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Abstract: As China’s main grain-producing region, the ecological security pattern of Liaoning
Province has an extremely important impact on the ecological security of Northeast China and even
the whole country. Furthermore, the construction of the ecological security pattern is restricted by the
ecological vulnerability assessment in order to explore the ecological vulnerability pattern of spatial
distribution and the trend of future vulnerability development in Liaoning Province and guide how
to formulate ecological protection policies scientifically. Based on the sensitivity–resilience–pressure
(SRP) conceptual model which is combined with natural and socio-economic factors, the ecological
vulnerability evaluation index system of Liaoning Province is established in this paper. This paper
also evaluates the ecological vulnerability of Liaoning Province from 2010 to 2020 and analyzes the
driving factors by using a geographic detector and the CA-Markov model. Moreover, the study
forecasts the growing tendency of vulnerability in 2025. The results show that (1) the ecological
vulnerability of Liaoning Province is mainly light and has medium vulnerability, which gradually
decreases from northwest to southeast; (2) the spatial heterogeneity of the ecological vulnerability
index (EVI) is very significant in the southeast and northwest region but not significant in the middle;
(3) from the past decade to the next five years, the ecological vulnerability of Liaoning Province has
been improving, and the overall distribution pattern of ecological vulnerability is relatively stable;
(4) the analysis of driving factors indicates that the impact of natural environmental factors such
as land-use type and habitat quality on EVI is more significant than socio-economic factors such
as population density. The research results implicate that it is necessary to formulate an ecological
protection and restoration plan in Liaoning Province to prevent further ecological degradation in
high-value areas of northwest Liaoning, and to balance the relationship between human development
and ecological protection and restoration in the metropolitan district.

Keywords: ecological vulnerability; spatiotemporal changes; influence indicators; ecological
vulnerability prediction

1. Introduction

On 27 February 2022, the Intergovernmental Panel on Climate Change (IPCC) released
the sixth assessment report “Climate Change 2022 Impacts, Adaptation and Vulnerability” [1],
which mentioned that approximately 3.3 to 3.6 billion people around the world live in
an ecosystem which is extremely vulnerable to climate change and the vulnerability of
ecosystems will be strongly affected by human development. The predicted climate change
and non-climate factors will lead to the loss and degradation of most forests, coral reefs
and low-lying coastal wetlands in the world, and unsustainable agricultural expansion will
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also increase ecological and human vulnerability. Ecological vulnerability has become an
important problem that restricts human and ecological development. In recent years, China
has regarded the construction of an ecological civilization as a vital part of its development.
A healthy ecological environment is not only an important condition for the sustainable
development of the economy and society, but also an essential foundation for the survival
and progress of a nation. However, China has the most vulnerable ecosystem in the
world, in which the vulnerable ecological land area accounts for 65% of the total land
area [2]. Based on the present situation in which the vulnerable ecological area is large,
China has put forward the development goal of accelerating the reform of the ecological
civilization system and building a “beautiful China”. In May 2019, the “Several Opinions
on Establishing a Territorial Spatial Planning System and Supervising its Implementation”
issued by the State Council of China clearly put forward the delineation of “Three Zones
and Three Lines” [3], i.e., urban, agricultural and ecological spaces correspond to the red
line of permanent basic farmland protection, urban development boundaries and ecological
protections. Besides, determining the delineation of the ecological protection red line in the
fragile ecological environment area has significant meaning for maintaining the ecological
integrity and the sustainability of the ecological service function, solving the degradation
of the ecological environment and dealing with other ecological problems [4].

“Ecosystem” is a general term that covers all organisms and their nonliving envi-
ronment in a specific space to delineate a complex open system [5]. Adger believes that
vulnerability is a vulnerable state caused by the pressure of social and environmental
changes and the lack of adaptability to respond to those changes [6]. If the ecological envi-
ronment is in a vulnerable state, human sustainable development and economic growth
will be negatively affected as an inevitable consequence; at the same time, ecological se-
curity will be threatened [7]. The essence of ecological security has two aspects—one is
ecological risk and the other is ecological vulnerability. Ecological vulnerability is the core
of ecological security. Through the analysis of vulnerability, we can know the factors that
threaten ecological security and their mechanism of action. Human beings can actively and
effectively safeguard ecological security by taking corresponding measures based on the
research results. The research into ecological vulnerability can provide a scientific basis
for the restoration of the ecological environment and the promotion of ecological progress,
as well as the premise of regional sustainable development plans [8]. The reason is that
vulnerability evaluation results are the direct embodiment of ecological vulnerability in
the study area. According to the results of the regional ecological vulnerability evaluation,
spatial management policies will be specified more effectively, which can guide how to
utilize urban resources sustainably and draw up sustainable development patterns [9].

The research on ecological vulnerability in western countries started earlier. In 1905,
the American ecologist Clements introduced the concept of an ecological transition zone
into the field of ecology [10], which was regarded as the beginning of ecological vulner-
ability research [11]. In the 1980s and 1990s, some scholars introduced the concept of
vulnerability into the study of global environmental change [12], and more focused on
linking vulnerability with climate change [13]. With the passage of time, the focus of vul-
nerability research gradually shifted from the climate to ecology, and some scholars began
to explore the driving factors and mechanisms of the vulnerability of different ecosystems.
Compared with western countries, relevant research on ecological vulnerability is being
conducted comparatively late. At the end of the 1980s, Niu et al. [14] carried out research
from the perspective of ecological ecotones. In terms of time, it was the beginning of China’s
research into ecological vulnerability. From the 1980s to the 1990s, research into ecological
vulnerability was primarily executed from the perspective of the impact of climate change
and natural factors on the ecosystem. In 1993, Su Weici et al. [15] selected 15 indicators
from six aspects to evaluate the ecological vulnerability of the Wujiang River Basin in
Guizhou. It was an earlier piece of research which evaluated ecological vulnerability from
the perspective of human activities and natural factors by Chinese specialists. Since the
new century, domestic scholars have always regarded natural and social factors as an
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important part of evaluating ecological vulnerability, and have carried out a lot of research
on mountainous areas [16], river deltas [17], urban ecosystems [18], forest belts [19] and
other research areas.

Ecological vulnerability is disturbed by natural and human factors in many ways, with
many types and rapid changes, which is an important obstacle to the sustainable utilization
of land resources and the ecological environment in China since the new century. In recent
years, the state has strictly implemented the strategy of ecological priority development,
and introduced a series of control measures such as the red line of cultivated land protection,
the red line of ecological protection, and the boundary of urban development, with the
aim of ensuring the ecologically sustainable utilization of resources and the sustainable
development of the social economy. Liaoning Province is one of the 13 major grain-
producing areas in China. It is a crucial agricultural area and commodity grain base. It is
also the core channel of the Chinese “grain transportation from North to South” strategy. On
the macro scale, ecological security patterns mainly refer to the form, proportion and spatial
allocation of ecosystems and land use types on the scales of landscape and region. Among
them, there are some key potential patterns composed of the positional relationships of
points, lines and areas, which are of great significance for maintaining and controlling
some ecological processes, protecting the integrity of ecosystem structure and functions,
and maintaining ecosystem services. On the national scale, Liaoning Province is a point
in the national ecological security pattern, and its ecological security pattern composed
of different ecological regions and different land types also determines the ecological
security pattern in Northeast China. As the northernmost region in China, the ecological
security pattern within the region will also affect the national ecological security pattern.
Hence, that Liaoning Province has a high nationwide ecological status is self-evident.
Understanding and mastering the spatial distribution pattern of ecological vulnerability
in Liaoning Province and the future development trend of ecological vulnerability with
time under the current policy conditions is conducive to better formulating ecological
environmental protection and restoration measures and more scientifically delineating the
ecological protection red line, whereas there is no correlational study on the ecological
vulnerability evaluation of Liaoning Province in existing research. At present, there is an
evaluation of the ecological sensitivity of Liaoning Province [20], but the evaluation results
can only reflect the problems existing at the sensitivity level. As the government has paid
more and more attention to the field of ecological protection, the sensitivity evaluation
results cannot meet the needs of Territorial Spatial Planning for ecological protection. In
summary, this paper selects Liaoning Province as the research area to carry out ecological
vulnerability assessment research.

The purpose of this study is to explore the temporal and spatial changes, spatial distri-
bution and the impact on natural and socio-economic factors of ecological vulnerability
in Liaoning Province. We also predict future vulnerability distribution patterns. Specifi-
cally, two hypotheses are tested by means of this research: (1) the spatial distribution of
ecological vulnerability in Liaoning Province has an obvious spatial pattern characteristic;
(2) under the existing policy conditions, the ecological vulnerability of Liaoning Province
will improve with the passage of time.

2. Literature Review
2.1. The Concept of Ecological Vulnerability

The concept of vulnerability first appeared in the study of natural disasters in the
1960s and began to be applied in the fields of ecology, geography and sustainability in
the 1970s [21]. As the degradation of the ecological environment has gradually attracted
people’s concern, Timmerman first proposed that the vulnerability performance reflects the
extent to which a system may react negatively at a catastrophic time [22]. Watts et al. [23]
thought that the aim of reflecting on vulnerability is to enhance the ability to deal with
catastrophic events through various measures, strengthen the restorative potential and
damage control, and minimize the catastrophic consequences caused by adverse events.
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Chambers identified three basic indicators that define vulnerability [24]: (1) exposure to
stress and crisis; (2) the risk of an inadequate ability to cope with crisis and pressure; (3) the
risk of severe results of crisis and stress and the consequent risk of slow or limited resilience.
W. Niel Adger [6] presented vulnerability as referring to the state of being vulnerable
owing to exposure to pressure related to environmental and social changes and a lack of
adaptability. Most of the research mentioned above mentions several correlative keywords
of vulnerability—namely pressure, exposure and adaptation. Following Timmernan [22],
Dowing [25] and other scholars and the fourth report of IPCC [26], respectively, defined the
connotation of vulnerability from different perspectives. By the 21st century, the concept of
vulnerability has been widely applied to other fields, including ecology [27] and sustainable
development [28].

The concept of ecological vulnerability was first put forward by Clements [5], an
American ecologist, in his study of an “Ecological Ecotone”. Henceforth, the research on
ecological vulnerability gradually became a topic of great interest. Williams [29] believes
that ecosystem vulnerability is an estimation of the ability of a specific ecosystem to
withstand pressures and risks from various aspects in both time and space dimensions
and is a potential response to pressures. The concept of ecological fragile zones was first
confirmed at the seventh conference held by the Scientific Committee on Problems of the
Environment (SCOPE) in Budapest, Hungary, in 1988. Since then, studies on ecological
fragile zones have become increasingly active. However, the unified definition of ecological
vulnerability has not been confirmed until now; yet, the definition of ecological vulnerability
by the IPCC has been widely accepted and adopted by each research field, which can be
summarized as the sensitivity and resilience of the ecosystem to the pressure of human
disturbance, climate change and other external disturbance factors.

2.2. The Assessment of Ecological Vulnerability

Until now, the evaluation of ecological vulnerability has mainly depended on the
establishment of models. Due to different research areas, it is difficult to establish a
unification ecological vulnerability evaluation model for the research areas with disparate
terrain, climate conditions or other factors. Currently, common models include the pressure–
state–response model (PSR) [30] and the exposure–sensitive–adaptive model (ESA) [31].
These models were initially employed for land quality evaluation. After the evaluation
system was mature, some scholars introduced it into the field of land ecological security
assessment [32], and then applied it to ecological vulnerability assessment. On the basis
of the PSR model, some scholars have expanded a series of new models by adding more
factors, such as the driving force–pressure–state–impact–response model (DPSIR) [33], the
pressure–support–state–response model (PSSR) [17] and the system dynamic model (SD) [8].
The sensitivity–resilience–pressure model (SRP) used in this paper is comprehensively
proposed on the ground of the PSR model and the ESA model. With the deepening
of research, the ecological vulnerability assessment model has been advancing towards
diversification and multi-factor synthesis, and more brand-new models are being developed
and utilized.

Over the years, many scholars have evaluated and analyzed the ecological vulnerabil-
ity of different research areas. Some researchers have explored the ecological vulnerability
of arid and semi-arid areas in order to discover the major driving factors that generate eco-
logical vulnerability in a particular region. For instance, Xuejiao LV et al. built an evaluation
model that was based on the pressure–state–response model and selected eight indicators
such as slope, soil erosion factor and vegetation coverage in the arid coal mining areas of
Western China [34]. Rong Li et al. chose the Ningxia Hui Autonomous Region on the Loess
Plateau as a case to investigate the spatial heterogeneity of the ecological vulnerability
index from 1990 to 2015 [35]. Some researchers also selected the forest belt as the research
area to study the spatial distribution of ecological vulnerability in Daxinganling [36], as
well as the temporal and spatial changes and driving factors of ecological vulnerability in
the northeast forest belt [19]. Others contraposed extreme terrain areas such as the Qinghai
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Tibet Plateau [5,37] to explore the spatial distribution pattern, driving factors and spatial
heterogeneity of ecological vulnerability. Karst landform areas [38], tropical ecosystems [39]
and water environment systems [40] were bought into ecological vulnerability as well.
Nevertheless, there are few studies on ecological vulnerability evaluation in provincial
administrative regions.

Different models provide the necessary basis for ecological vulnerability assessment.
More evaluation approaches and technical means need to be combined with those mod-
els’ foundations, such as principal component analysis [5], the analytic hierarchy pro-
cess [41], the fuzzy evaluation method [42], the entropy weight method [43], the grey
clustering method [44] and so on. With the increasing maturity of information technology,
3S technology [45] is increasingly utilized to carry out an ecological vulnerability assess-
ment to make the evaluation results more accurate. For example, Taohong Zou et al. [46]
analyzed and evaluated the ecological vulnerability of Jilin Province by using GIS tech-
nology and investigated its influencing factors. The spatial principal component analysis
based on the combination of traditional principal component analysis and spatial feature
extraction has additional advantages in ecological vulnerability assessment than traditional
ways [36]. Spatial principal component analysis not only adds spatial constraints to the
traditional principal component analysis but also considers the spatial characteristics of
the data.

On account of the discrepancies between the geographical location, research purpose
and focus of the study area, each scholar has a distinctive research system, which means
that a unified index system does not exist. Referring to the research results in recent years,
this study adopts the sensitivity resilience pressure model (SRP) to construct the evaluation
index system and adopts the spatial principal component analysis method to determine
the index weight. The model is based on the connotation of ecological vulnerability and is
widely used in the Qinghai Tibet Plateau [37], Zhangjiakou [47] and Jakarta [48]. In this
index system, sensitivity reveals the anti-interference ability of the ecosystem to various
adverse factors. Resilience refers to the ability of the ecosystem to recover to its original
state after having been damaged by internal and external factors, which is primarily
characterized by vegetation factors. While stress refers to diversified pressures on the
ecosystem produced by mankind, those are usually manifested as population density
pressure and economic activity pressure. Ecosystem vulnerability is the consequence of the
joint action of natural factors and human activities. The driving factors affecting ecological
vulnerability chiefly contain natural environmental factors and socio-economic factors.
Therefore, this paper selects indicators from these two aspects.

3. Methods and Data Sources
3.1. Study Area

Liaoning Province is located in the south of Northeast China, between 118◦ and 125◦ E
and 38◦ and 43◦ N, and has jurisdiction over 14 prefecture-level cities with a total area
of 148,000 square kilometers. The landform is generally described as “Sixth percent of
Mountains, Ten percent of aquatorium and Thirty percent of farmlands”. Mountainous and
hilly areas are mainly distributed on both sides of eastern and western Liaoning, where the
average altitude is between 500 and 800 m above sea level. The central area is the Liao River
Plain with an average altitude of 200 m (Figure 1). Liaoning Province is located on the east
coast of the Eurasian continent and is a temperate monsoon climate. The rainy season and
hot season coincide in the same season but the precipitation is uneven in the study area—it
is higher in the east of Liaoning province than in the west. The annual sunshine hours are
2100 to 2600 h. The annual mean temperature is 7 to 11 ◦C; the maximum temperature
can reach 30 ◦C and the minimum temperature can reach minus 30 ◦C. Precipitation in
Liaoning Province is higher than in all the other provinces located in Northeast China. The
annual precipitation in the eastern mountainous and hilly area is more than 1100 mm. Since
the western mountainous and hilly area is close to the Inner Mongolia Plateau, the annual
precipitation is about 400 mm and the average annual precipitation in the central plain area
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is about 60 mm. Due to the influence of human activities and the natural environment, the
chief ecological problems confronted by Liaoning Province are land desertification, soil
erosion, mountain desertification, etc.
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3.2. Data Sources

In order to explore the ecological vulnerability pattern of Liaoning Province in recent
ten years, considering the availability of data and referring to previous related studies, this
paper selected 2010–2020 as the research period, and 2010, 2015 and 2020 were selected
as the time nodes to collect and analyze the data of these three periods and reflect the
ecological vulnerability pattern of Liaoning Province in the last ten years. The data used in
this study (Table 1) cover the socio-economic, remote sensing, topographic, meteorological
and land use data in 2010, 2015 and 2020. The normalized difference vegetation index
(NDVI), soil erosion and night light index are derived from the Resource and Environmental
Science Data Center (RESDC) of the Chinese Academy of Sciences. The land use data come
from the Earth big data science project (CASEarth). The elevation and slope data are from
the geospatial data cloud (GSclould) and are 90 m resolution digital elevation product data.
The population density data are obtained from WorldPoP. The annual average temperature,
annual precipitation, annual sunshine hours and gross national product (GDP) data are
obtained from the statistical yearbook of Liaoning Province and in ArcGIS10.2, with a
resolution of 200 m. The habitat quality data are calculated based on land use data by
Invest software with a resolution of 200 m.

The original data are projected into the same coordinate system (WGS_1984_UTM_Zone
_51N) through ArcGIS10.2 and are unified into the same spatial boundary that equals the
boundary of the research area by cutting. The above process of data preprocessing was
carried out in ArcGIS 10.2. Finally, the data are resampled to the same spatial resolution of
200 m × 200 m by means of bilinear interpolation and nearest neighbor.
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Table 1. Data and sources of ecosystem vulnerability assessment for Liaoning Province.

Type Source Spatial Resolution

Altitude GSClould [49] 90 M
Slope GSClould 90 M

Annual average temperature Liaoning statistical yearbook 200 M
Annual average precipitation Liaoning statistical yearbook 200 M

Annual average sunshine hours Liaoning statistical yearbook 200 M
Land use CASEarth [50] 30 M

NDVI RESDC [51] 1 KM
Soil erosion degree RESDC 1 KM

Habitat quality InVEST 200 M
GDP Liaoning statistical yearbook 200 M

Night light index RESDC 1 KM
Population density WorldPoP [52] 1 KM

3.3. Technology Route

This research is conducted according to the following steps (Figure 2).
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Firstly, the indicators used to reflect the content of the hierarchy are determined by
three different levels. After the indicators are decided, the weight of each indicator is
dependent on spatial principal component analysis, whereafter the vulnerability index map
is drawn, the global and local autocorrelation processing are managed, and geographic
detector and CA-Markov prediction are carried out, respectively, to reflect the temporal
and spatial distribution law of ecosystem vulnerability in the study area. The spatial hetero-
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geneity law of ecological vulnerability distribution in the study area is analyzed through a
Moran index and cluster diagram. The impact degrees of index factors on vulnerability
are determined through factor detectors and interaction detectors in a geographic detector,
and ascertain which is more significant between interaction and a single factor. Ultimately,
CA-Markov prediction is accomplished with the IDRISI software, and the prospective eco-
logical vulnerability is predicted through existing data, which provide a reference database
for future ecological protection.

3.4. Establishment of Ecological Vulnerability Index System

In this study, based on the sensitivity–resilience–pressure (SPR) model, 12 indicators
of different types were selected for sensitivity, resilience and pressure (Table 2). In previous
studies, sensitivity was considered to be the result of the joint action of topographic factors
and climatic conditions, and there were also studies [47] in which vegetation conditions
were added to sensitivity. However, at the sensitivity level of this study, terrain and climate
indicators were selected to reflect the ecological sensitivity of Liaoning Province, including
elevation and slope. In terms of climate factors, the average annual temperature and
average annual precipitation were selected. Besides, the average annual sunshine hours
were also considered to reflect the hydrothermal conditions of the ecosystem. Altitude
and slope can clearly show the topographic factors [53] of the study area. In terms of
resilience, this study selects land-use types, soil erosion, vegetation coverage and habitat
quality, which can represent ecology. NDVI can monitor the growth of vegetation and
accurately reflect the coverage rate of surface vegetation [54]. The degree of soil erosion
is also an index that can reflect the status of vegetation. At the pressure level, population
density, GDP and night light index are selected to reflect the interference intensity of human
activities on the ecosystem. When the interference intensity is too large, the ecological
environment will deteriorate.

Table 2. Ecological vulnerability assessment indicators for Liaoning Province.

Factor Category Indicator Type

Sensitivity

Altitude(X1) +
Slope(X2) +

Annual average temperature(X3) −
Annual average precipitation(X4) −

Annual average sunshine hours(X5) −

Resilience

Land use type(X6) +
NDVI(X7) −

Soil erosion degree(X8) +
Habitat quality(X9) −

Pressure
GDP(X10) +

Night light index(X11) +
Population density(X12) +

Note: “+” means positive action; the greater the value, the lower the quality of ecological environment, the greater
the probability of a vulnerability ecological environment; “−” means reverse action.

3.5. Mapping Ecosystem Vulnerability
3.5.1. Data Standardization

Because there are some differences in the order of magnitude of each index, this
paper uses the range standardization method to process each index before analysis and
calculation. There are two relationships between ecological vulnerability and indicators [55].
One is that the lower the value is, the lower the ecological vulnerability, showing a positive
correlation such as elevation, slope, land-use type, soil erosion degree and socio-economic
data are positive indicators; the other is that the lower the value, the higher the ecological



Land 2022, 11, 1025 9 of 25

vulnerability. For example, the annual average temperature and annual precipitation are
negative indicators. The standardization method of positive indicators is as follows [43]:

Ai =
ai − amin

amax − amin
(1)

Negative indicators are handled as follows:

Ai =
amax − ai

amax − amin
(2)

where “Ai” is the standardized value of index i; “ai” is the initial value of index i; “amin” is
the minimum value of index i ; “amax” is the maximum value of index i.

3.5.2. Spatial Principal Component Analysis

By reducing dimensions, spatial principal component analysis replaces multiple initial
indicators with fewer comprehensive indicators [56] so that the information reflected by
more variables can be retained to the greatest extent and the original data attributes can be
transformed into a new multivariate attribute set rotated relative to the original space [36].
In this study, the principal component with a cumulative contribution rate meeting the
standard is used to replace the original indicators, and then the principal component
indicators are used to determine the factors participating in the evaluation. On this basis,
the comprehensive index of the principal component is calculated as follows:

PCi = a1iX1 + a2iX2 + a3iX3 + · · ·+ aniXn (3)

where “PCi” is the i-th principal component; “a1i, a2i · · · ani” are the feature vectors corre-
sponding to the respective index factors of the i-th principal component; “X1, X2 · · ·Xn”
are the respective index factors.

The ecological vulnerability index (EVI) in this study is calculated by the grid calculator
function in ArcGIS based on principal component analysis and using the following equation:

EVI = b1PC1 + b2PC3 + b3PC3 · · ·+ bnPCn (4)

The SPCA results for the years 2010, 2015 and 2020 are shown in Table 3.

Table 3. Results of the SPCA (spatial principal components analysis) of ecological vulnerability in
Liaoning Province.

PC
Eigenvalues Contribution Ratio of Eigenvalues/% Cumulative Contribution of Eigenvalues/%

2010 2015 2020 2010 2015 2020 2010 2015 2020

1 3.644 3.977 3.309 30.370 33.138 27.572 30.370 33.138 27.572
2 2.172 1.733 2.085 18.098 14.443 17.376 48.468 47.581 44.948
3 1.465 1.377 1.520 12.212 11.471 12.664 60.680 59.052 57.612
4 1.357 1.263 1.041 11.309 10.527 8.676 71.989 69.579 66.288

3.5.3. EVI Classification

In this study, the natural breakage classification (NBC) is used to classify EVI to distin-
guish different levels of ecological vulnerability [55]. The natural breakage classification
can maximize the differences between classes. There are some natural turning points or
characteristic points in any statistical series. These points can be used to divide the research
object into several levels with similar properties. The natural breakpoint itself is a good
boundary for classification. In this study, the EVI in 2010 is classified by natural breakage
classification. As the classification standard (Table 4) of EVI in this paper, EVI is divided
into five categories: slightly vulnerable area, lightly vulnerable area, medium vulnerable
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area, heave vulnerable area and extremely vulnerable area. After classification, ArcGIS
software is used to visualize the spatial distribution of EVI.

Table 4. Classification of the ecological vulnerability index (EVI).

EVI Slight Light Medium Heavy Extreme

Grading standard <0.25 0.25–0.29 0.29–0.32 0.32–0.37 >0.37

3.6. Spatial Autocorrelation Analysis

Spatial autocorrelation refers to the potential interdependence between the observed
data of variables in the same distribution area [57]. In this study, the spatial autocorrelation
module in Geoda software is used to explore the potential spatial correlation between
variables. In the analysis results, the positive correlation shows that the attributes of
adjacent spaces within the boundary of the research area have the same evolution trend
and have certain spatial aggregation characteristics; the negative correlation indicates that
the spatial unit attributes adjacent to the boundary in the study area are different, and there
is no spatial agglomeration.

Global spatial autocorrelation is mainly used to describe the spatial distribution
and agglomeration characteristics of some attributes in the whole study area. Spatial
autocorrelation is usually measured by the global Moran’s I index proposed by Moran. At
present, Moran’s I index is widely used in spatial autocorrelation research. The calculation
formula is [58]:

Moran′sI =
n ∑n

i=1 ∑n
j=1 Wij(xi − x)

(
xj − x

)
∑n

i=1 ∑n
j=1 Wij ∑n

i=1(xi − x)2 (5)

where “Xi” represents the observed value of the i-th grid; “i” is the number of grids; “Wij”
is binary adjacency space weight matrix. The range of Moran’s I index is (−1,1). When the
index value is greater than 0, it indicates that the attribute presents a spatial aggregation
state, and when it is less than 0 it indicates that the attribute is in a discrete state in spatial
distribution. When it is approaching 0, it indicates that the attribute is randomly distributed
in space [59].

Local indicators of spatial association (LISA) are mainly used to reflect the correlation
between the index in the local area and the adjacent area. The local Moran’s I index is
often used to analyze the local spatial difference characteristics of the study area [57]. The
calculation formula is as follows:

Moran′sI =
(xi − x)∑m

j=1 Wij
(
xj − x

)
1
n ∑n

i=1(xi − x)2 (6)

where “n” is the number of analysis units; “Wij” is the element of spatial weight matrix;
“Xi” and “Xj” are spatial units after row standardization.

Using Geoda software to calculate the data, the local spatial autocorrelation analysis
results are divided into five categories: “H-H” is high and high agglomeration, “H-L” is
high and low agglomeration, “L-H” is low and high agglomeration, “L-L” is low and low
agglomeration and “N-N” is no significant type.

3.7. Driving Force Analysis

Geo detector is a research model used to detect the spatial differentiation law of
regional geographical elements and explain the driving force affecting the distribution
of geographical elements. It is widely used in the research fields of natural and social
sciences [60]. The model consists of four modules: the factor detector is used to test the
differentiation degree of dependent variables and independent variables in the research
area. The detection result is measured by q-statistics. The larger the q-statistics, the
deeper the influence of independent variables on the distribution of dependent variables
in the research area. The interaction detector is used to identify whether the interaction
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between different factors enhances the interpretation of dependent variables. The risk
detector is used to identify whether there is a significant difference in the attribute mean
between any two sub-regions in the study area, and is tested by T statistics. The ecological
detector is used to compare whether there is a significant difference between the effects
of two independent variables on the spatial distribution of dependent variables, which is
measured by F statistics.

In this study, factor detectors and interaction detectors are used to analyze the driving
factors of ecological vulnerability in Liaoning Province. The purpose is to explore the main
driving mechanism of ecological vulnerability in Liaoning Province, compare it with the
spatial distribution pattern of EVI, and use the q-statistical value to measure the impact of
indicators on EVI. The calculation equation is as follows [5]:

q = 1− ∑L
h=1 Nhδ2

h
Nδ2 (7)

where “q” is the explanatory power of the influencing factors to the vulnerability of the
ecosystem, “N” is the sample size, “L” is the classification number of the index fac-
tors and “Nh” and “δ2

h” represent the variance of h-layer sample size and ecosystem
vulnerability, respectively.

3.8. Prediction Analysis

In this study, the CA-Markov model is used for the simulation, prediction and analysis
of ecological vulnerability. The Markov model was first proposed by Andrey Markov, a
mathematician of the former Soviet Union. It is a process theoretical model based on the
Markov random process system so as to achieve the purpose of prediction and random
control. The cellular automata (CA) model is a lattice dynamics model with discrete
temporal and spatial states [61]. It focuses on the interaction of cells with different temporal
and spatial characteristics. It has strong spatial computing and simulation ability and
is especially suitable for the dynamic simulation and spatial display of self-organizing
functional systems. The formula is expressed as follows [62]:

St+1 = f (St, N) (8)

where S is a set of cellular states; N is the cellular field; t and t + 1 are different moments;
f is the cellular transformation rule of local space.

The Markov model is a stochastic model in the time domain, which is transformed to
the state at t + 1 time according to the state of the event at t time, and the state at t + 1 time
is only related to the state at t time; its essence is to predict the probability of an event [63].
The transition matrix is a digital reflection of the possibility of events transforming into the
t + 1 state at t time, and it is an important quantitative basis for simulation and prediction
results under the Markov model. The formula is expressed as follows [63]:

St+1 = Pij × St (9)

where Pij is a state transition matrix, and its formula is expressed as follows [64]:

Pij =


P11 P12 · · · P1n
P21 P22 · · · P2n
· · · · · · · · · · · ·
Pn1 Pn2 · · · Pnn

 (10)

where 0 ≤ Pij < 1, (i,j = 1,2, . . . , n); n is the number of land-use types; Pij represents the
probability that the initial type i is converted to type j; i is the row of the matrix; j is the
column of the matrix. Each row of the matrix represents the probability of land use type i
transforming to each land-use type.
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The CA-Markov model makes use of the respective advantages of the CA model and
the Markov model to combine the two models and the principle of multi-criteria and multi-
objective land allocation to predict land use; that is, the simulation of land use prediction
is realized by adding the spatial distribution elements with continuous properties to the
analysis process of the Markov chain [65]. The working principle is to take the distribution
pattern of the predicted initial year as the initial state and redistribute different types of
land based on the transfer area of the previous period and the suitability Atlas of the
initial year until the predicted area of the Markov chain is reached. This study uses the
CA-Markov module in IDRISI software and ArcGIS software to complete the process of
CA-Markov prediction.

4. Results
4.1. Temporal and Spatial Distribution Characteristics of Ecological Vulnerability

The results of this study show that the ecological vulnerability in most areas of Liaon-
ing Province is mainly light vulnerable and medium vulnerable (Figure 3). In 2010, 2015
and 2020, the proportion of light vulnerable areas and medium vulnerable areas reached
56.98, 58.5 and 61.04%, respectively, with a stable upward trend. The area proportion of
extremely vulnerable areas has decreased by 0.41% in the decade 2010–2020, the area of
slightly vulnerable areas has increased by 1.28% in the decade, and the area of heavily
vulnerable areas has changed most significantly, reducing by 4.92%.
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By calculating the area transfer between 2010, 2015 and 2020, it can be found that the
area conversion of different ecologically vulnerable areas mainly occurs between adjacent
levels (Figure 4). For example, the lightly vulnerable areas in 2015 mainly come from the
slightly vulnerable areas, lightly vulnerable areas and medium vulnerable areas in 2010;
most of the extremely vulnerable areas in 2020 come from the original extremely vulnerable
areas and heavily vulnerable areas. It also shows that there is usually no mutation process
in the transformation of ecological vulnerability. The types of scale transformation mainly
include the transformation of light and medium vulnerable areas, the transformation
of medium and heavily vulnerable areas, and the transformation between heavily and
extremely vulnerable areas.
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According to the spatial distribution pattern of the ecological vulnerability index, the
area with better ecological vulnerability in Liaoning Province accounts for a relatively large
proportion (Figure 5). In terms of overall hierarchical distribution, the areas with high
ecological vulnerability are mainly distributed in the windy sand area in the northwest of
Liaoning, the central urban area of the city and the Liaodong Peninsula. The areas with
low ecological vulnerability are concentrated in the southern plain area and the eastern
mountainous water source area, which generally shows that the ecological vulnerability in
the northwest is high and the vulnerability level in the south is low. From the perspective
of time scale, the ecological vulnerability level of the whole northwest of Liaoning Province
was extremely vulnerable from 2010 to 2020, and the area of extremely vulnerable areas
shows a decreasing trend. The ecological vulnerability level of large and medium-sized
urban areas has been extremely vulnerable over the ten years due to the significant impact
of human activities. The areas with low ecological vulnerability in the south and east of
Liaoning have maintained a relatively good level of ecological vulnerability in the past
ten years, and the area of overall slightly vulnerable and lightly vulnerable areas has an
increasing trend with the passage of time.

In order to intuitively feel the change of vulnerability level of each area between
different years, this study visualized the change of vulnerability level from 2010 to 2020
(Figure 6). In the decade from 2010 to 2020, 51.2% of the study areas have changed
their ecological vulnerability level, with a total of 20 transformation types, of which 0.1%
changed from medium vulnerable areas to extremely vulnerable areas, mainly distributed
in the northwest and central urban areas of Liaoning Province. In total, 2.4% of the area
has changed from a moderately vulnerable area to a slightly vulnerable area, mainly
distributed in the southern plain area and the eastern low mountain and hilly area. The
overall ecological vulnerability is changing in a good direction, and the area changing to
mildly vulnerable areas is larger than that to severe and extremely vulnerable areas.
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4.2. Spatial Heterogeneity of Ecosystem Vulnerability

The Moran indexes in the three years 2010, 2015 and 2020 are 0.675, 0.731 and 0.625,
respectively, and all of them have passed the significance test (Figure 7). In terms of the
overall trend, the ecological vulnerability in the three years shows the characteristics of
positive spatial autocorrelation and high aggregation. The overall cluster trend has an
upward trend from 2010 to 2015 and a certain decline from 2015 to 2020.
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Figure 7. Moran scatterplot of EVI on Liaoning Province in (a) 2010, (b) 2015, (c) 2020.

By calculating the local spatial autocorrelation index from 2010 to 2020, we can clearly
show the spatial and temporal distribution of the spatial clustering characteristics of
ecological vulnerability from 2010 to 2020 and the spatial variation difference on the time
scale (Figure 8). The spatial clustering characteristics and spatial distribution pattern
of ecological vulnerability in 2010, 2015, 2020 are generally similar, and the main spatial
clustering characteristics are high-high and low-low. High-high areas are mainly distributed
in Northwest Liaoning and the Liaodong Peninsula and are mainly severe and extremely
vulnerable. The central region shows no significant spatial aggregation distribution, with
mainly moderate vulnerable areas, while the West Liaoning Corridor and low mountains
and hills in East Liaoning are mainly low-low areas, mainly consisting of mild and micro
vulnerable areas. Compared with the high-high and low-low cluster types, the distribution
range of low-high and high-low cluster types was lower, and most of these regions are
divided into the transition areas of low-low cluster type distribution areas and high-high
cluster type distribution areas.
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Figure 8. Local spatial autocorrelation diagram in Liaoning Province in (a) 2010, (b) 2015 and (c) 2020.

4.3. Influencing Factors and Interaction of Ecological Vulnerability

Geographic detectors can not only test the spatial differentiation of a single variable,
but also test the coupling of spatial distribution for two variables to explore the potential
causal relationship between the two variables. The potential determinants of ecological
vulnerability in this study, their importance and their interaction forms can be determined
through geographic detectors.

Using the factor detector in the geographical detector to calculate the ecological
vulnerability indexes in 2010, 2015 and 2020, we can obtain the q-value statistical data
of the explanatory power of each impact factor on ecological vulnerability in each year
(Table 5). In 2010, the q-statistic value of natural factors ranged from 0.069 to 0.335, with
an average value of 0.178, and the q-statistic value of socio-economic factors ranged from
0.079 to 0.148, with an average value of 0.112. In 2015, the q-statistic value of natural factors
ranged from 0.031 to 0.448, with an average value of 0.177; that of socio-economic factors
ranged from 0.029 to 0.101, with an average value of 0.064; that of natural factors ranged
from 0.050 to 0.230, with an average value of 0.118; that of socio-economic factors ranged
from 0.068 to 0.195, with an average value of 0.121. All factors were statistically significant.

Table 5. Results for different factors of EVI.

Factors 2010 2015 2020

Altitude 0.111 0.072 0.051
Slope 0.152 0.201 0.055

Annual average temperature 0.177 0.079 0.140
Annual average precipitation 0.069 0.222 0.132

Annual average sunshine hours 0.284 0.032 0.076
Land use type 0.336 0.449 0.230

NDVI 0.108 0.117 0.120
Soil erosion degree 0.076 0.065 0.088

Habitat quality 0.289 0.359 0.175
GDP 0.149 0.029 0.195

Night light index 0.110 0.102 0.102
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According to the q-statistics in 2010, 2015 and 2020, on the whole, the influence of
natural factors on ecological vulnerability are stronger than that socio-economic factors.
In the statistical data of the three periods, the highest q-statistical value was the land use
type in 2015, which reached 0.449, and the highest q-statistical value of habitat quality
also reached 0.359 in 2015, and the q-statistical values of land use type and habitat quality
ranked the top three in the corresponding years. However, the q-statistical value of terrain
factors in the statistics of the third period is low, and the highest q-statistical value of
elevation and slope in the data of the three periods is only 0.201, and the lowest is only
0.051. In terms of social and economic factors, the highest q-statistics of the night light index
and GDP reached 0.110 and 0.195, respectively, both of which were significantly higher
than the q-statistics of population density. The highest q-statistics of population density in
the third period was only 0.079. The influence of social factors on ecological vulnerability
can be ranked in descending order according to GDP, night light index and population
density. These results show that land use type and habitat quality are the most important
determinants of the spatial distribution of ecological vulnerability, while the influence
of topographic factors is relatively weak. At the same time, ecological vulnerability is
more affected by natural environmental factors than by socio-economic factors. Generally
speaking, the selected natural and socio-economic factors can explain the spatial pattern
and change of the whole ecological vulnerability index.

The factor detector part of the geographic detector can explore the impact of a single
factor on ecological vulnerability, while the interactive detection module can judge the
impact of two factors on ecosystem vulnerability through calculation. In this part of the
study, the average EVI from 2010 to 2020 is selected as the dependent variable. The results
of the interaction detector show that the interaction between the two factors has a greater
impact on ecological vulnerability than that of a single factor (Figure 9), indicating that the
ecological vulnerability of Liaoning Province is more the result of the comprehensive action
of multiple factors. The interaction between annual average temperature and habitat quality
has the most significant impact on ecological vulnerability. The average temperature and
habitat quality are the main factors affecting ecological vulnerability in Liaoning Province.
The interaction of socio-economic factors is smaller than the q-statistical value of natural
factors, but the interaction between socio-economic factors and natural factors also has a
strong impact on ecological vulnerability.
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In the detection results of the interaction detector, there are two types of enhancement
effects, one is double factor enhancement and the other is nonlinear enhancement. In this
study, the interaction of the two factors has a double factor enhancement effect, and a small
part is a nonlinear enhancement effect (Figure 10). Among them, the enhancement effect of
the interaction between the two factors and other factors is a mostly nonlinear enhance-
ment. It shows that the combined effect of these two factors on ecological vulnerability is
more than the sum of their respective factors. The two-factor enhancement is common in
topographic factors, such as altitude and slope factors, indicating that the impact of their
interaction on ecological vulnerability is more significant than that of a single factor.
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4.4. Prediction and Analysis of Ecological Vulnerability

Using the CA-Markov module in IDRISI software, based on the ecological vulnera-
bility results in 2010, 2015 and 2020, taking 2010 as the starting year, we calculated the
ecological vulnerability level area transfer matrix from 2010 to 2015, predicted the ecological
vulnerability of Liaoning Province in 2020, compared it with the actual data, and calculated
the kappa coefficient of 0.62, indicating that the prediction results are highly consistent
with the actual situation. We took 2015 as the starting year, where based on the ecological
vulnerability area transfer matrix from 2015 to 2020 and the generated suitability Atlas of
various vulnerability levels, we assumed that the ecological vulnerability level transfer
trend from 2010 to 2020 is basically similar to that ten of years later, and a 5 × 5 mole
neighborhood is used as the filtering parameter of the CA-Markov model. The operation of
the model is an iterative cycle every year. Through 10 iterations, the spatial data set of eco-
logical vulnerability in Liaoning Province in 2025 is simulated, and the spatial distribution
prediction map is formed (Figure 11).

The prediction results show that the distribution pattern of ecological vulnerability
level in Liaoning Province in 2025 is consistent with that of the past decade. The statistics
show that the proportions of five levels of ecological vulnerability areas in 2025 are as
follows: slightly vulnerable areas are 14.6%, lightly vulnerable areas are 29.4%, medium
vulnerable areas are 30.9% and heavily vulnerable areas are 20.3%. While the area of
extremely vulnerable areas is only 7130 square kilometers, accounting for only 4.8% of
the total area, this level is far lower than the data of ten years ago. The area of heavily
vulnerable areas has decreased by about 8 percentage points and has shifted toward slightly
vulnerable areas and lightly vulnerable areas. It also shows that the ecological vulnerability
of Liaoning Province is gradually shifting in a better direction. The overall distribution
pattern is still extremely vulnerable areas, mainly distributed in economically developed
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central urban areas and wind-blown sand areas in Northwest Liaoning. The regions with
good ecological vulnerability are distributed in the central plain area and the eastern
hilly area.
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5. Discussion
5.1. Temporal and Spatial Distribution of Ecological Vulnerability

Based on the SRP model and the principal component analysis method, combined
with the collected remote sensing data, this study processes the selected indicators with
a spatial resolution of 200 m, calculates the ecological vulnerability index, and evaluates
the ecological vulnerability of Liaoning Province in 2010, 2015 and 2020. The results
show an obvious spatial distribution pattern. The overall distribution trend is that the
ecological vulnerability of the northwest region and central urban area with better economic
development is high. The eastern and western Liaoning Corridor regions and the southern
plain region have a low ecological vulnerability, and their spatial distribution characteristics
are in line with the current situation of the ecological environment in Liaoning Province.
Liaoning Province is mainly in a state of moderate ecological vulnerability, and the overall
vulnerability level is mainly light and medium. Previous studies mainly focus on some
areas of Liaoning Province, such as the health evaluation of coastal wetland ecosystems
in Liaoning Province [30], and there are also assessments of the ecological sensitivity of
Liaoning Province [20]. However, there is no similar assessment of ecological vulnerability
for the whole of Liaoning Province. Compared with previous studies, this study expands
the scope of the study area to the whole of Liaoning Province. Generally speaking, in the
evaluation results of ecological vulnerability in Liaoning Province, extremely vulnerable
ecological functional areas account for a small proportion of the whole of Liaoning Province.
Through the evaluation process and the final result, the first research hypothesis put
forward in this paper is that the ecological vulnerability of Liaoning Province has a certain
spatial distribution pattern, which has been verified.
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5.2. Future Prediction of Ecological Vulnerability

Using the CA-Markov model, based on remote sensing data and GIS spatial analysis
technology, taking 2015 as the starting year, this paper forecasts the spatial distribution of
ecological vulnerability in Liaoning Province in 2025, compares and analyzes the ecological
vulnerability in the 15 years from 2010 to 2025, and realizes the simulation analysis of the
temporal and spatial pattern of ecological vulnerability in Liaoning Province over the past
15 years. The overall distribution of cities in the northwest shows a small change in spatial
vulnerability, but the overall distribution of cities in the southeast shows a certain trend
of low vulnerability in the past 15 years. However, the overall distribution of cities in
the northwest shows a certain change in spatial vulnerability and high vulnerability over
time, the prediction results in 2025 show that the areas of extremely vulnerable areas and
severely vulnerable areas are decreasing, and the areas of moderate and micro vulnerable
areas are increasing or decreasing. However, due to the problem of the prediction method,
the division between layers in the prediction results is obvious from the figure, which
may be different from reality. Previously, CA-Markov prediction was mostly used in the
prediction of land use and cover change [65] and to simulate land-use patterns [63]. Few
studies combine CA-Markov prediction with ecological vulnerability assessment results.
Although there are no more prediction scenarios in the prediction in this study, the overall
prediction results have high reliability. According to the forecast results and the evolution
trend of ecological vulnerability pattern in Liaoning Province, the second hypothesis put
forward in this paper is that the ecological vulnerability of Liaoning Province has a trend of
developing in a good direction under the current policy conditions, which has been verified.
This also shows that our current ecological priority development strategy is correct, and
we should constantly improve the development concept and carry it out in the future
development process.

5.3. Policy Suggestions

Aiming at ecologically vulnerable areas with different degrees of vulnerability, eco-
logical restoration will be vigorously carried out in combination with comprehensive land
consolidation across the region. From the time and space distribution pattern of the eco-
logical environment, we can see that fragile areas in Liaoning Province are located in the
northwest of Liaoning Province and the Inner Mongolia border. Semi-arid sandy areas, due
to natural factors and human activities, such as climate, soil erosion and land desertification
in the region, lead to the serious problem for the region in strengthening regional ecological
management comprehensive land use planning and establishing windbreaks and a sand-
fixation belt in the region. We will promote the comprehensive development of agriculture,
forestry and animal husbandry in light of local conditions. Some scholars’ research results
show that in a certain area, the impact of human activities on the ecological environment has
exceeded the impact of natural environmental changes [66], so future ecological protection
should pay more attention to sustainable human activities. Aiming at the problem of urban
ecological vulnerability being higher, with large and medium-sized cities as the core to
establish a comprehensive urban and rural ecological restoration area, such as constructing
Shenyang city circle as the core of urban and rural ecological restoration area, Dalian as
the core of the Liaodong peninsula urban and rural ecological restoration area, we may set
up a file in northern Liaodong bay, Yingkou, as the core of the urban and rural repair area
and with the core of the western Liaoning Fuxin, Chaoyang, repair zone between urban
and rural areas. The results of driving force analysis show that land-use type and habitat
quality have a great influence on ecological vulnerability, and both indicators are affected
by land-use patterns. Therefore, we suggest that land-use patterns should be optimized
to promote the development of ecological resources in the context of local conditions. At
the same time, we should improve the ecological restoration planning system, improve the
implementation management system of ecological restoration, strengthen the technical sup-
port for the implementation of ecological restoration planning, and encourage the public to
participate in the implementation of ecological restoration in the whole Liaoning Province.
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5.4. Limitations and Future Research Prospects

In this study, we rely on the SRP model to select 12 different natural economic indica-
tors from three levels of sensitivity, resilience and pressure to construct an indicator system,
calculate the index weight by principal component analysis, and obtain the ecological
vulnerability index of Liaoning Province from 2010 to 2020 and grade the results. Then, the
spatial and temporal distribution pattern of ecological vulnerability in Liaoning province
was analyzed, and the future spatial distribution pattern of ecological vulnerability was
predicted by the CA-Markov model. However, there are some limitations and uncertainties
in the research process. First of all, the selection of indicators involves many factors such
as nature, economy and society. Due to limitations of data sources and spatial expression,
some indicators are not included in the index system, and there is also the problem that
the selection of indicators may affect the results. There is no unified standard for selecting
indicators at the three levels of sensitivity, resilience and pressure. In this paper, climatic
conditions and topographic factors are treated as sensitive factors, but some scholars re-
gard them as the interference of environmental pressure on the ecosystem in their own
research [67]. Even based on the same evaluation model, some scholars divide the same
factors into different index levels [68]. At the same time, there are subjective ideas of
researchers in the selection of indicators [69], which cannot guarantee that the selected
indicators can fully express the ecological vulnerability of the study region objectively and
accurately. In consequence, how to select the corresponding indicators reflecting the eco-
logical vulnerability of the region scientifically and accurately according to the evaluation
system remains to be further discussed. Secondly, the ecological vulnerability classification
divided into five levels based on natural breakage classification should also be explored. In
this study, the areas are divided by their relative differences into extremely vulnerable areas
and severely vulnerable areas. In other studies, the division may be into micro or mild
degrees, so the division standard does not apply to other areas. The CA-Markov model
is used to predict the future overall pattern of ecological vulnerability distribution, but
this article is based on land-use policy and ecological restoration under invariable policies,
and does not take into account that a variety of human-made, shallow and quantitative
analyses were carried out on the assumptions, Therefore, the prediction results are bound
to have certain errors. The above deficiencies need to be further studied in order to improve
the accuracy of ecosystem vulnerability assessment results and prediction accuracy in the
study area, so as to provide some reference for future ecological restoration.

6. Conclusions

In this study, an index system was established based on the model selected indicators,
and the ecological vulnerability of Liaoning Province was evaluated. The evaluation results
predict the future spatial distribution of ecological vulnerability. From 2010 to 2020, The
evaluation results show that the main light and medium vulnerable areas in Liaoning
Province account for about 60% of the area of Liaoning Province. The area of extremely
vulnerable areas is relatively small. The northwest showed a more vulnerable state than the
southeast. In general, the ecological vulnerability deteriorated slightly in the past ten years
and continues to improve. The spatial distribution of the ecological vulnerability index has
obvious clustering characteristics. The prediction results of the CA-Markov model show
that the ecological vulnerability of Liaoning Province is developing in many directions
under the condition that the existing policy conditions remain unchanged. The area is
increasing, and the overall distribution pattern is changing.

Ecological vulnerability is the result of the comprehensive action of many factors. In
this study; it is mainly believed that it is affected by both natural factors and socio-economic
factors. Among them, the influence of natural factors is greater than that of socio-economic
factors, and natural factors have the strongest impact on ecological vulnerability. The
main effects were land-use type, habitat quality, annual average sunshine hours and
annual average precipitation. Compared with natural factors, the impact of socioeconomic
factors on ecological vulnerability is less significant. The ranking of these variables on
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the ecological vulnerability index is GDP, night light index and population density. The
explanatory power of the interaction between factors on ecological vulnerability is greater
than that of a single factor. The main type of interaction between two factors is bi-enhanced,
and some interactions between factors show nonlinear enhanced effects, among which is
the interaction detector. It is shown that the interaction of annual mean temperature and
habitat quality had the greatest explanatory power for ecological vulnerability.

The results of this paper provide a scientific basis for the formulation of relevant eco-
logical protection and restoration policies in Liaoning Province. At present, the ecological
problems we are facing are still severe [70]. We should increase our efforts to designate
ecological protection and restoration policies, take corresponding ecological restoration
measures for areas with very fragile ecology, improve the ecological compensation mecha-
nism, balance the relationship between ecological restoration and economic growth, adapt
to nature, develop the law, adhere to the concept of overall planning, and strengthen the
systematic planning of ecological restoration.
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