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Abstract: Heavy metal pollution in soil is threatening the ecological environment and human health.
However, field measurement of heavy metal content in soil entails significant costs. Therefore, this
study explores the estimation method of soil heavy metals based on remote sensing images and
machine learning. To accurately estimate the heavy metal content, we propose a hybrid artificial
intelligence model integrating least absolute shrinkage and selection operator (LASSO), genetic
algorithm (GA) and error back propagation neural network (BPNN), namely the LASSO-GA-BPNN
model. Meanwhile, this study compares the accuracy of the LASSO-GA-BPNN model, SVR (Support
Vector Regression), RF (Random Forest) and spatial interpolation methods with Huanghua city as
an example. Furthermore, the study uses the LASSO-GA-BPNN model to estimate the content of
eight heavy metals (including Ni, Pb, Cr, Hg, Cd, As, Cu, and Zn) in Huanghua and visualize the
results in high resolution. In addition, we calculate the Nemerow index based on the estimation
results. The results denote that, the simultaneous optimization of BPNN by LASSO and GA can
greatly improve the estimation accuracy and generalization ability. The LASSO-GA-BPNN model
is a more accurate model for the estimate heavy metal content in soil compared to SVR, RF and
spatial interpolation. Moreover, the comprehensive pollution level in Huanghua is mainly low
pollution. The overall spatial distribution law of each heavy metal content is very similar, and the
local spatial distribution of each heavy metal is different. The results are of great significance for soil
pollution estimation.

Keywords: LASSO-GA-BPNN model; machine learning; remote sensing; heavy metals; soil pollution

1. Introduction

As an important natural resource, soil is the environmental basis for human survival.
However, the risk of soil pollution by heavy metals is increasing with the increase of
human activities. Although industry and agriculture play an irreplaceable role in the rapid
economic development, intensive industrial and agricultural activities have also resulted
in the enrichment of heavy metals in soil [1,2]. Long-term accumulation of heavy metal
elements will cause serious damage to the ecological environment. Meanwhile, heavy
metals will be enriched into the human body through the food chain, directly endangering
human health. In the context of urban expansion and industrial development, attention is
being paid to the problem of heavy metal pollution [3–6]. However, field measurement of
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heavy metal content in soil entails significant costs. Therefore, accurately estimating the
content of heavy metals in soil is essential for soil resource conservation.

To estimate the heavy metal content in soil, spatial interpolation methods have been
widely used. It can be divided into deterministic interpolation, radial basis function
method [7,8], and geostatistical interpolation [9,10]. For example, Zhang et al. [11] used the
ordinary kriging method to estimate the spatial distribution of Cr in industrial areas and
assess the risks to human health. Ogunkunle and Fatoba [12] estimated the content of five
heavy metals around a large cement plant by using the inverse distance weighting method.
Furthermore, whether there is any difference in accuracy between different interpolation
methods in the estimation of heavy metal content in soil has attracted the attention of many
scholars. For instance, Duan et al. [13] estimated the content of Zn, Pb, Cd, Cr, As and Ni
in soil around an electroplating plant. It was found that the estimation accuracy of the
ordinary kriging method was higher than that of the inverse distance weighting method
in this study area. Fu et al. [14] predicted the content of Pb in soil using ordinary kriging,
geographically weighted regression kriging and regression kriging. The results show that
the geographically weighted regression kriging method had the highest accuracy.

Nowadays, with the rapid development of artificial intelligence, machine learning
models have exhibited good results in prediction. This has made machine learning widely
used in various fields [15–17]. The advancement of geographic information technology has
also led to the application of remote sensing in many disciplines [18–21]. In the field of
environmental science, many scholars have combined spectral data and machine learning
methods for the estimation of heavy metal content in soil, such as support vector regression
(SVR) [22,23], artificial neural network (ANN) [24–27], and random forest (RF) [28–30].
On the one hand, the high dimension and redundancy characteristics of spectral data
for estimation of heavy metal pollution in soil seriously affect the accuracy and stability
of the estimation model. Consequently, numerous scholars determine the appropriate
characteristic bands for different heavy metals by statistical analysis methods [27,31]. For
example, Lamine et al. [32] used the stepwise regression method to select characteristic
bands for estimation models of four heavy metals. Liu et al. [33] analyzed the correlation
between nine heavy metals and spectral reflectance by Pearson correlation coefficient and
established the optimal estimation model. On the other hand, error back propagation
neural network (BPNN) is widely used in the estimation of heavy metal content in soil
by virtue of its powerful nonlinear predictive capability. For example, Zhao et al. [34]
combined BPNN and spectral data to predict the contents of Cd, Hg, As, Pb, Cu, and Zn in
soil around Tai Lake in China and found that the estimation accuracy of the BPNN model is
higher than that of the partial least square method. Bian et al. [35] used BPNN and spectral
data to predict the content of Cu, Sn, Zn and Pb in different types of soils. The results
showed that BPNN had a good prediction effect and generalization ability in predicting the
content of heavy metals. Notably, some studies have predicted soil properties by comparing
geostatistical models and machine learning models. Wang et al. [36] predicted the contents
of Ca and Mg in topsoil and subsoil using ordinary kriging, linear mixed model, quantile
regression forests, support vector machine, and Cubist regression kriging, respectively.

Nevertheless, the above-mentioned studies have limitations in the estimation models
of heavy metal content in soil. Statistical analysis methods used to remove the redundancy
of high-dimensional spectral data are unable to examine the nonlinear relationship between
spectral data and heavy metal content. Furthermore, BPNN has strong nonlinear prediction
functions and is frequently used in the estimation of heavy metal content in soil. However,
the algorithm can easily fall into the local optimal solution. The above two aspects will
greatly reduce the accuracy and stability of the estimation model. Besides, the existing
studies of estimating heavy metal content using remote sensing data ignore the accuracy
comparison between machine learning models and spatial interpolation methods.

This study aims to construct a high accuracy estimation model of heavy metal con-
tent in soil. We propose a hybrid artificial intelligence model integrating least absolute
shrinkage and selection operator (LASSO), genetic algorithm (GA) and BPNN, namely the
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LASSO-GA-BPNN model. Then, taking Huanghua as an example, this study uses the
field sampling data of eight heavy metals, spectral reflectance factors, spectral exponen-
tial factors, latitude and longitude, and relief factors to construct the dataset. The eight
heavy metals in the dataset include Ni, Pb, Cr, Hg, Cd, As, Cu, and Zn. The dataset
is used to train and validate the model. Meanwhile, we compare the accuracy of the
LASSO-GA-BPNN model, SVR model, RF model, inverse distance weighting method
and ordinary kriging method. Moreover, the study uses the LASSO-GA-BPNN model to
estimate the heavy metal content in Huanghua and visualize it with high resolution. Based
on this, we calculate the Nemerow index and analyze the spatial distribution of heavy
metal pollution in this area.

Our key contributions are twofold. First, this paper constructs a new model for
estimating soil heavy metal content, namely the LASSO-GA-BPNN model. The model
has high estimation accuracy. Second, in the field of estimating heavy metal content using
remote sensing data, this study is the first to compare the estimation accuracy between
spatial interpolation methods and machine learning models.

The structure of this study is as follows: Section 2 introduces the materials and
methods, Section 3 presents the results and relates discussions, and the main research
conclusions are underlined in Section 4.

2. Materials and Methods
2.1. Study Area

In this study, Huanghua City is taken as the study area, and the location is shown
in Figure 1. Huanghua is located in the east of North China Impact Plain, bordering the
Bohai Sea in the east and Tianjin in the north, and its geomorphological types are plain
and coastal zone. Heavy metals that cause soil pollution mainly include Ni, Pb, Cr, Hg,
Cd, As, Cu and Zn. Therefore, sample data of these eight elements are obtained through
field sampling. Field sampling was performed in November 2013. The sampling points
are positioned in a uniform arrangement with soil sampling depths of 0 to 20 cm (A few
sampling points are located in areas where salt is produced, and some enterprises ex-
tract salt through solarization of seawater. Therefore, we sampled in November, when
there are no production activities or water at these sites). A total of 516 soil samples are
collected, and the latitude and longitude are located by GPS. In addition, we use the Ne-
merow index as the comprehensive pollution index, and its calculation method is shown in
Equations (1) and (2) [37,38]. P is the Nemerow index. P less than 1 represents no pollution,
P higher than 1 is less than or equal to 2 represents low pollution, P higher than 2 is less
than 3 represents moderate pollution, P higher than 3 represents high pollution.

Pi = Ci/Si (1)

P =

√
P2

+ P2
max

2
(2)

In Equations (1) and (2), Pi is the single-factor pollution evaluation index of heavy
metal i, Ci is the measured value, Si is the evaluation standard, P is the average value of Pi,
and Pmax is the maximum value of Pi, P is the Nemerow index. We choose the background
value of soil heavy metals in Hebei Province as the evaluation standard.

Shuttle Radar Topography Mission (SRTM) imagery and Landsat 8 Operational Land
Imager (OLI) imagery are downloaded from US Geological Survey, https://earthexplorer.
usgs.gov/ (accessed on 1 May 2022). OLI imagery was taken on 29 November 2013. We
pre-process the OLI imagery with radiation calibration and atmospheric correction, and
multi-spectral data is extracted after clipping. Based on this, basic information of the spectral
reflectance factors and spectral exponential factors are shown in Tables A1 and A2. Relief
factors including elevation, slope and aspect are extracted from SRTM imagery. According
to scorpan model, the content of heavy metals in soil is closely related to soil, climate,
organisms, topography, parent materials, age, and space [39,40]. Therefore, field sampling

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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data of eight heavy metals, spectral reflectance factors, spectral exponential factors, latitude
and longitude, and relief factors are used to construct the dataset. The dataset is used to
train and validate the model. In the construction of the machine learning model, we divide
the dataset into the training set and testing set according to the principle of 8:2.
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2.2. Methods
2.2.1. LASSO-GA-BPNN Model

Spectral data used in the field of soil heavy metal pollution estimation has the charac-
teristics of high dimension and high redundancy, which will seriously affect the accuracy
and stability of the estimation model. Therefore, this study selects the characteristic bands
for each heavy metal. The least absolute shrinkage and selection operator proposed by
Tibshirani is a compression estimation method [41], it obtains a better model by construct-
ing a penalty function. This method can compress some regression coefficients to zero,
to achieve the effect of subset contraction. Equation (3) is the LASSO estimation of the
regression model, where the second term is L1 penalty and k is a non-negative regular-
ization parameter. When k is zero, LASSO regression is ordinary least square regression.
With the increase of k, LASSO can compress the coefficients of unimportant variables to
0, realizing the selection of variables. The larger the value of k, the more coefficients com-
pressed to 0, the less the complexity of the model and the stronger the explanatory power of
the model [41–43].

β̂(LASSO) = argmin‖ y−
p

∑
j=1

xjβ j ‖
2

+ k
p

∑
j=1

∣∣β j
∣∣ (3)

In this study, LASSO and GA are used to optimize BPNN. Specifically, we first se-
lect the appropriate input layer information for each heavy metal by LASSO. Then, the
weight and threshold of BPNN are optimized by GA. Finally, BPNN is trained, and the
LASSO-GA-BPNN model is constructed. The BPNN proposed by Rumelhart is a multilayer
feedforward network trained by the error back propagation algorithm, it is suitable for the
analysis of various nonlinear relations [44].
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The basic structure of the LASSO-BPNN model is shown in Figure 2a, which consists of
an input layer, an output layer and several hidden layers. The result of LASSO determines
the number of neurons in the input layer in BPNN, and the number of neurons in the hidden
layer q is determined according to the empirical Equation (4). BPNN repeatedly adjusts
the weights and thresholds by the steepest descent method and error back propagation
algorithm. BPNN includes two operation processes, the signal forward propagation process
and the error backward propagation process. First, input the input layer information to
neurons in the input layer, and the output layer information is generated through the
signal forward propagation process, and calculate the error with the expected output.
Furthermore, the BPNN transmits error to the neurons in the hidden layer through the error
back propagation process and adjusts the weights and thresholds according to the error.
This iterative process is the operation process of the neural network until the estimated
value of the network is as close as possible to the measured value. The hidden layer
information oj is calculated by the Equation (5), and the output layer information ok is
calculated by Equation (6) [45,46].
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√

d + l + a (4)
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oj = fi
(
∑ wijoi, θj

)
(5)

ok = f j

(
∑ wkjoj, θk

)
(6)

In these above three equations, d is the number of neurons in the input layer, and l is
the number of neurons in the hidden layer, a is a parameter with a value between 1 and 10,
fi and wij are activation functions and weight between the input layer and the hidden layer,
f j and wjk are activation functions and weight between the hidden layer and the output
layer, θj is the threshold value of neurons in the input layer, and θk is the threshold value of
neurons in the output layer.

The steepest descent algorithm used in the LASSO-BPNN model is easy to fall into the
local optimal solution. Therefore, this study uses GA to optimize the LASSO-BPNN model,
and the GA operation flow is shown in Figure 2b. GA is a random search optimization
method based on natural genetic mechanisms and biological evolution theory [47,48].
There are no other restrictions on this algorithm, and its solution set is very complete. In
the iterative process of GA, the set of existing solutions can always move towards the
global optimal solution, which has a strong search purpose. This feature can help the
LASSO-BPNN model find the optimal combination of weights and thresholds, and then
realize the global optimal solution. The basic structure of the LASSO-GA-BPNN model is
shown in Figure 2c [45].

2.2.2. SVR Model

The basic principle of SVR is to use nonlinear mapping to map data to high-dimensional
feature space, then construct regression estimation function in high-dimensional feature
space, and then map it back to the original space. SVR is a nonlinear algorithm and can
effectively avoid the problem of local minima. Let xi be the independent variable and yi
be the dependent variable. For the training set D = [(x1, y1), (x2, y2), · · · (xn, yn)], xi ∈ Rm,
yi ∈ R, i = 1, 2, · · · n, its regression function is Equation (7), which is calculated according
to the objective Function (8) [49–51].

y = f (x) = wTx + b (7)

min(
1
2
‖ w ‖2 + C

n

∑
i=1

(δi + δ∗i )) (8)

s.t.


yi − w∅(x)− b ≤ ε + δ∗i
w∅(x)− b− yi ≤ ε + δ∗i

δi, δ∗i ≥ 0
(9)

In these above three equations, w = (w1; w2; . . . wd) is the normal vector, b is the
displacement term, C is the regularization parameter, δi and δ∗i is relaxation variable. ∅(x)
represents the nonlinear transfer function. The epsilon is an insensitive-loss function. A
large epsilon means larger errors are admitted and not penalized [52]. The original objective
function can be transformed into a dual problem via the Lagrange multiplier method, as
shown in Equation (10), where K(xi, x) = ∅(xi)∅

(
xj
)

is the kernel function. In this study,
the value of epsilon is 0.1 and the kernel function is a Gaussian radial basis function [52].

f (x) = wi∅i(x) + b =
n

∑
i=1

(αi + α∗i )K(xi, x) + b (10)

2.2.3. RF Model

RF is an important model used to predict soil properties, which was proposed by
Breiman [53]. Random forest is an ensemble model based on regression tree algorithm,
which forms a “forest of models” by constructing many regression trees [52]. Then, these
decision trees are integrated using the averaging function. Compared to a single decision
tree, random forests are a stable and accurate prediction model. Since each decision
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tree is trained on a unique subsample of the sample dataset, the random forest avoids
overfitting [28,54]. The number of regression trees contained in the RF is n, and the number
of variables used in the binomial tree in the nodes is m. They are two important hyper-
parameters in the RF. The n decides the trade-off between computational complexity and
accuracy of RF [55]. The m decides the strength of an RF model as it decides the strength
of every single tree in the forest and the relationship between any two trees. When m is
increasing, the strength of the single tree is increasing, while the relationship between any
two trees also increases. Single tree strength can improve RF performance, while the high
correlation between trees weakens the performance [52,56]. In this study, we optimize the
values of n (100–1600) and m (1–12) by the traversal method to improve the prediction
ability of RF model.

2.2.4. Inverse Distance Weighting Method

As one of the deterministic interpolation methods, inverse distance weighting is widely
used. It estimates by calculating the weighted average of the points in the neighborhood
of the target estimated point S0. The weighting method is the reciprocal of the distance
between the point Si and the point S0. The estimated value Ẑ(S0) of the point S0 calculated
using IDW is calculated by Equation (11) [57,58].

Ẑ(S0) =
∑n0

i=1
Z(Si)
|Si−S0|

∑n0
i=1

1
|Si−S0|

(11)

In Equation (11), n0 is the total number of sample points in the neighborhood of the
point S0, Z(Si) is the attribute value at point i.

2.2.5. Ordinary Kriging Method

Ordinary kriging is a geostatistical interpolation method. If the data is highly con-
tinuous in space, the points closer to the estimated point will get a higher weight than
those farther away. The weight is selected according to the minimization of the estimated
variance. Therefore, the estimated value Z∗v (x) of the point obtained by the ordinary kriging
method is based on semivariogram theory, and is calculated by the linear combination of
sample points within the influence range of the estimated point. The calculation method is
Equation (12) [59].

Z∗v (S0) =
n

∑
i=1

λiZ(Si) (12)

2.2.6. Accuracy Evaluation Index

To test the estimation accuracy of the LASSO-GA-BPNN model, three evaluation
indexes are selected. Root mean square error (RMSE) can evaluate the change degree of
data and compare models. The result of RMSE is of the same order of magnitude as the
sampled data, so it can better describe the data, the smaller RMSE, the higher the estimation
accuracy of the model. Mean Absolute Error (MAE) is the average of the absolute value of
the difference between the estimated value and the measured value. The smaller the MAE,
the higher the accuracy of the model. Compared with MAE, Mean Absolute Percentage
Error (MAPE) increases the denominator under the difference between the estimated value
and the measured value, so it can be used to compare the estimation effects under different
dimensions. The closer the MAPE is to 0%, the higher the accuracy of the model is. The
calculation methods of the above accuracy evaluation indexes are Equations (13)–(15).

RMSE =

√√√√ 1
N

N

∑
i=1

(
Mi − Pj

)2 (13)
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MAE =
1
N

N

∑
i=1

∣∣Mi − Pj
∣∣ (14)

MAPE =
100%

N

N

∑
i=1

∣∣∣∣Mi − Pj

Mi

∣∣∣∣ (15)

In these above three equations, i is the sample point, Mi is the measured value of
heavy metal content, Pi is the estimated value of heavy metal content, N is the number
of samples.

3. Results and Discussion
3.1. Statistical Characteristics Analysis of Sampled Data

According to the sampled data in Huanghua, the basic statistical characteristics of
eight heavy metals are shown in Table 1. The average content of Pb, Cd and Cu is higher
than the background values of Hebei Province, and the over-standard rate exceeded 50%.
The over-standard rates of other heavy metals are all above 10%. The variation coefficient
of each heavy metal content is in the range of 0.1 to 1, which belongs to medium variation.
The variation coefficient of Hg is the largest, which indicates that it has obvious discrete
characteristics. The average content of each heavy metal is less than the second-class soil
quality standard of China, which shows that the soil quality in Huanghua can maintain
human health and agricultural production. However, combined with the statistical analysis
of sample sites, it was found that the content of heavy metals in some soils is high.

Table 1. Statistical characteristics analysis of sample points.

Element Minimum
(mg/kg)

Maximum
(mg/kg)

Mean
(mg/kg)

Standard
Deviation

Variable
Coefficient

Background
Value

(mg/kg)

Exceeding
Standard
Rate (%)

Ni 18.30 47.40 29.55 4.83 0.16 34.10 17.44
Pb 15.60 37.60 23.02 2.95 0.13 21.50 64.50
Cr 43.20 118.00 67.11 9.30 0.14 68.30 40.26
Hg 0.01 0.09 0.03 0.01 0.46 0.04 11.17
Cd 0.08 0.27 0.15 0.03 0.17 0.09 99.63
As 7.20 19.60 11.69 2.10 0.18 13.60 15.77
Cu 13.60 45.90 23.47 4.86 0.21 21.80 57.14
Zn 49.40 137.30 74.11 10.82 0.15 78.40 30.43

3.2. Model Improvement and Accuracy Comparison
3.2.1. Analysis of LASSO Optimization Results

According to the variable selection results of LASSO, the input layer information of
neurons in the input layer of LASSO-GA-BPNN model are shown in Table 2. The x and y
represent longitude and latitude, respectively. Therefore, the basic topological structures of
the LASSO-GA-BPNN model can be determined according to Table 2. For example, the
number of input layer neurons of LASSO-GA-BPNN is ten when estimating the content
of Ni in soil. As the spectral data characteristics of each heavy metal in each band are
different, the results of spectral reflectance factors and spectral exponential factors of each
heavy metal are also different. In general, LASSO realizes dimensionality reduction of
high-dimensional data and removes redundant variables for each heavy metal, which is
more suitable for machine learning estimation models with nonlinear prediction functions.
Therefore, LASSO improves the generalization ability of the LASSO-GA-BPNN model. The
result is in line with previous research [60].
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Table 2. The input layer information.

Element The Input Layer Information of Neurons in the Input Layer

Ni x y Elevation Slope Aspect Band7 MNDWI CMR EVI Wetness — —
Pb x y Elevation Aspect Band3 MNDWI CMR EVI Wetness — — —
Cr x y Elevation Aspect Band3 Band5 MNDWI CMR EVI — — —
Hg x y EVI — — — — — — — — —
Cd x y Elevation Slope Aspect Band2 Band5 MNDWI CMR EVI NDVI Greenness
As x y Elevation Aspect Band2 MNDWI CMR EVI Wetness — — —
Cu x y Elevation Aspect Band3 MNDWI EVI — — — — —
Zn x y Elevation Slope Aspect Band1 Band3 Band7 MNDWI CMR EVI Wetness

3.2.2. Analysis of GA Optimization Results

In the basic parameters of GA, the population size is 100, the maximum number of
evolutions is 100, the crossover probability is 0.7, and the mutation probability is 0.1. This
means that the best individual is obtained by breeding a population of 100 individuals for
100 generations, and the crossover probability and mutation probability in each evolution
process is 70% and 10%, respectively. RMSE is used as the criterion of individual fitness,
the higher the model accuracy, the better the individual is.

According to the empirical equation and the results of the variable selection of LASSO,
the number of neurons in the hidden layer ranged from 3 to 12 for Hg, from 5 to 14 for
Cd and Zn, and from 4 to 13 for the other five heavy metals. The number of hidden layer
neurons in the hidden layer in the LASSO-BPNN model has a great influence on the model
effect. Therefore, this study optimizes the LASSO-BPNN model with the number of hidden
neurons in the hidden layer by GA, and the number of neurons in the hidden layer with
the highest accuracy is selected according to the optimized results. The optimal number
of neurons in the hidden layer of each heavy metal and the results of accuracy evaluation
indexes before and after optimization are shown in Table 3. After GA optimization, RMSE,
MAE and MAPE values of the LASSO-GA-BPNN model of each heavy metal decreased
obviously. In addition, the estimation accuracy of BPNN is low compared to that of
LASSO-BPNN. Therefore, the estimation accuracy of the LASSO-GA-BPNN model is
greatly improved compared with the LASSO-BPNN model and BPNN model.

Table 3. GA optimization results.

Ni Pb Cr Hg Cd As Cu Zn

Number of neurons in
the hidden layer 5 13 8 9 5 5 8 6

BPNN
RMSE 3.504 2.429 7.500 0.012 0.024 1.998 3.907 10.656
MAE 2.829 1.882 5.857 0.009 0.018 1.635 2.948 8.563

MAPE 9.664% 8.288% 8.685% 34.215% 11.797% 14.988% 13.330% 11.280%

LASSO-
BPNN

RMSE 3.111 2.084 7.061 0.011 0.021 1.905 3.660 9.633
MAE 2.433 1.582 5.591 0.008 0.016 1.518 2.791 7.276

MAPE 8.361% 6.883% 8.318% 32.479% 10.823% 13.842% 12.762% 9.506%

LASSO-
GA-

BPNN

RMSE 2.630 2.006 5.468 0.011 0.018 1.555 2.958 6.771
MAE 2.082 1.589 4.399 0.008 0.014 1.242 2.302 5.318

MAPE 7.028% 6.968% 6.690% 31.402% 8.949% 11.159% 10.515% 7.039%

In the LASSO-GA-BPNN model of each heavy metal, the process of GA finding the
best weight and threshold is shown in Figure 3a–h. The mean square error is the square
of RMSE, which is used as the standard to select the optimal parameters. During the first
20 times of parameter optimization, the mean square error of each heavy metal estimation
model decreased obviously. The mean square errors of Pb, Hg, As and Zn tend to be
flat after 50 times of parameter optimization. The mean square errors of Cr and Cd tend
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to be flat after 90 times of parameter optimization. It shows that the LASSO-GA-BPNN
model of each heavy metal can converge to the global optimum within 100 times of GA
optimization. In general, the optimization process of the LASSO-GA-BPNN model by GA
greatly improves the estimation accuracy, which is similar to previous research [45]. It
can be judged that the optimization effect of GA is very obvious, which solves the defect
that the steepest descent method is easy to fall into the local optimal solution. Therefore,
combined with the previous analysis, the simultaneous optimization of BPNN by LASSO
and GA can greatly improve the estimation accuracy and generalization ability.
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3.2.3. Comparison between LASSO-GA-BPNN and SVR and RF

We randomly select 30 samples from the test set for each heavy metal. The fitting
effect between the measured value and the estimated value of each heavy metal is shown
in Figure 4a–h. There is an obvious gap between the estimated value and the measured
value of Hg, and the fitting effect is poor. Besides, the fitting effect of other heavy metals by
the three machine learning models is great, and the estimated value of each sample point is
close to the measured value. In addition, the LASSO-GA-BPNN model has a better fitting
effect than the SVR model and the RF model.
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To compare the estimation effects of the three machine learning models, we calculate
the accuracy evaluation indexes of each model. The results are shown in Table 4. The
MAPE of Hg is 33.0121%, 35.2015%, and 31.4023%, which indicates that the estimation
effects of the three machine learning models are poor. The estimation results of the other
heavy metals are good, with MAPE below 13%. The RMSE, MAE, and MAPE of each
heavy metal in the LASSO-GA-BPNN model are smaller than that of the SVR model and
RF model. Therefore, the LASSO-GA-BPNN model has higher estimation accuracy than
the SVR model and RF model.

Table 4. Accuracy evaluation index.

Model Index Ni Pb Cr Hg Cd As Cu Zn

RF
RMSE 3.0107 2.2912 5.6099 0.0112 0.0199 1.7030 3.2927 7.4969
MAE 2.4418 1.7861 4.5704 0.0082 0.0157 1.3941 2.4909 5.7749

MAPE 8.3486% 7.7330% 7.0472% 33.0121% 10.4033% 12.7271% 11.2112% 7.6586%

SVR
RMSE 3.2637 2.1968 6.4591 0.0115 0.0207 1.6806 3.4111 7.8590
MAE 2.7125 1.7233 5.2559 0.0085 0.0162 1.3528 2.6123 6.2460

MAPE 9.4714% 7.5297% 8.0791% 35.2015% 10.6739% 12.4429% 11.9010% 8.2271%

LASSO-
GA-

BPNN

RMSE 2.6300 2.0059 5.4678 0.0107 0.0178 1.5549 2.9577 6.7711
MAE 2.0821 1.5886 4.3995 0.0078 0.0137 1.2416 2.3021 5.3180

MAPE 7.0284% 6.9684% 6.6899% 31.4023% 8.9487% 11.1594% 10.5146% 7.0388%

3.2.4. Comparison between LASSO-GA-BPNN and Spatial Interpolation

We compare the accuracy of the LASSO-GA-BPNN model, RF, SVR, inverse distance
weighting method and ordinary kriging method, and RMSE is used as the index to examine
the accuracy. The RMSE results estimated by each method for each heavy metal are shown
in Table 5. Compared with the ordinary kriging method, the RMSE of six heavy metals
estimated by the inverse distance weighting method is low. It shows that the overall
estimation accuracy of the inverse distance weight method is higher than the ordinary
kriging method. Similarly, the RMSE of five heavy metals estimated by RF is low compared
to the spatial interpolation methods. In contrast, compared with the spatial interpolation
methods, the RMSE of more than half of the heavy metals estimated by SVR is high. Overall,
the estimation accuracy of RF is higher than the inverse distance weighting method and
ordinary kriging method, while the estimation accuracy of SVR is lower than the two
spatial interpolation methods. Furthermore, the RMSE of each heavy metal estimated by
the LASSO-GA-BPNN model is smaller than that of the two spatial interpolation methods.
This means that the accuracy of LASSO-GA-BPNN is higher than that of inverse distance
weighting and ordinary kriging. Consequently, the LASSO-GA-BPNN model is a more
accurate model for the estimate heavy metal content in soil compared to SVR, RF and
spatial interpolation.

Table 5. The RMSE of the LASSO-GA-BPNN model and spatial interpolation methods.

Model Index Ni Pb Cr Hg Cd As Cu Zn

Inverse distance
weighting RMSE 2.8729 2.2541 6.0623 0.0120 0.0204 1.6044 3.3364 7.8390

Ordinary kriging RMSE 2.9536 2.2770 6.2126 0.0119 0.0203 1.6114 3.5023 7.9981
RF RMSE 3.0107 2.2912 5.6099 0.0112 0.0199 1.7030 3.2927 7.4969

SVR RMSE 3.2637 2.1968 6.4591 0.0115 0.0207 1.6806 3.4111 7.8590
LASSO-GA-BPNN RMSE 2.6300 2.0059 5.4678 0.0107 0.0178 1.5549 2.9577 6.7711
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3.3. Estimation of Soil Heavy Metal Pollution in Huanghua
3.3.1. Statistical Analysis of Estimated Value

The spectral reflectance factors, spectral exponential factors, latitude and longitude,
and relief factors of Huanghua at the scale of 60 m are extracted. We use the
LASSO-GA-BPNN model to estimate the content of heavy metals in soil of Huanghua.
According to remote sensing images, Huanghua is divided into 685,389 locations. Statistical
analysis of the estimated results of each heavy metal content is shown in Table 6. Specifi-
cally, in Huanghua, the average content of Zn and Cr is high. The average contents of five
heavy metals, Ni, Cr, Hg, As and Zn, are all lower than the background value, while the
contents of three heavy metals, Pb, Cd and Cu, are all higher than the background value.

Table 6. Estimation results of heavy metal content.

Element Min (mg/kg) Max (mg/kg) Mean
(mg/kg)

Background
Value

(mg/kg)

Standard
Deviation

Ni 3.59 47.13 29.53 34.10 3.86
Pb 10.29 46.27 23.31 21.50 2.28
Cr 52.37 84.91 66.73 68.30 4.72
Hg 0.00 0.18 0.03 0.04 0.01
Cd 0.00 0.30 0.15 0.09 0.02
As 7.94 14.72 11.60 13.60 0.88
Cu 6.17 49.91 24.11 21.80 3.27
Zn 51.18 111.80 74.73 78.40 7.56

3.3.2. High-Resolution Visualization of the Estimated Value

According to the estimated value of the LASSO-GA-BPNN model for each heavy
metal content, we visualize the estimated value with high resolution at the 60 m scale.
This can display local spatial distribution in detail and make the results more valuable in
the application. We divide the content of each heavy metal into five levels by the natural
breakpoint classification method, and the visualization results are shown in Figure 5a–g. Due
to the estimation accuracy of Hg element being low, we did not visualize it. Figure 5 shows
that the overall spatial distribution law of each heavy metal content is very similar, showing
the distribution characteristics of low content in the south, high content in the north, and
gradually increasing from south to north. Furthermore, the local spatial distribution of
each heavy metal is different. Specifically, the content of each heavy metal in Lvqiao Town
is high. Besides, Ni content is high in Huaxi Street and Huazhong Street. Pb content is
high in Huaxi Street. Cr content is high in Huaxi Street. Cd content is high in Qijiawu
Town, Guanzhuang Town, Huazhong Town and Yangerzhuang Huizu Town. As content
is high in some towns such as Huaxi Street and Huazhong Street. Cu content is high in
Huaxi Street. The content of Zn is high in Huaxi Street, Guanzhuang Town. Consequently,
Lvqiao Town has a high risk of soil contamination by heavy metals.
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3.3.3. Comprehensive Pollution Index

Nemerow index can reflect the comprehensive pollution level. Therefore, based on the
estimated values of the content of seven heavy metals, we calculate the Nemerow index,
which is shown in Figure 6. Overall, the spatial distribution law of the comprehensive
pollution level of soil heavy metals in Huanghua is very obvious. On the one hand, the
values of the Nemerow pollution index are mainly distributed between 1 and 2, with only
a few areas having values less than 1 or more than 2. This shows that the comprehensive
pollution level of Huanghua is mainly low pollution. On the other hand, on the whole,
the pollution level in the southwest and northeast is low, including Changguo Town,
Huanghua Town, Jiucheng Town and the eastern part of Huadong Street, Huazhong Street
and Yangerzhuang Huizu Town. Additionally, the pollution level in the northwest of
Huanghua is high, including Qijiawu Town, Guanzhuang Town and Lvqiao Town.

First, the comprehensive pollution level in the northwestern part of Huanghua is
higher than in other areas, which are the most polluted areas in the city. The reason is
that there are chemical and petroleum products and brick manufacturing enterprises in
the area. Most of these enterprises are engaged in heavy industry production activities,
which often bring high pollution and enrichment of heavy metals to the surrounding land.
Meanwhile, there is a large population in this area, and a large number of residents living
here for a long time would also cause the enrichment of heavy metals, and compared with
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industrial production, this factor often causes low pollution to the soil. Besides, two rivers
run through the production and residential areas in the middle of Lvqiao Town. This may
lead to the large-scale diffusion of heavy metals discharged from industrial production
and residential life in the surrounding soil, and indirect enrichment of heavy metals in
the surrounding cultivated land. Second, the southwestern part of Huanghua has high
elevation and less industrial production activities. Therefore, the comprehensive pollution
level of the areas is low. The result is similar to previous research [61].
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4. Conclusions

This study proposes a hybrid artificial intelligence model integrating LASSO,
GA and BPNN, namely the LASSO-GA-BPNN model. The field sampling data of eight
heavy metals, spectral reflectance factors, spectral exponential factors, latitude and longi-
tude, and relief factors are used to construct the dataset. Then, we compare the accuracy of
the LASSO-GA-BPNN model, SVR model, RF model, inverse distance weighting method
and ordinary kriging method. Finally, we use the LASSO-GA-BPNN model to estimate the
heavy metal content in Huanghua. The main conclusions are as follows:

(1) The simultaneous optimization of BPNN by LASSO and GA can greatly improve the
estimation accuracy and generalization ability. On the one hand, LASSO reduces the
dimension of high dimensional data and removes redundant variables for each heavy
metal, which is more suitable for machine learning estimation models with nonlinear
prediction functions. On the other hand, GA solves the defect that the steepest descent
method of the LASSO-BPNN model is easy to fall into the local optimal solution.

(2) The LASSO-GA-BPNN model is a more accurate model for the estimate heavy metal
content in soil compared to SVR, RF and spatial interpolation. In the comparison
of machine learning estimation models, LASSO-GA-BPNN has higher estimation
accuracy than the SVR and RF. Similarly, in the comparison of machine learning and
spatial interpolation methods, the accuracy of LASSO-GA-BPNN is greater than that
of inverse distance weighting and ordinary kriging.

(3) High-resolution visualization of the estimated value can display the local spatial
distribution of heavy metals in detail. The overall spatial distribution law of each
heavy metal content is very similar, showing the distribution characteristics of low
content in the south, high content in the north, and gradually increasing from south



Land 2022, 11, 1037 16 of 19

to north. However, the local spatial distribution of each heavy metal is different. In
addition, the comprehensive pollution level of Huanghua is mainly low pollution.
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Appendix A

Table A1. Spectral reflectance factor.

Index Abbreviation Name Wavelength
Range (um)

Centre
Wavelength (um)

Band1 B1 Aerosol 0.43–0.45 0.44
Band2 B2 Blue 0.45–0.51 0.48
Band3 B3 Green 0.53–059 0.56
Band4 B4 Red 0.64–0.67 0.655
Band5 B5 Near infrared (NIR) 0.85–0.88 0.865

Band6 B6 Short wave
infrared 1(SWIR1) 1.57–1.65 1.61

Band7 B7 Short wave
infrared 2(SWIR2) 2.11–2.29 2.2

Table A2. Spectral exponential factor.

Index Name Formula

MNDWI Modified Normalized Difference Water Index (B3 − B6)/(B3 + B6)
DVI Difference Vegetation Index B5/B4
CMR Clay Minerals Ratio B6/B7
EVI Enhance Vegetation Index 2.5 × (B5 − B4)/(B5 + 6 × B4 − 7.5 × B2 + 1)

NDVI Normalized Difference Vegetation Index (B5 − B4)/(B5 + B4)

Greenness Greenness −0.294 × B2 − 0.243 × B3 − 0.5424 × B4 + 0.7276 ×
B5 + 0.0713 × B6 − 0.1608 × B7

Brightness Brightness 0.3029 × B2 + 0.2786 × B3 − 0.4733 × B4 + 0.5599 ×
B5 + 0.508 × B6 − 0.1872 × B7

Wetness Wetness 0.1511 × B2 − 0.1973 × B3 − 0.3283 B4 + 0.3407 ×
B5 − 0.7117 × B6 − 0.4559 × B7

https://earthexplorer.usgs.gov/
http://www.globallandcover.com/
http://www.globallandcover.com/
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