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Abstract: At the neighborhood scale, recognizing urban community green space (UCGS) is important
for residential living condition assessment and urban planning. However, current studies have
embodied two key issues. Firstly, existing studies have focused on large geographic scales, mixing
urban and rural areas, neglecting the accuracy of green space contours at fine geographic scales.
Secondly, the green spaces covered by shadows often suffer misclassification. To address these issues,
we created a neighborhood-scale urban community green space (UCGS) dataset and proposed a
segmentation decoder for HRNet backbone with two auxiliary decoders. Our proposed model adds
two additional branches to the low-resolution representations to improve their discriminative ability,
thus enhancing the overall performance when the high- and low-resolution representations are fused.
To evaluate the performance of the model, we tested it on a dataset that includes satellite images
of Shanghai, China. The model outperformed the other nine models in UCGS extraction, with a
precision of 83.01, recall of 85.69, IoU of 72.91, F1-score of 84.33, and OA of 89.31. Our model also
improved the integrity of the identification of shaded green spaces over HRNetV2. The proposed
method could offer a useful tool for efficient UCGS detection and mapping in urban planning.

Keywords: semantic segmentation; urban community green space; auxiliary learning; deep supervi-
sion; satellite images

1. Introduction

Green space refers to the collection of trunks, trees, shrubs, and grasses that cover
the land [1]. However, not all green spaces in the city can be accessed or effectively
used by residents. For example, farmland, abandoned green space, and vacant green
space for construction in the city may help to generate fresh air [2], yet they could hardly
contribute to social life and urbanity. In this research, we focus on ‘urban community green
space’ (UCGS), defined as the green space that may foster urban public life in the city [3].
At a community level, the availability of green spaces impacts the environmental quality,
helps with stress restoration [4,5], enhances the feeling of social safety [6], increases social
interaction, and promotes property values [7]. Urban green space has been recognized as
a key variable for assessing the livability of cities [8], whereas its spatial data at the fine-
geographical scale is difficult to generate [9]. One way of obtaining the spatial information
of UCGS is to extract it from remote sensing images [10]. The method of extracting
urban green spaces from remote sensing images can be divided into four kinds: threshold
methods, pixel-based classification methods represented by machine learning, object-
oriented classification methods, and deep learning methods [11]. The threshold method
selects a suitable threshold value to distinguish and extract green areas according to
the difference in the spectral response of vegetation and other ground objects in one or
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more bands. Many threshold methods have been proposed [12–17]. However, due to
the complexity of the ecological environment in urban areas and the variability of remote
sensing images, it is difficult for the threshold methods to produce accurate green space
contours [18]. In pixel-based methods [19–22], training pixels are selected to represent each
class, and an algorithm matches the spectral properties of image pixels to the most similar
and predefined class [23]. The pixel-based method realizes automatic classification but
ignores the differences in spatial features between various objects, leading to confusion in
recognizing similar objects. The object-oriented classification method [24,25] is the most
widely used method. In the object-oriented method, the central unit of classification is no
longer a single pixel, but a homogeneous object. Object-oriented classification can eliminate
pixel noise and thus increases accuracy [26]. However, it is labor-intensive by heavily
relying on manual intervention. The deep learning method [27] can classify objects without
user intervention. It uses Convolutional Neural Networks (CNNs) [28] to intelligently mine
and learn image features. Semantic segmentation is another name for the deep learning
method of object extraction. Semantic segmentation assigns an object class to each pixel in
a picture, allowing it to be understood at the pixel level. Unlike simple classification tasks,
semantic segmentation tasks necessitate the recognition of an item and the delineation of
each object’s borders. This deep learning technology offers a new intelligent interpretation
strategy for the future classification of urban green spaces [29].

In recent years, using semantic segmentation to extract urban green space has become
an increasing research focus. Many semantic segmentation models have been created and
utilized in the field of urban green space extraction, such as Fully Convolutional Networks
(FCN) [30], UNet [31], Pyramid Scene Parsing Network (PSPNet) [32], and DeepLabv3+ [33].
Some studies [34,35] have shown that the architecture with DeepLabv3+ outperform other
methods by providing more smooth edge detection. Men et al. [11] proposed a novel model
called Concatenated Residual Attention UNet (CRAUNet), which combined the residual
structure and channel attention mechanism, and their result preserved more complete
segmented edge details than UNet. According to the au- thors, CRAUNet achieved a pixel
accuracy of 97.34% and a mean intersection over union (mIoU) of 94.77%. Xu et al. [36]
introduced phenological features into High-Resolution Network (HRNet) model training
and effectively improved urban green space classification accuracy by solving the problem
of misclassification of evergreen and deciduous trees. Roberto et al. [9] used different CNN
encoders on the UNet architecture to obtain urban green space polygons at the metropolitan
area level. Some scholars also tried to fuse deep learning and traditional extraction methods
to obtain better results. Nijhawan et al. [37] proposed a framework that combined support
vector machine (SVM), local binary pattern (LBP), and GIST features with multiple parallel
CNNs for feature extraction. Baoxuan et al. [38] presented a method that combines object-
oriented approach with deep convolutional neural network (COCNN), with precision and
kappa index coefficients being 96.2% and 0.96, respectively.

Although the studies mentioned above have made significant progress and produced
promising findings for semantic segmentation in urban green space extraction, they still
have limits in terms of application scale and recognition details. Firstly, prior studies and
public datasets have primarily concentrated on large geographic scales, combining urban
and rural areas while ignoring the precision of green space contours at fine geographic
scales. Some studies [11,39] relied on typical machine learning approaches to produce
training datasets rather than exact hand annotation. Furthermore, publicly available high-
resolution remote sensing image datasets, such as the Gaofen Image Dataset (GID) [40],
ISPRS Potsdam [41] and ISPRS Vaihingen [42], mapped and evaluated many feature types
at large sizes from a macro perspective. Green space classifications were ignored in their
databases, and rural and urban areas were jumbled together [43]. Secondly, small objects
and the green spaces covered by shadows often suffer misclassification. Small, scattered,
or shadowed green spaces were frequently omitted in the presentation of the results of
most studies [36,39,44–46], while fields, playgrounds, or barren meadows were frequently
misclassified. The main reasons for the second problem are two characteristics of green
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spaces: the variety of green space types and the integration of green space boundaries
with the context. Unlike other ground objects, the types of UCGS are diverse, multi-scale,
and highly fragmented [11]. For example, UCGS can range from small sidewalk greenery
to large-scale parks. As green spaces have highly irregular contours [47], it is difficult to
distinguish the precise outline of a green space when its irregular contours are confused
with a complex background, such as shadows.

To address the first issue, this work used publicly accessible high-resolution remote
sensing images to generate a dichotomous dataset concentrating on urban community green
space (UCGS) at a neighborhood size. We discriminated between urban and non-urban
areas before making detailed hand annotations on urban community green spaces. In com-
parison to other studies, this work focuses mainly on urban regions. For the second issue,
this work developed a segmentation decoder for HRNet that has two auxiliary decoders.
When the high- and low-resolution representations are merged, our proposed model adds
two branches to the low-resolution representations to improve their discriminative capabil-
ities, resulting in improved overall performance. To evaluate our strategy, the proposed
framework was applied to four different regions of Shanghai, China. The following three
aspects are the key contributions of this paper:

• We produced an open UCGS semantic segmentation dataset. UCGS in shadows is
identified in the dataset for better extraction;

• We proposed a method that automatically screened urban communities from remotely
sensed images. Our method improved efficiency in avoiding misclassified rural fields;

• We developed a segmentation decoder with two auxiliary decoders for HRNet to
improve the overall performance of urban community green space extraction.

2. Methods
2.1. The Overall Workflow

Figure 1 depicts the overall process flow. There are four parts to the process: (1) image
classification for urban communities; (2) data labeling; (3) deep learning model training
and evaluation; and (4) prediction and mapping.

Figure 1. Proposed Workflow for UCGS extraction.
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In the image classification stage, images containing UCGS were filtered out for sub-
sequent labeling. This operation allowed the substantial exclusion of fields that do not
contain UCGS. In the data labeling stage, we created a labeled dataset with marked UCGS.
Note that UCGS covered by shadows were labeled deliberately. In the model training
and evaluation stage, the image was extracted by the HRNet backbone to get the feature
map. The featured map was then segmented after the proposed decoder. In the prediction
and mapping stage, UCGS were identified in the raw images and mapped back onto the
satellite map.

2.2. Image Classification
2.2.1. Study Area and Data Sources

The case city, Shanghai, has set the goal to become a more ecologically integrated and
livable city in its latest master plan [48,49]. According to the Shanghai Statistical Yearbook,
Shanghai’s urban green space has grown to 157,785 hectares, accounting for 39.7% of
the city’s total land area [50]. In October 2021, the Shanghai satellite map was obtained
from Map World [51] via 91 Satellite Image Assistant [52]. The National Platform for
Common Geospatial Information Services [53] and the Shanghai Surveying and Mapping
Institute [54] provided the map of Shanghai subdistrict. There are three red-green-blue
bands in all of the data, with a spatial resolution of about 0.51 m. We chose four repre-
sentative regions to evaluate and compare the model predictions, as shown in Figure 2,
because the distribution of green space in Shanghai changes with building density [55–57].
Table 1 shows the specific details for each region.

Figure 2. Study Area. (A) is located in Baoshan District. (B) is located on the Bund, straddling
Huangpu District and Pudong New Area. (C) is located in the new city of Pudong New Area. (D) is
located in the suburban Minhang District.
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Table 1. Detailed data description.

Name Satellite Location Acquisition Date Area (km2)

A GF-2 Baoshan District and
Yangpu District 2021/10/5 41.23

B GF-2 Huangpu District and Pudong
New Area 2019/11/9 & 2021/11/19 41.23

C GF-2 Pudong New Area 2018/4/10 & 2021/10/23 41.23

D GF-2 Minhang District 2020/5/3 41.23

2.2.2. Classify Urban Community Images

Raw images from Map World were cut uniformly to 38,850 images of 512× 1024 pixels
patches with non-overlapping grid partition. A simple ResNet-18-based classifier was built
to filter out images containing communities. This classifier used 1000 artificially screened
True and False samples as the training dataset and another 1000 samples for testing. This
classifier had 99.1% accuracy on the testing dataset. With the help of the classifier and a
little manual work, we obtained 7023 urban community images for subsequent labeling,
model training, and mapping.

2.3. Data Labeling

A considerable amount of high-quality and fine-grained labeled data is required to
train a semantic segmentation model [11], and existing open-source datasets were not
explicitly built for green space classification at a community size. Therefore, we created
a dataset with urban community green space labels manually. A total of 1000 images
from 7023 urban community images were randomly picked and labeled using the labelme
tool [58].

The Ministry of Housing and Urban-Rural Development of the People’s Republic of
China (MOHURD) [59] released the national garden and park urban standard in the year
2000 [60]. We focused on urban green spaces that are closely linked to people’s daily lives,
and made a more detailed and precise classification of urban community green spaces
according to the document. Figure 3 shows examples of UCGS, including green space
between houses (a-1), green space next to houses (a-2), residential area separation zones
(a-3); public green space including residential playgrounds (b-1), small public green spaces
(b-2); road green spaces including street tree strips (c-1), green spaces along the street (c-2)
and scattered trees (d-1, d-2). It is important to note that UCGS does not include barren
meadows (b-3), roadside fields (c-3), or tree saplings (d-3).

The final labeled dataset was stored as 8-bit ground truth binary label. Further, 60%
of the dataset was selected for training, 10% was used for evaluation validation during
training, and the remaining 30% was reserved for testing the performance of the trained
model. There was no overlapping among the training, validation, and testing datasets.
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Figure 3. Different types of residential green space in the dataset.

2.4. Model Training and Evaluation
2.4.1. Network Structure

We now introduce auxiliary learning for HRNet, a proposed approach for automat-
ically recognizing UCGS (aux-HRNet). We added two auxiliary decoders to the low-
resolution representations to improve their discriminative ability, as inspired by the exten-
sive deep supervision literature [61–63] and GAN-based literature [64,65]. This improved
the overall performance when the high- and low-resolution representations were fused.
The proposed network structure is depicted in Figure 4 as an overview. An HRNet back-
bone, a combination decoder with two auxiliary decoders and the main decoder make up
this model. The code and model are publicly available at https://github.com/ChenJiangxi/
aux-HRNet-for-UCGS (accessed on 10 June 2022).

https://github.com/ChenJiangxi/aux-HRNet-for-UCGS
https://github.com/ChenJiangxi/aux-HRNet-for-UCGS
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Figure 4. Illustration of the proposed auxiliary learning for HRNet (aux-HRNet) model, which
is improved from HRNetV2. Different combinations of low-resolution feature maps are sent into
two auxiliary decoders. The color of the feature map decreases in resolution by yellow, orange,
pink and red. The major loss and auxiliary loss are denoted by the terms “Main Loss” and “Aux
Loss”, respectively.

2.4.2. HRNet Backbone

We used HRNet (High-Resolution Network) [66] as our backbone in semantic segmen-
tation in this paper. HRNet joins high-to-low convolution streams in parallel, as shown
in Figure 4. By repeatedly fusing the representations from multi-resolution streams, it
maintains high-resolution representations throughout the process and provides dependable
high-resolution representations with good position sensitivity.

The higher the level of semantic information in a feature, the better the discriminative
capacity, at the expense of resolution. Shallow features have high resolution, but they do
not have a lot of semantic information. However, HRNet’s high-resolution representa-
tion is not only semantically sound, but also spatially accurate. These benefits stem from
two factors. First, instead of joining the high-resolution and low-resolution convolutional
streams in series, HRNet joins them in parallel. As a result, HRNet may sustain high
resolution rather than recovering high resolution from low resolution, implying that HR-
Net’s learning process is more spatially precise. Second, HRNet repeats multi-resolution
fusion in order to improve high-resolution representations using low-resolution represen-
tations and vice versa. As a result, all representations from high to low resolution are
semantically stronger.

The existence of high-resolution maps improves the spatial accuracy of the feature
maps. Furthermore, the inclusion of low-resolution maps results in richer higher-level
semantic properties, but the target locations are coarser. The semantic segmentation
problem requires both low-level details and high-level semantics [67]. In the task of
extracting green spaces, geographical precision can improve the accuracy of the green
spaces recognized, while semantic enrichment improves the capacity to identify green
spaces. We believe that the misclassification problem, which is more important than
the problem of poor spatial accuracy, should be given greater attention when extracting
green spaces.

2.4.3. Main Decoder and Auxiliary Decoder

HRNetV2 [66] was originally proposed for semantic segmentation by estimating seg-
mentation maps from a combined high-resolution representation. In Figure 5a, HRNetV2
is adopted as the main decoder in training and inferencing. The method of HRNetV2 is as
follows: (1) rescale the low-resolution representations through bilinear upsampling without
changing the number of channels to high resolution; (2) concatenate the (upsampled) repre-
sentations from all the resolutions; (3) a 1× 1 convolution mixes the four representations
and gains the feats; (4) the loss is calculated by comparing the classification results obtained
from feats by 1× 1 convolution with ground truth.
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Our two auxiliary decoders are shown in Figure 5b,c. The construction of the auxiliary
decoders was the same as HRNetV2, but different feature map inputs were employed.
The three low-resolution subnets output from the fourth stage of HRNet were used as
input for the auxiliary decoder in Figure 5b. To obtain feats, they were also upsampled
and concatenated, followed by convolution 1× 1. Two deeper low-resolution subnets were
given to the auxiliary decoder in Figure 5c. Furthermore, the classification maps produced
by the three decoders did not have the same height and width (channel number = number
of classes for all three). When compared to the ground truth, they were resized using
bilinear upsampling to the same size as the ground truth, and then the loss was computed.

The main decoder head and auxiliary decoder heads were used in parallel. Auxil-
iary learning aims to achieve deep supervision, a well-known technique for improving
performance [68]. The auxiliary decoder aids in learning optimization and was removed
during the inference phase [69]. Therefore the extra auxiliary decoders did not increase the
inference cost. By adding an auxiliary decoder to the HRNet backbone’s low-resolution
subnets, we can improve the low-resolution subnets’ classification performance, making
their semantic information more accurate. As a result, by fusing features with the low-
resolution feature map, the high-resolution feature map can obtain more accurate semantic
information, boosting the high-resolution feature map’s discriminative capabilities.

Figure 5. Decoders and auxiliary decoders for HRNet. (a) HRNetV2. (b) auxiliary decoder with three
low-resolution subnets as input. (c) auxiliary decoder with two low-resolution subnets as input.

2.4.4. Online Hard Example Mining

Generally, the number of background pixels is substantially larger than the number
of foreground pixels in segmentation tasks. A similar imbalance problem existed in our
sample as well. The data imbalance issue could result in decreased training efficiency and
accuracy. To overcome the problem, we used the Online Hard Example Mining (OHEM)
algorithm [70]. The OHEM algorithm’s main idea is to filter away hard data that have
a large impact on classification based on the loss, and then apply the filtered samples to
stochastic gradient descent training. OHEM works nicely in the Stochastic Gradient Descent
(SGD) paradigm, simplifies training by eliminating several heuristics and hyperparameters,
and may result in improved convergence (less training set loss) [70].

2.4.5. Loss Function

In semantic segmentation, the loss function metric is an algorithm that evaluates the
difference between training prediction and ground truth labels. The model can attain the
convergence stage and reduce prediction error by minimizing the loss function. To establish
the best appropriate loss function metric for our data, we looked at their spatial properties.
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UCGS may only represent a small percentage of pixels because most cities are covered
by built-up regions populated by roadways, buildings, and other impermeable surfaces.
This design results in a class imbalance, which may lead to errors and a bias toward the
background class, which covers the majority of the region of interest. Deep learning-based
semantic segmentation research [71–73] has shown that the Dice Loss [74] is an adequate
loss function for the imbalance problem. Equation (1) is used to compute the Dice loss.

Dice Loss = 1− 2|IGT ∩ ISEG|
|IGT | ∪ |ISEG|

, (1)

where IGT is the input ground truth, and ISEG is the output segmentation. A Dice Loss of
1 indicates no overlap between prediction and ground truth, whereas a value of 0 means
that the prediction overlaps the labeled ground truth [75]. When it comes to the target and
auxiliary losses, we normally employ the same dice loss, but they can also be different.
Therefore, the total loss during training can be calculated as Equation (2). To attain the
optimum model performance, we tweak α and β in (0, 1) in our method.

L = Ltarget + αLaux1 + βLaux2. (2)

2.4.6. Parameters for Evaluation

In this study, five evaluation indexes were selected to evaluate the performance,
including Precision, Recall, the intersection over union (IoU), F1-Score, and overall accuracy
(OA). The precision indicated the proportion of the true UCGS to all the UCGS identified
by the model, representing the model’s accuracy. In contrast, the recall indicated the
proportion of the true identified UCGS to all the UCGS in the given samples, reflecting the
model’s capability of discovering the true UCGS. IoU is the ratio of the intersection and the
union of the ground truth and the predicted area. F1-Score, also known as the balanced
score, is defined as the harmonic average of precision and recall rate. It is a common
evaluation index for semantic segmentation. Overall Accuracy (OA) is a comprehensive
evaluation index of classification results and represents the probability that the classification
result for each pixel is consistent with the actual type of the label data. These evaluation
metrics are computed between the predicted UCGS and the ground truth. The calculation
equations for the indicators are shown in Table 2.

Table 2. Evaluation metrics. TP FP FN and TN are the true positive, false positive, false negative,
and true negative classifications, respectively. N represents the total number of pixels. The first four
metrics are used only for the UCGS category.

Accuracy Evaluation Criteria Formula

Precision Precision = TP
TP+F

Recall Recall = TP
TP+FN

IoU IoU = TP
TP+FP+FN

F1-score F1-score = 2× Precision×Recall
Precision + Recall

OA OA = TP+TN
N

2.5. Prediction and Mapping

Following the identification of the best performance model, it was utilized to predict
the UCGS on the satellite picture, and the UCGS was then mapped to obtain high-quality
UCGS distribution in Shanghai. The model outputs in this work are binary classes at the
pixel level (UCGS and non-UCGS). Non-UCGS pixels were removed, and all of the outputs
were recombined in raw image size. We were able to achieve a one-to-one connection
between raw images and prediction findings in this method. We used the open-source
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geographic information system QGIS [76] to visualize the precise geographic projection of
the projected results. The original raster data is raw images with the exact geographical
coordinates of each corner. The expected findings are projected on the WGS 84 (EPSG:4326)
coordinate reference frame using the Georeferencer tool [77].

3. Results
3.1. Experimental Settings
3.1.1. Implementation Details

The entire procedure was implemented in the semantic segmentation framework,
mmsegmentation [78].

With a batch size of 2, all models were trained for 80k iterations. The detailed configu-
ration of model training parameters is described as follows. The optimizer is Stochastic
Gradient Descent (SGD). The initial learning rate and momentum parameters were set as
0.01 and 0.9, respectively. The learning rate was annealed during training using the poly
learning rate policy, in which the base learning rate was multiplied by 1− ( iter

max_iter )
power

with power = 0.9 at each iteration. The training process was carried out on an NVIDIA
GeForce RTX 2060 GPU, 6 GB of RAM, using Python 3.8, PyTorch deep learning framework,
accelerated by cuDNN 10.1.

The data augmentation techniques are adopted to increase the size of training dataset [79],
add more variability to it and reduce the “overfitting” of deep CNN caused by limited
training samples [80]. We use random crops of size 256 × 512 and apply random rescaling
in the range [0.5, 2.0], random horizontal flip, and photometric distortion to our dataset.
All training processes used the OHEM algorithm, with only pixel-valued values with
confidence scores below 0.7 being used for training.

3.1.2. Models for Comparison

Fully Convolutional Networks (FCN) [30], UNet [31], Pyramid SceneParsing Network
(PSPNet) [32], Deeplabv3 [81], DeepLabv3+ [33], and HRNet [66], as well as pixel-based
categorization approaches such as Maximum Likelihood (ML) and Random Forest (RF),
are compared to the proposed model’s performance.

The encoder used in the Deeplabv3+, Deeplabv3, PSPNet, and FCN experiments is
a ResNetV1c-50 [82] pretrained on ImageNet [83]. ResNetV1c replaces the 7 × 7 conv. in
the input stem with three 3 × 3 convs [84], as opposed to default ResNet (ResNetV1b).
We used the multi-scale feature mosaic method of HRNetV2 suggested in the work [66]
for the HRNet. The width C of the high-resolution subnet in the last three stages of the
HRNet-W48 backbone was 48, whereas the widths of the other three parallel subnets were
96, 192, and 384, respectively. The width C of the HRNet-W18 backbone is equal to 18,
accordingly. For inference on test dataset, we use the model that performed best during the
training phase. We obtained metrics for all deep learning methods.

We utilized these classifiers on Arcmap of ArcGIS 10.7 [85] for the ML and RF ap-
proaches. To distinguish the green spaces from the other objects, the first step was to select
a specific section of the image. The Random Forest Classifier and Maximum Likelihood
Classifier were then used to train the annotated picture and generate the classifier model.
The classifier model was used to predict the results of the remaining satellite photos in
the third stage. The maximum number of trees in the random forest classifier was 50,
the maximum tree depth was 30, and the maximum number of data per class was 1000.
Finally, the images with the projected green space were obtained.

3.2. Comparison of Different Classification Methods

We conducted various comparative experiments to verify the effectiveness of our
proposed technique. Table 3 shows how all of the approaches performed on the test dataset.
In addition, we chose specific urban green space regions to better understand the reasons
for the table’s accuracy discrepancies. Figure 6 depicts segmentation results from various
semantic segmentation networks in various types of urban community green spaces.
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Deep learning approaches exhibited fewer errors and omissions than the Maximum
Likelihood (ML) and Random Forest (RF) methods, as demonstrated in Figure 6. The ML
and RF classification algorithms were unable to reliably determine the boundary of different
urban green space categories, where the phenomena of misclassification and omission was
evident. For example, in Figure 6, the Maximum likelihood (ML) technique consistently
classifies the shaded part of the road of the image as green space while missing the shaded
part of the green area. There are two basic causes for this problem. The first is the limitation
of the classifier’s performance. Another is the difficulty of distinguishing objects, which
is due to the complexity of greenfield colors in remote sensing images, such as “the same
object in different colors” and “foreign objects in the same color” [36].

Deep learning methods, on the other hand, produced outputs that always had clear
boundaries and performed better than ML and RF. Various deep learning models also
produced different training results. In addition to our own model, HRNet outperformed
other models in terms of evaluation metrics, resulting in better classification results. This
result was in line with the findings of the article [36]. Based on the experimental findings,
the following conclusions can be drawn: (1) The segmentation results from FCN were
skewed. The jagged outlines of the public green space in Figure 6c caused the road to
be misclassified as a green space, which can be explained by the FCN network structure
upsampling process’ limitations. This results in severe detail loss in the images; (2) UNet
was only second to HRNet in terms of performance. Although UNet’s classification results
were far superior to FCN’s, there was still misclassification of roads in Figure 6c and
omission of trees in Figure 6b; (3) as seen in Figure 6b, DeepLabv3+’s results frequently
misidentify green regions that are obscured by shadows.

Figure 6. Segmentation results of different types of green spaces. (a) residential area separation zone.
(b) small public green space. (c) green space along the street. (d) scattered trees. White means UCGS
while black means other, respectively.
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Table 3. Performance of different classification methods.

Method Backbone Precision Recall IoU F1-Score OA

HRNetV2 HRNet-W48 82.05 85.76 72.21 83.87 88.92
HRNetV2 HRNet-W18 78.58 88.92 71.57 83.43 88.14

FCN Unet 82.91 84.44 71.92 83.67 88.93
Deeplabv3+ ResNet-50 84.81 82.04 71.53 83.4 89.03
Deeplabv3 ResNet-50 84.14 82.13 71.11 83.12 88.8

FCN ResNet-50 81.2 85.33 71.25 83.21 88.44
PSPNet ResNet-50 83.47 81.39 70.1 82.42 88.34

Maximum Likelihood - 70.56 75.75 57.26 72.33 61.69
Random Forest - 64.89 82.23 56.26 71.48 79.1

Ours HRNet-W48 83.01 85.69 72.91 84.33 89.31
Ours HRNet-W18 84.46 83.3 72.23 83.88 89.24

The classification ability of the model in this paper was the best. In terms of evaluation
metrics, our model outperformed HRNetV2 with the HRNet-W48 backbone by 0.7 points
in IoU, 0.46 points in F1-score, and 0.39 points in OA. Even when compared to HRNetV2
with HRNet-W18 as the backbone, our method outperformed it. Our model reduced
misclassifications in terms of classification outcomes. For example, HRNet misclassified
a road as green space in Figure 6c, whereas our classification results have no such prob-
lem. The auxiliary segmentation decoder, in addition to the main segmentation decoder,
contributed to our model’s excellent performance. By adding two auxiliary decoders in
training, the model in the paper paid greater attention to low-resolution subnets with
richer semantic information than HRNetV2. When multi-resolution subnets exchange
data, low-resolution feature maps can contribute more accurate semantic information to
high-resolution subnets, thereby boosting the accuracy of high-resolution representations.

Our trained model is publicly available at https://drive.google.com/file/d/1spQj1
_3cXPcVyH36vUbdrmCiwhfQItP5/view (accessed on 10 June 2022) for other scholars to
perform transfer learning when studying similar problems.

3.3. Improvement on the Classification of Urban Community Green Space in Shades

This paper tried to improve the identification of green spaces covered by shadows.
The following are some of our efforts: (1) In our dataset, we deliberately labeled green
regions that were obscured by shadows; (2) We improved the accuracy of the model’s
advanced semantic information, thus enhancing the model’s overall recognition capability.

As seen in Figure 7, our model performed significantly better than HRNet in identify-
ing shaded green patches. In Figure 7, for example, the green area surrounding high-rise
housing is frequently obscured by the shadows of high-rise structures. The shaded green
space behind the building was recognized by our approach in Figure 7a, whereas the HR-
Net misclassified the shade as a non-UCGS. In Figure 7b, HRNet only identified a portion
of the shaded green space. Our approach, on the contrary, recognized the full green space.
Despite the fact that our model didn’t entirely detect the outline of green patches obscured
by shadows, it was a significant improvement over HRNet.

https://drive.google.com/file/d/1spQj1_3cXPcVyH36vUbdrmCiwhfQItP5/view
https://drive.google.com/file/d/1spQj1_3cXPcVyH36vUbdrmCiwhfQItP5/view
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Figure 7. Comparison of shaded green space recognition performance between HRNet and our
model. (a) is selected from a image with brighter shadow. (b) is selected from the one with dark
shadow. The red box circled is the shadow area cast by the tall building, and the white part inside the
box is actually the green space.

3.4. Green Space Distribution of the Sampled Areas

As is illustrated in Figure 8, green space was mapped on four representative study
areas with a high density of urban communities, including downtown and suburban
region. Area A is mainly located in Baoshan district. The land cover of Baoshan district is
predominantly residential communities, including some urban green spaces and parks. It is
worth noting that the barren meadow in the green space in the up-right corner of area A was
not mistaken for green space, which verifies the accuracy of our model. Area B represents
the business area and covers the busiest area of Shanghai, including the Bund and part
of Huangpu River. The shadows of the tall buildings covering part of the green space in
these regions add to the difficulty of our task, which is also an unresolved problem for
many traditional methods of green space classification. However, taking the center area of
B featuring long and large-scale shadows as an example, our model precisely identified the
green space surrounded by tall buildings with shadows on it. Area C is located in Minhang
District, a typical industrial area with many communities. It is clear that green vegetation on
the roofs and the green plastic playgrounds in schools are not misidentified as green space
using our model. Area D, situated in Pudong new area, has relatively large farmland areas,
so it stands for the agricultural area. Our model succeeded in distinguishing farmlands
from the residential green space that we are interested in, making it also possible to be used
in extracting community green space in suburban regions.

The applications of our approach to various settings, such as residential areas, com-
mercial areas, industrial regions, and agricultural areas, have proven its effectiveness for
extracting urban community green space, based on the analyses above.
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Figure 8. Predicted results: the mapping results of urban community green space in four selected
areas in Shanghai with different percentage of UCGS. Here subplots (A–D) correspond to subplots
(A–D) of Figure 2.

Figure 8 also shows that different areas of Shanghai have an uneven distribution
of green spaces, the exact value of which can be found in Table 4. The less green space
there is the closer you get to the city core, and the more fragmented it becomes. Region B,
for example, has the least quantity of green space of the four. The most UCGS are found
in Region C, a freshly created industrial area with several villages. The recently created
Pudong (right side of the river) has more green space than the Puxi area (left side of the
river) in Region B, which is closer to the city center. It suggests that the planning of new
cities takes into account green space more than the planning of ancient city centers.

Table 4. Percentage of UCGS of the four areas.

Area A B C D

Percentage of UCGS 19.00% 12.14% 22.32% 21.62%

4. Discussion

Semantic segmentation studies using similar approaches to map urban green
space [9,11,36] reported F1-score of 96.32, 57.48, and 84.02, respectively. The result in
this study is 84.33, which is slightly higher than that in the paper [36]. The referenced
studies focus on larger scale identification and do not consider the details of scattered trees
and the identification of shaded green spaces; however this research seeks to more accurate
identification at fine geographic scales. Although it is a small improvement over HRNet,
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our approach applied deep supervision to HRNet and improved model performance with
only two additional auxiliary decoders. From the visualization results, our model can
distinguish between field and community green spaces, and performs better on shaded
green spaces. The proposed method could offer a useful tool for efficient UCGS detection
and mapping in urban planning, and provide a model of UCGS data extraction for studies
focusing on urban design and resident health.

Further, we have a deep discussion of our proposed model.

4.1. Different Input Combinations for Auxiliary Decoder

Since the HRNet backbone outputs four feature maps with different resolutions, we
explored how the combination of different feature maps with the auxiliary decoder impacts
the performance of detecting green space. In descending order of resolution, we set the
series of feature maps output by the HRNet backbone to f1, f2, f3, f4. According to the
paper [66], the accuracy of prediction outcomes in semantic segmentation rapidly drops
from high-resolution feature map f1 to low-resolution feature map f4.

HRNet networks were initialized using the model pre-trained for ImageNet classi-
fication. In the following experiment, all auxiliary loss weights are equal to 0.4. Table 5
summarizes the results of the four possible combinations. According to the comparison,
the combination (d) (ours) has the best performance. With one auxiliary decoder with f2, f3,
and f4 as input, the combination of two decoders was 0.75 points greater than combina-
tion (c). However, increasing the number of auxiliary decoders does not always improve
the model’s performance. Combination (b), for example, does not perform as well as
combination (a). If the auxiliary task is closely related to the main task, it can be useful,
according to the article [86]. As a result, the performance is affected by the degree to which
different resolution feature maps are evaluated.

Table 5. Model performance of the auxiliary head with different combinations of feature maps, where
X means that the feature map is used as input to the decoder.

Comb. Aux.
Feature Map

IoU F1-Score OA
f1 f2 f3 f4

(a) aux1 X X X 72.42 84.01 88.97

(b) aux1 X X X 71.97 83.7 89.1aux2 X X

(c) aux1 X X X 72.16 83.83 88.76

(d) (Ours) aux1 X X X 72.91 84.33 89.31aux2 X X

4.2. Different Weights of Auxiliary Learning

We designed three experiments to see how the weight of the auxiliary task affected the
overall task and the primary task. The weights of the losses created by the two auxiliary
decoders in the total task, according to Equation (2), are α and β. We first set β equal to
0.4, then varied the value of α and watched the trained model’s performance. Figure 9a
depicts the result. We also fixed α, changed β, and did the same comparison experiment.
The result is shown in Figure 9b. Figure 9c depicts the result of setting α equal to β and
modifying both of them at the same time. All of the experimental results suggest that the
weight of the auxiliary task has an impact on the model’s performance. Regardless of the
weights, aux-HRNet outperforms the methods without auxiliary learning. Appropriate
weights for the auxiliary tasks should be chosen when utilizing the aux-HRNet model for
various activities.
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(a) (b) (c)

Figure 9. Different weights of auxiliary loss. (a) fix β = 0.4 and change α. (b) fix α = 0.4 and change β.
(c) fix β = α and change both. Baseline means the result of HRNetV2.

4.3. Influences of Training Tricks

The impact of the following key training strategies [87] on model performance was
investigated. (1) OHEM, which can promote the model training by increasing the propor-
tion of difficult samples in total loss; (2) one of the most used augmentation approaches,
random rescale, can improve the models’ generalization capacity and scale diversity. We
used random crops of size 256× 512 in the experiment and applied random rescaling in
[0.5, 2.0] and only pixel-valued points with confidence scores below 0.7 are considered
for training.

As shown in Table 6, the results reveal that all of the key training strategies have a
considerable impact on model performance improvement, with rescaling having a stronger
effect than OHEM.

Table 6. Influences of training tricks, where X means using the trick.

Method OHEM Rescale
UCGS Other

mIoU mFscore OA
IoU F1-Score IoU F1-Score

HRNetV2
X X 72.21 83.87 84.44 91.56 78.32 87.71 88.91

X 71.79 83.58 83.83 91.21 77.81 87.39 88.54
X 70.9 82.97 83.64 91.09 77.27 87.03 88.3

Ours
X X 72.91 84.33 84.98 91.88 78.95 88.11 89.31

X 72.89 84.32 83.83 91.21 78.76 88 89.12
X 71.56 83.42 83.67 91.11 77.62 87.27 88.43

4.4. Sensitivity Analysis on Input Image Size

The geometry of the urban community green space is irregular in high-resolution
photos, and the texture is smooth. As a result, a sufficient training sample size can preserve
the shape and textural features of distinct objects, enhancing classification accuracy. We
evaluated four alternative crop sizes on our approach to see how they affected the output
image size: 256× 256, 256× 512, 512× 512, and 512× 1024. Figure 10 shows the catego-
rization accuracy obtained with various crop sizes. It was discovered that a crop size of
256× 512 produced the greatest results.
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Figure 10. UCGS extraction accuracy varies with different crop sizes.

5. Conclusions

Urban Community Green Space (UCGS) is a vital component of the city. Methods that
can accurately identify urban community green space can provide data for studies that focus
on urban design and resident health, which need to break through the scale limitations and
shadow interference of current studies. In this research, we created a neighborhood-scale
urban community green space (UCGS) dataset and proposed a segmentation decoder with
two auxiliary branches for HRNet. The proposed model has shown the most accurate
UCGS detection accuracy among all comparison models, with a precision of 83.01, recall
of 85.69, IoU of 72.91, F1-score of 84.33, and OA of 89.31. In particular, it achieved a great
improvement in the identification of green spaces covered by shadows. Additionally, our
discussion demonstrated that the best performance was achieved by two auxiliary decoders
(one had f2, f3, f4 as input and the other had f3, f4 as input) with equal weight of 0.4,
and OHEM and random rescale techniques can boost the performance. The case results
of Shanghai show that the coverage of UCGS in four typical areas is 19%, 12.14%, 22.32%,
and 21.62%, respectively.

In future studies, researchers can also focus on community-scale green space identifi-
cation and exploit simpler and more effective methods to obtain accurate UCGS extraction
maps. Our study can provide a trained model for other scholars to perform transfer learning
when studying similar problems.
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