased yearly
and expanded outward surrounding each city’s historic urban centers, resulting in varied
spatial form features of built-up areas (Table 2). The built-up area, AREA, and expansion
rate V of cities in the upper Yellow River Basin (Lanzhou, Hohhot, Xining, and Yinchuan) are
significantly smaller than those of cities in the middle and lower Yellow River Basins (Xi’an,
Zhengzhou, Taiyuan, and Jinan), but among the upper river basin cities as Yinchuan and
Xining outperform the middle river cities as Zhengzhou and Xi’an. Lanzhou, an important
central city in Gansu Province, has a decreasing rate of urban built-up area increase. Jinan, the
final major city downstream of the Yellow River Basin, has the highest expansion rate V and
expansion intensity N of any city, at 28.95% and 9.31%, respectively.
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Table 2. Built-up areas of provincial capitals extracted from NTL from 2013 to 2020.

Time
Upper Reach Middle Reach Lower Reach

Xining Lanzhou Yinchuan Hohhot Taiyuan Xi’an Zhengzhou Jinan

AREA (km2)
2013 115.31 195.05 201.02 217.28 312.38 786.96 442.89 310.81
2020 141.17 187.66 269.22 246.70 457.38 883.71 568.11 513.47

Expansion rate
V (km2/year) 2013–2020 3.69 −1.06 9.74 4.20 20.72 13.82 17.89 28.95

Expansion
intensity N(%) 2013–2020 3.20 −0.54 4.85 1.93 6.63 1.76 4.04 9.31

4.3. Spatial Expansion Characteristics of Urban Built-Up Areas

From 2013 to 2020, the built-up area in eight directions was evaluated to show the ex-
pansion direction of different cities’ built-up areas (Figure 5). During the period 2013–2020,
the urban area of Xining expanded primarily westwards and southwestwards around the
east–west axis; the urban area of Lanzhou did not expand significantly during this period;
the urban area of Yinchuan expanded northwards and westwards around the “southeast–
northwest” axis; the urban area of Hohhot expanded noticeably in the northeast direction;
the urban area of Taiyuan expanded significantly southwards and southwestwards mainly
around the “east–west” axis, with a slight change in the built-up area in the northern area;
Xi’an expanded on both sides of the “northwest–southeast” axis, with the largest expansion
in the northeast and west directions; the built-up area of Jinan expanded mainly in the
east and northeast regions, with a slow expansion in the southwest; the built-up area of
Zhengzhou expanded outwards in a “pancake” pattern, with a larger area growth in the
northwest and southeast directions.
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4.4. Light Intensity Changes in Urban Built-Up Area Expansion

The capital cities of the Yellow River Basin are located along the upper, middle, and
lower reaches of the river, with the built-up area steadily increasing from the upper to the
lower reaches. Average nighttime light intensity (ANTL) and total nighttime light intensity
(TNTL) data from urban built-up areas were divided into quadrants by upstream, middle,
and downstream; they were studied to determine their correlation with urban built-up
areas. The TNTL and the built-up area (AREA) had a significant positive correlation, with
a correlation coefficient R = 0.902 (Figure 6). The ANTL was also positively correlated with
AREA, but the correlation was weaker, with a correlation coefficient R of only 0.185.
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The majority of built-up areas in the Yellow River Basin are in the middle and lower
reaches, which likewise have higher overall light intensity; the places with the lowest total
light intensity are generally found upstream. The built-up areas of cities in the upper,
medium, and lower reaches revealed a lesser variation in terms of average light intensity.
The greater the city’s built-up area, the greater its ability to accommodate the population,
and with the increase in population, the corresponding total light intensity is relatively
high overall; however, due to the spatial distribution characteristics of the population and
urban lights, the average light intensity per unit area of the built-up area is not closely
correlated to the actual size of the built-up area.

4.5. Correlation between Urban Light Intensity and Human Activities

Urban expansion is represented not only in an increase in an urban area but also in
an increase in the intensity of human activity in the cities. Changes in the intensity of
human activity can be seen indirectly in socioeconomic parameters such as population
and GDP. As a result, the correlation between urban light intensity (TNTL and ANTL) and
socioeconomic indicators closely related to human activities, such as population and GDP
in the Yellow River Basin, was examined to reflect the intensity of human activity and
socioeconomic variations in each city’s built-up areas during urban expansion.

From 2013 to 2019, the TNTL in built-up areas of cities in the Yellow River Basin
showed a significant positive correlation with both GDP and population (Table 3), with the
correlation between TNTL and population (R = 0.8586) being higher than the correlation
between TNTL and GDP (R = 0.7338). The average light intensity ANTL was not connected
with GDP or population in general (R < 0.001), but the ANTL of built-up regions of cities
in various geographical areas was considerably and positively correlated with GDP and
population, particularly in cities in the middle and lower reaches. The light intensity had a
correlation coefficient of around 0.9 with both GDP and population in Jinan’s built-up area,
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whereas in Hohhot, the correlation coefficient R between light intensity and GDP was less
than 0.2, but the correlation coefficient R between light intensity and the population was
close to 0.9. The light intensity in the built-up region of Lanzhou is negatively correlated
with GDP and population among the major cities in the entire Yellow River Basin. This
demonstrates that the correlations between light intensity (TNTL and ANTL) and GDP and
population in various Yellow River Basin cities are not consistent.

Table 3. Correlation analysis of TNTL and ANTL with GDP and population of urban built-up areas
in the Yellow River Basin from 2013 to 2019.

City
Correlation Coefficient

(R) GDP Population

Upper reach

Hohhot
ANTL 0.1659 0.8927
TNTL 0.1296 0.9003

Xining ANTL 0.9736 0.8765
TNTL 0.5761 0.4578

Lanzhou
ANTL −0.4196 −0.5191
TNTL −0.8389 −0.8771

Yinchuan
ANTL 0.6753 0.5534
TNTL 0.7528 0.6310

Middle reach

Taiyuan ANTL 0.8716 0.6607
TNTL 0.8270 0.8402

Xi’an
ANTL 0.8610 0.8833
TNTL 0.7263 0.7367

Zhengzhou ANTL 0.9163 0.9269
TNTL 0.8919 0.8012

Lower reach Jinan
ANTL 0.9358 0.8887
TNTL 0.9588 0.9307

5. Discussion
5.1. Correlation between NTL and Human Activities in Urban Expansion

Many studies have found significant correlations between light intensity values in-
fluenced by NTL and social and economic indicators, and the use of NTL data allows
spatialization of socioeconomic factors such as urban population and GDP to investigate
the characteristics of uneven socioeconomic development at the regional scale [27,37–39].
The correlation analysis of light intensity and GDP and population of cities in the Yel-
low River Basin from 2013 to 2019 revealed that the correlation between NTL data and
socioeconomic activity indicators differs by area, which is consistent with the previous
study [40]. The more economically developed intermediate and downstream cities have
greater commercial economic vitality and mature commercial spatial structures in built-up
areas, demonstrating a stronger association between light intensity and human activities
and social economy. Because the distribution of commercial spatial structure and service
capacity within the metropolitan area of Jinan is the best among Yellow River Basin capital
cities [41], the light intensity has a high and significant correlation with human activities
and social economy in Jinan. In upstream, less economically developed cities, the correla-
tion coefficients between light intensity and GDP and population are lower than that in
middle and downstream cities.

Lanzhou, one of the upstream cities in the Yellow River Basin, had a negative relation-
ship between light intensity and GDP, and population. Lanzhou’s GDP and population
increased from 2013 to 2019, yet the light intensity of the built-up region fell during the
same period (Figure 7). Lanzhou’s total light intensity has significantly fallen since 2014,
and the maximum light intensity (MAXTL) in the built-up region has similarly shown a
decreasing trend since 2013. According to an investigation, the train station is the geo-
graphic location with the highest light intensity in the built-up area. Lanzhou statistics
from 2013 to 2019 demonstrate that the city’s social economy was transitioning from con-
ventional energy-consuming industries to high-tech businesses. In Lanzhou, the added
value of high energy-consuming businesses such as thermal power generation, petroleum
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industry, and petrochemical industry was gradually dropping, while investment in fields
such as the electronics industry was gradually expanding. As a result, the nighttime light
intensity in Lanzhou gradually decreased over five years. Thus, despite deviations from
national statistical results, estimation results of socioeconomic indicators using NTL data
can still be used as an observed variable to analyze socioeconomic progress under particular
conditions [42–44].
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5.2. Natural Factor Constraints in the Urban Expansion of the Yellow River Basin

The natural geographical factors around the city not only provide the initial conditions
for the formation and development but also play a restricting role in urban expansion. The
Yellow River Basin comprises a broad west–east swath and the number of provincial capital
cities diminishes from upstream to downstream, with elevation decreasing from 2237 m to
68 m [2]. Diverse spatial differentiation features were shaped throughout urban expansion
as a result of the different geographical factors of each metropolis. The basin’s urban
built-up area is inversely correlated to elevation and slope, with correlation coefficients
of −0.5501 and −0.3515, respectively. Although the cities expand outwards in different
directions, they all have one thing in common: they all expand gradually outwards along
with gently sloping regions. As a result, among the geographical elements, landform is a
key factor restricting urban expansion [45,46].

The majority of the cities in the upper parts of the Yellow River Basin are located at
higher altitudes (Table 1) and are surrounded by mountains; among them, Lanzhou and
Xining have the highest altitudes and are more obviously influenced by topographical
factors. The growth of GDP and the increase in urban population would undoubtedly
cause the outward expansion of urban built-up regions in the process of socioeconomic
development of cities; changing the terrain to allow human habitation will considerably
increase the cost of urban expansion. As a result, cities in the Yellow River Basin’s upper
reaches, which are more constrained by natural geographical elements, are less developed
and expanded than those in the middle and lower reaches.

6. Conclusions

(1) The Yellow River Basin’s NTL data can objectively depict the spatial and temporal
dynamics of urban expansion in the basin. From 2013 to 2020, the built-up area of
each province’s capital city in the Yellow River Basin steadily rose from upstream
to downstream, with an increasing tendency over time. The cities in the upstream,
middle, and downstream exhibit imbalanced urban development, with the upstream
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cities having a smaller urban expansion area, expansion rate, and intensity than the
middle and downstream cities. The natural geographical factors surrounding cities
have a spatial influence on the urban expansion process, and each city’s expansion
has distinct spatial differentiation characteristics.

(2) During the urbanization process, more developed middle and downstream cities have
a significant positive correlation between light intensity, GDP, and population. The
relationship between light intensity and GDP and population is weaker in upstream
cities. During the development of cities in the Yellow River Basin’s middle and lower
reaches, their built-up areas shaped a well-developed commercial economic structure
and a high degree of coordination with the spatial pattern of human flow distribution,
and light data can well demonstrate GDP and population development changes. The
cities in the upper Yellow River Basin are constrained by their natural geographical
environment; their urban development is slower than that of the cities in the middle
and lower reaches, and the commercial structure within the cities must be adjusted
to promote urban economic development and to accommodate population growth
caused by urban development.
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