
Citation: Abich, A.; Negash, M.;

Alemu, A.; Gashaw, T. Aboveground

Biomass Models in the Combretum-

Terminalia Woodlands of Ethiopia:

Testing Species and Site Variation

Effects. Land 2022, 11, 811. https://

doi.org/10.3390/land11060811

Academic Editor: Hossein Azadi

Received: 21 April 2022

Accepted: 27 May 2022

Published: 30 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

land

Article

Aboveground Biomass Models in the Combretum-Terminalia
Woodlands of Ethiopia: Testing Species and Site Variation Effects
Amsalu Abich 1,2,*, Mesele Negash 1, Asmamaw Alemu 2 and Temesgen Gashaw 3

1 Wondo Genet College of Forestry and Natural Resources, Hawassa University,
Shashemene P.O. Box 128, Ethiopia; mesele@hu.edu.et

2 College of Agriculture and Environmental Sciences, University of Gondar, Gondar P.O. Box 196, Ethiopia;
asmamaw.alemu@uog.edu.et

3 College of Agriculture and Environmental Sciences, Bahir Dar University, Bahir Dar P.O. Box 1289, Ethiopia;
temesgen.gashaw@aau.edu.et

* Correspondence: amsalu.abich@uog.edu.et; Tel.: +251-9-1881-3275

Abstract: The Combretum-Terminalia woodlands and wooded grasslands (CTW) are widely distributed
in East Africa. While these landscapes may have the potential to act as key global carbon sinks,
relatively little is known about their carbon storage capacity. Here we developed a set of novel
aboveground biomass (AGB) models and tested for species and site variation effects to quantify
the potential for CTW to store carbon. In total, 321 trees were sampled from 13 dominant tree
species, across three sites in the Northwest lowlands of Ethiopia. Overall, fitted species-specific
models performed the best, with diameter at breast height explaining 94–99% of the AGB variations.
Interspecific tree allometry differences among species were more substantial than intraspecific tree
allometry among sites. Incorporating wood density and height in the mixed-species models signif-
icantly improved the model performance relative mean absolute error (MAPE) of 2.4–8.0%, while
site variation did not affect the model accuracy substantially. Large errors (MAPE%) were observed
when using existing pantropical models, indicating that model selection remains an important source
of uncertainty. Although the estimates of selected site-specific models were accurate for local sites,
mixed-species and species-specific models performed better when validation data collated from
different sites were incorporated together. We concluded that including site- and species-level data
improved model estimates of AGB for the CTW of Ethiopia.

Keywords: aboveground biomass; tree allometry; validation; Combretum-Terminalia woodland; Ethiopia

1. Introduction

Forest trees capture important amounts of atmospheric carbon dioxide through pho-
tosynthesis [1,2]. Plants in terrestrial ecosystems reportedly sequestered 3.61 Pg carbon
annually between 2007 and 2016 [3]. Tropical forests, in particular, store more than half
of the carbon present in the terrestrial ecosystems [4,5]. With their high species diversity,
tropical forest ecosystems have been shown to have a great carbon sink capacity [3,5]. They
constitute an important mitigation option for regulating climate change [3,6] as well as
providing other critical ecosystem services [7]. Quantifying these multifunctional benefits
is therefore critical for understanding the full potential of these ecosystems and developing
effective environmental policies.

Quantification of biomass is essential to monitor the growth condition, productivity,
and nutrient cycle, including carbon fluxes [8,9] and carbon storage, as outlined in the
Kyoto Protocol [10,11]. Forest biomass estimations are commonly obtained via integrating
remote-sensed and field inventory data with an allometric relationship [11,12]. Methods
that rely on biomass allometric relationships are usually based on easily measurable tree
variables, such as diameter and height. However, these approaches while widely used have
been shown to have some key limitations [13]. It is therefore important that additional
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information, such as tree-specific wood density and tree height [14,15], be included to
improve biomass model assessments [15,16].

Numerous allometric models have been developed at the individual and multispecies
levels, and some of them are compiled regionally [17–19]. The species-specific models
have been proved to provide accurate estimation for the tree species of interest [20–24],
but the models are less reliable when applied to other tree species or sites [23]. Differences
in tree architectures and wood density within and among tree species [25] and sites [17]
therefore limit the reliability of these biomass models. While developing models for each
species and site will improve biomass assessment, this will require significantly more
resources [26]. As such, several species-specific models are fitted with relatively small
sample sizes, often as few as ≤13 individual trees [20,27], which can be a considerable
source of model uncertainty [13,16]. This uncertainty in the aboveground biomass (AGB)
estimates associated with tree species and site variations is prevalent in many regions of
the world, particularly Africa.

Although several local mixed-species models have been developed to obtain better
biomass estimates [26,28,29], they can generate substantial uncertainty when they are
applied to other sites [23]. This is because the models are usually fitted based on a sample
that is specific to a region [30]. On the other hand, a generic mixed-species or pantropical
model developed based on a large dataset of many species covering a wide range of
ecoregions may only be a sufficient tool for AGB estimations at larger scale because they
lack specificity [22,31,32]. As such, uncertainty remains in estimates based on generic
models applied to a particular site. Further, it has been argued that the choice of models
can have significant uncertainty in the biomass estimate [26,33]. With the exception of a few
studies such as van Breugel [26], these sources of uncertainty have been rarely addressed
in the tropical ecosystems of Africa [34].

The Combretum-Terminalia woodlands and wooded grasslands (CTW) are a widely
distributed ecosystem in East Africa including Ethiopia [35]. The CTW of Ethiopia comprise
199 woody species of which nearly 41% are endemic [36], thus having a high potential for
local biodiversity conservation. In addition, it is one of the four major biomes sequestering
carbon in the dryland ecosystems [37–39]. However, estimated carbon reportedly varied
among studies, partly attributable to differences in wood density values used for biomass
estimation. Because there are no generic mixed-species models, information on the wood
density of tree species of CTW is incomplete in the country [40]. Recently, a few local mixed-
species models have been developed for dry Afromontane forests in Ethiopia [30,41,42] but
none for the CTW, except the recently published site-specific model of Abich [43]. Hence,
development and validation of allometric models based on a dataset of many species
collected from several sites are necessary to accurately estimate AGB in the CTW from
plot inventories.

Therefore, in this study, we developed new aboveground biomass species-specific and
site-specific (multispecies) models in Ethiopian CTW, with emphasis on the effects of tree
species, model types, and site variations on the accuracy of the allometric models. The
specific objectives were to: develop single-species and mixed-species allometric models of
AGB using the datasets of three sites; validate the performance of the allometric models
developed here with independent data collected from a different site with similar conditions;
and assess the bias introduced when combining species in a single mixed-species model
and using a distant model developed outside Ethiopia by plot inventory data.

2. Materials and Methods
2.1. Description of the Study Sites

The study was carried out in Metema and Quara districts located in the Amhara
National Regional State and in the Homosha district located in the Benishangul Gumuz
National Regional State (BNRS), Northwest lowlands of Ethiopia. These districts were
selected because they reflect the high dominance of the Combretum-Terminalia woodland and
wooded grasslands (Figure 1), which occur in the northwestern, western, and southwestern
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parts of the country. The altitude ranges from 500 to 1900 m.a.s.l [35,36]. The total area
cover of the CTW is estimated to be 24.5 million hectares. In addition, the vegetation is a
home to diverse plant species, which are characterized by small-to-moderate-sized trees
with fairly large deciduous leaves [36]. The climate is of dry tropical type, characterized by
an average temperature of over 18 ◦C and a prolonged dry season [44].
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2.2. Topography, Climate, and Soils of the Study Sites

Metema is located between 12◦30′0′′–12◦48′0′′ N latitude and 36◦17′0′′–36◦55′0′′ E
longitude. It is characterized by undulating land configuration with an altitudinal range of
550 to 1608 m.a.s.l. The annual rainfall ranges from 514 to 1128 mm with a mean annual
rainfall of 924 mm, whereas the mean monthly minimum and maximum temperatures of
the district are 19.3 ◦C and 35.7 ◦C, respectively [45]. The major soil types in Metema are
vertisols and luvisols [46].

The second study site (Quara; Altash National Park, ANP) is situated between
11◦47′5′′–12◦31′4′′ N latitude and 35◦15′48′′ to 35◦48′51′′ E longitude. Altitudinal range in
the ANP is from 500 in the northern flat plain to 900 m.a.s.l in the south. The mean annual
rainfall is 800 mm, with a minimum of 600 and a maximum of 1200 mm, whereas the mean
monthly minimum and maximum temperatures are 25 ◦C and 35 ◦C, respectively [47]. The
dominant soil types include vertisols, fluvisols, and alluvial deposits dominated by sands
along with river courses (field observation).

The third study site (Homosha) is situated between 10◦8′28′′–10◦29′0′′ N latitude
and 34◦23′44′′–34◦44′5′′ E longitude. According to the report of the BNRS Meteorological
Agency (2018), the district receives a mean annual rainfall of 1200 mm, while the mean
monthly minimum and maximum temperatures are 11.7 ◦C and 28.7 ◦C, respectively. This
site is characterized by an altitudinal range of 1544–1634 m.a.s.l.

2.3. Field Data Collection

The development of models considered the distribution of tree species, and their size,
which were collected from the three aforementioned sites. Initially, we carried out forest
inventory for appropriate selection of sample trees, a total of 100 sample plots, each plot
measuring 20 m × 30 m (i.e., 40 plots for Homosha in the protected area of 21,681 hectares
and 60 plots for Quara in the ANP), were surveyed using systematic sampling approach.
In each plot, all trees with a diameter at breast height (DBH) ≥ 5 cm and total height (H in
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meter, m) were recorded and measured. The local and scientific names of the species were
identified with the assistance of a local person (botanist) and the identification key [48].
Tree basal areas were estimated to determine the most dominant tree species. Accordingly,
ten most dominant tree species were selected, occupying more than 80% of the total basal
area of the surveyed CTW (Table A1 in Appendix A) for harvesting.

2.4. Selection of Sample Trees for Harvesting

For this study, thirteen species were considered in the development of the allometric
models. The inventoried tree individuals were categorized into seven diameter classes
in order to harvest representative trees covering a wide diameter and height spectrum
(Table A1 in Appendix A). Accordingly, a total of 321 individual trees, comprising 102 for
Quara, 118 for Homosha, and 101 for Metema, were harvested. Please note that data from
Metema were obtained from a previous study [43] and used in the validation process of
established models.

2.5. Biomass Measurement

Prior to felling, the DBH and diameter at stump height of a sampled tree were mea-
sured with a caliper. The AGB included all parts of the tree above the ground, excluding
flower and seed parts (since it was not the onset season for flowering). The sampled tree
was cut at stump height (30 cm above the ground). Then, the total height of the felled
tree including its stump was measured using meter tape. Felled tree was partitioned into
stump, stem, branches, and leaves. Fresh weights were measured immediately on the site
using a hanging 100 kg bipod spring balance. The stump diameter and its length were
also measured for the volume calculations, then converted to biomass with the wood den-
sity [49]. From each biomass component, subsamples were taken, labeled, and measured
for dry-to-fresh weight ratio determination. The discs with different diameter sizes (with
a width of ≥5 cm) were taken from the stem and branches and dried under shade for six
months, whereas the leaf and twigs subsamples were oven-dried immediately. The stem
and branch subsamples were oven-dried at 105 ◦C for 48 h, whereas the leaf and twigs
were oven-dried at 70 ◦C for 48 h until constant weight. The fresh-to-dry weight ratios
were used, afterward, to compute the total dry weight of each biomass component. Finally,
the AGB of each tree felled in the field was calculated by summing all biomass components
for that tree.

For basic wood density over bark determination, discs having a different thickness
were taken at the bottom (at 30 cm height above the ground), DBH, mid-point between
DBH and stem toward top stem, and top stem height with a width of 5 cm. The green
weight for all disc samples was measured. In addition, for branches, disc samples were
also taken from diameter classes of 5–10, 11–15, and >16 cm. Although the green volume of
the disc can be estimated through water displacement, it was difficult for trees with a large
diameter size. It was thus measured following a method described in a previous study [43].

2.6. Data Analysis

The AGB measurement dataset of Metema constituting nine species was used as
independent data for validating species-specific and mixed-species models developed for
Quara and Homosha. The datasets of all sites were combined for developing a general
model. This is to validate the general models over species and sites.

2.6.1. Fitting and Evaluating the Allometric Models

The allometric scaling relationship (M1) was linearized using the natural logarithm,
for compliance with the normality and the equal variances assumptions for the residual
errors [50]. The use of the linearized form of the power-law function yielded more accurate
biomass models than the nonlinear function [51,52]. Log-linear regression was thus applied
to the entire datasets to fit the models. The parameters of the models were estimated using
the ordinary least squares method. The data were organized as AGB datasets of (i) a given
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species (species-specific, AGBss), (ii) mixed-species of a given site (site-specific, AGBsm),
and (iii) a combined dataset of all species and sites referred to as the general model. All
analyses were carried out using the R version 4.1.2 software [53].

AGB = β0DBHβ1 + ε M1

ln(AGB) = ln(β 0) + β1 ln(DBH) + ε M2

where ε and M refer to the random error and model, respectively. The bias correction factor
(CF) developed by Baskerville [54] was applied to back-transformed natural logarithmic
function [22]. It is computed from the residual standard error (RSE) of the fitted model as
CF = exp(RSE2/2).

A visual inspection was also used to confirm the absence of heteroscedasticity on
the plot of standardized residual errors against log-transformed predicted AGB. The per-
formance of the models was assessed on the basis of the percent relative standard error
(PRSE = (SE/|β|)∗100, where SE and |β| refer to standard error and the absolute value
of the parameter, respectively), the adjusted coefficient of determination (R2), the propor-
tion of variance explained by predictor variables, the relative mean error (RME%), the
relative mean absolute percentage error (MAPE%), and root mean square error (RMSE,
kg) [13,51]. In addition, Akaike’s information criterion (AIC) was used for comparison
among alternative equations with differing numbers of predictor variables [55].

Uncertainty in biomass estimate occurs when the numbers of predictor variables
increase in the model due to the effect of collinearity between predictors [13]. Additional
model forms (M3, M4, M5, and M6), which are described below, were tested, and their per-
formances were assessed based on the comparison of their fit statistics with those of M2 and
variance inflation factor of the models. Whereas M2, M3, M4, M5, and M6 were tested for
site/multispecies models, only M2, M3, and M6 were tested for the species-specific model
because wood density was incorporated in the models to account for inter-species variation.

ln(AGB) = ln(β 0) + β1ln(DBH) + β2 ln(H) + ε M3

ln(AGB) = ln(β 0) + β1ln(DBH) + β3 ln(ρ) + ε M4

ln(AGB) = ln(β 0) + β1ln(DBH) + β2ln(H) + β3 ln(ρ) + ε M5

ln(AGB) = ln(β 0) + β1ln(DBH 2H
)
+ ε M6

In addition, the applicability of the following models developed for miombo wood-
lands [28] and pantropical forests [31,32] was evaluated.

AGB = 0.0763 ×
(

DBH2.2046 × H0.4918
)

MM

AGB = 0.673 × (DBH 2 Hρ)0.976 Ch14

AGB = 0.112 × (DBH 2 Hρ)0.916 Ch5

where MM, Ch5, and Ch14 refer to Mugasha’s [28] and Chave’s [31,32] models, respectively.
The Greek letter rho (ρ) denotes wood density.

2.6.2. Validation of Species-Specific and Mixed-Species Models

When a model is formulated and fitted, the assessment of its validity is critical to
check if it provides acceptable performance. The assessment can be performed using
various validation methods [56] and statistical inference. There are high chances of having
unbiased models when they are validated using independent data (testing data) [57]. Thus,
the species and mixed-species models fitted for a given site were validated using datasets of
the same species and mixed-species from other sites as testing data, respectively. The mean
percentage error (MPE%, Equation (1)), overall accuracy (relative error, RE% (Equation (2))),



Land 2022, 11, 811 6 of 23

and model efficiency (EF%) were used to evaluate the model performances [58]. To refine
this validation, seven categories were formulated. The first group was formed based on
species (i), where each species was considered as a factor. The other groups were formed
using the site factor because species and site-specific models have less reliability outside the
sites for which the data are obtained. The groups are collated trees of Anogeissus leiocarpa
(ii), Combretum harotomannianum (iii), Combretum molle (iv), Pterocarpus lucens (v), Terminalia
laxiflora (vi) and mixed-species (vii) from the sites. Then, the analysis of covariance or
general linear model (GLM) was applied to assess the effects of species and site variations
on the relationship between DBH and AGB. Levene’s test was used to confirm homogeneity
of residual variances across categories.

MPE% =
100
n

n

∑
n=1

AGBobs,i −AGBpred,i
1
n ∑ AGBobs

(1)

RE% =

√
RMSE

1
n ∑ AGBobs

∗100 (2)

EF% = 1−∑
(AGB obs,i − AGBpred,i

)2

(AGB obs,i − 1
n ∑ AGBobs

)2 ∗ 100 (3)

2.6.3. The Uncertainty in AGB Estimate Associated with Combining Species in a Single
Mixed-Species Model

A cause of uncertainty in the AGB estimate, including the model choice, was examined
based on site-based inventory. The approach of van Breugel [26] was adopted for estimating
the possible bias when different tree species were combined into a single mixed-species
model. This was done by comparing the plot AGB estimate obtained with the mixed-species
models with that obtained with the species-specific models. For this analysis, mixed-species
models including a generic model developed elsewhere outside Ethiopia [28,31,32] were
applied to landscape AGB estimation. Trees not belonging to the studied species in the
model development were removed from the plots. We only used tree species in the plots
with 80% of the original basal area. This assisted us with directly comparing plot-level AGB
estimates of the mixed-species models with estimates generated by the models of a specific
tree species. Finally, the bias and accuracy of the models for each plot (plot i), plot-level,
and across-plot average AGB estimates were estimated as follows.

The relative error (RE) of ploti AGB estimates:

RE% = 100 ∑
AGBss,i − AGBms,i

AGBss,i
(4)

The relative mean absolute error (MAPE) of plot-level AGB estimates, where N refers
to the number of plots:

MAPE% =
100
N

100

∑
N=1

|AGBss,i − AGBms,i|
AGBss,i

(5)

The mean percentage absolute error (MPEA) of across-plot average AGB estimates:

MPEA% =

∣∣∣( 1
N ∑100

N=1 AGBss,i

)
−
(

1
N ∑100

N=1 AGBms,i

)∣∣∣
1
N ∑100

N=1 AGBss,i
(6)

Confidence intervals (CIs) of plot-level AGB estimates by the species-specific mod-
els were estimated based on the information of the species-specific model from van
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Breugel [26]. First, the relative standard error of each species model (RSEi) was estimated
using Equation (7) as:

RSEi =

√
exp

(
MSE
n− p

)
− 1 (7)

where MSE refers to the mean square error of the model from the regression, whereas n and
p are the number of sample trees and the number of parameters in the model, respectively.

Second, the standard error for the AGB estimate for a specific species (SEi) was
estimated with Equation (8) as:

SEi= RSEi∗AGB (8)

The standard error of the plot (SEplot) was estimated with Equation (9) for combina-
tions of uncorrelated variables with different variances as:

SEplot =
√

∑ SE1
2+SE22+ . . . + SE100

2 (9)

Lastly, the 95% CI for the AGB estimate by species-specific models was estimated as
the estimated plot AGB ± 1.96*SEplot. The AGB estimates of the mixed-species models did
show a significant difference when the estimates fell outside the 95% CI. Later, uncertainty
in the AGB estimate due to model selection was assessed to generalize the reliability of
the fitted and generic models for landscape estimation using all species datasets of the
100 plots.

3. Results
3.1. Allometric Models

Parameters of the species-specific models with their standard errors and variance
inflation factors (VIFs) for each tree species are presented in Table 1 and detailed in Table A2
in Appendix B. The models with DBH alone (M2) explained 93.2–99.3% of the variation
in AGB. For most tree species, however, higher VIFs and PRSEs were observed when H
was included in the model. Combining the same species in a single species-specific model
improved the precision (PRSE) of a parameter of the model by 0.3–37.2%. The parameters
of M2 were highly significant (p < 0.0001) with a PRSE of ≤15% for all species. The addition
of height in M2 slightly improved the model performance of some species, and the MAPE
of M3 decreased by 0.6–2.6%. Moreover, the allometric scaling of the DBH and AGB
relationship differed among species, and the slopes ranged from 2.187 to 2.638 (Table 1).
Using a general linear model, the difference was significant when the species were included
as a factor. There was thus a significant slope and intercept difference between species.

Table 1. The best species-specific models with their parameters, a bias correction factor (CF), and
fit statistics. Where MSE, R2, VIF, and n refer to, respectively, the mean squared error, adjusted
coefficient of determination, variance inflation factor, and the number of sample trees.

Species Name Model Forms n
Parameters Fit Statistics

β0 β1 β2 R2 MSE CF VIF MAPE

A. malacophylla M3 51 −3.436 2.276 0.631 0.983 0.015 1.008 2.23 9.7
A. leiocarpa M2 19 −1.462 2.299 - 0.989 0.021 1.010 - 11.4
C. collinum M2 21 −2.143 2.478 - 0.982 0.040 1.020 - 16.2
C. harotomannianum M3 36 −2.395 2.140 0.498 0.972 0.039 1.019 4.61 15.4
C. molle M2 36 −1.535 2.187 0.981 0.029 1.015 13.8
L. fruticosa M2 33 −2.089 2.348 - 0.943 0.079 1.040 - 23.6
P. lucens M2 32 −2.685 2.638 - 0.977 0.043 1.022 - 15.9
T. laxiflora M3 42 −2.773 2.273 0.522 0.977 0.047 1.024 4.73 17.4

The parameters (and standard errors) and the fit statistics of mixed-species models are
presented in Table 2. For site-specific models, with the exception of the models (M3 and M5)
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of the Quara site, the values of VIF ranged from 3.09 to 4.33. The model that combined DBH
and wood density (M4) provided a more accurate estimate with an RMSE of 83.6–76.2 kg
than M3, which included DBH and H with an RMSE of 93.2–104.0 kg. Adding H and wood
density as a compound predictor variable in M2 substantially improved the performance of
M5, with the changes in MAPE and AIC of 2.4–6.7% and 20.9–134.9, respectively (Table A3
in Appendix C). Although the estimated parameters of wood density were significantly
different from zero, the precision of the parameters of M4 and M5 inflated with a PRSE
of 37.5% and 47.5%, respectively, for the model of the Quara site. We observed very little
or no improvement in the fit statistics of M6 that included DBH and H as a single entry
(volume index), and thus the model was not further evaluated.

Table 2. The parameters, correction factors, and validation indicators of mixed-species models for
CTW. The values in the parentheses refer to the standard errors of model parameters.

Model
Forms

Parameters Validation Indicators

β0 β1 β2 β3 R2 CF MRE MAPE RMSE AIC

I. The allometric models of Quara site (n = 102)

M2 −1.972 (0.115) *** 2.394 (0.039) *** - - 0.974 1.028 −5.7 19.4 97.9 939.2
M3 −2.447 (0.143) *** 2.022 (0.085) *** 0.688 (0.142) *** - 0.979 1.023 −4.7 17.4 93.2 931.1
M4 −1.704 (0.150) *** 2.393 (0.038) *** - 0.528 (0.198) ** 0.975 1.026 −5.3 18.4 83.6 909.0
M5 −2.215 (0.178) *** 2.049 (0.084) *** 0.636 (0.142) *** 0.387 (0.184) * 0.979 1.022 −4.3 17.0 86.7 918.3
M6 −2.604 (0.114) *** 0.940 (0.014) *** - - 0.978 1.023 −4.7 17.7 96.3 935.9

II. The allometric models of Homosha site (n = 118)

M2 −2.374 (0.145) *** 2.450 (0.048) *** - - 0.957 1.027 −5.2 19.0 124.3 1146.1
M3 −3.007 (0.168) *** 2.094 (0.074) *** 0.731 (0.125) *** - 0.967 1.021 −4.1 16.6 104 1104.2
M4 −1.514 (0.133) *** 2.451 (0.035) *** - 1.169 (0.113) *** 0.978 1.014 −2.9 13.5 76.2 1030.6
M5 −2.004 (0.168) *** 2.238 (0.059) *** 0.436 (0.101) *** 1.017 (0.111) *** 0.981 1.012 −2.3 12.3 70.2 1011.2
M6 −3.188 (0.144) *** 0.980 (0.017) *** - - 0.966 1.021 −3.9 17.0 101.3 1093.8

III. The general models of the combined dataset of Quara, Homosha, and Metema (n = 321)

M2 −2.064 (0.088) *** 2.381 (0.030) *** - - 0.953 1.042 −8.6 24.9 149.3 3218.0
M3 −2.491 (0.106) *** 2.063 (0.056) *** 0.605 (0.093) *** - 0.959 1.037 −7.5 23.3 127.6 3118.9
M4 −1.462 (0.078) *** 2.394 (0.023) *** - 0.982 (0.064) *** 0.973 1.024 −4.8 17.5 96.1 2936.9
M5 −1.758 (0.098) *** 2.205 (0.045) *** 0.358 (0.075) *** 0.911 (0.064) *** 0.975 1.023 −4.6 17.0 92.7 2915.5
M6 −2.691 (0.098) *** 0.938 (0.011) *** - - 0.957 1.039 −7.9 23.7 120.2 3078.8

Where ***, **, and * refer to significance level at p < 0.0001, 0.01, and 0.04, respectively.

When combining the datasets of the three sites in a single general model, the inflated
standard error of the parameters estimated from the models of specific sites decreased by a
PRSE of 0.3–40.5% (Table A4 in Appendix D). Despite this, general M2 and M3 fitted poorly
and yielded a relatively large MAPE, ranging from 23.3% to 24.9%. The MAPE values of
models were positively correlated with AGB, with the Pearson correlation coefficient of
12.6% (p = 0.024) for M2 (Figure 2, blue color dots) and 3.9% (p = 0.481) for M3 (Figure 2, red
color dots). This was improved when wood density was included in the M2 and resulted
in an increased fitness with a substantial change in the MAPE and AIC values of ≤7.4%
and 281.1, respectively. H and/or wood density combined with DBH improved the model
performances by an MAPE of 7.9% and AIC of 302.5 (Figure 2, black and green color dotes)
compared with M2.



Land 2022, 11, 811 9 of 23

Land 2022, 11, x FOR PEER REVIEW 9 of 23 
 

When combining the datasets of the three sites in a single general model, the inflated 
standard error of the parameters estimated from the models of specific sites decreased by 
a PRSE of 0.3–40.5% (Table A4 in Appendix D). Despite this, general M2 and M3 fitted 
poorly and yielded a relatively large MAPE, ranging from 23.3% to 24.9%. The MAPE 
values of models were positively correlated with AGB, with the Pearson correlation coef-
ficient of 12.6% (p = 0.024) for M2 (Figure 2, blue color dots) and 3.9% (p = 0.481) for M3 
(Figure 2, red color dots). This was improved when wood density was included in the M2 
and resulted in an increased fitness with a substantial change in the MAPE and AIC values 
of ≤7.4% and 281.1, respectively. H and/or wood density combined with DBH improved 
the model performances by an MAPE of 7.9% and AIC of 302.5 (Figure 2, black and green 
color dotes) compared with M2. 

 
Figure 2. The relationship between relative errors and the classes of diameter at breast height (DBH) 
indicates the fitness of the general models. The error bar indicates the 95% confidence intervals of the 
mean. 

3.2. The Impact of Site Variation on the Accuracy of Allometric Models 
Five species with 129 trees collected from a different site were used to validate the 

stability of the best-performing model (M2). Variation in the intraspecific models of the 
species was thus observed among the sites. The validation succeeded for the Anogeissus 
leiocarpa, Combretum molle, and Terminalia laxiflora, with an EF of ≥90.1%, and the MPE 
ranged from −11.73% to 9.28%. However, validation failed when we applied the M2 of 
Pterocarpus lucens developed from Quara and Homosha to the testing data of the species 
collected from Metema, and vice versa, with MPE ranging from −25.14% to 15.17%. A sim-
ilar result was attained for Combretum harotomannianum (Table A5 in Appendix E), ex-
plained by a significant variation among sites (p < 0.0001). Combining species collected 
from several sites into a single species-specific model, however, improved the perfor-
mance of the model by up to the RE of 22.6%, resulting in unbiased models. With the 
exception of tree Combretum harotomannianum, the addition of the site factor alone or in-
teraction with DBH in the GLM did not show a significant (p > 0.05) difference in both the 
slopes and intercepts among sites. 

Furthermore, the mixed-species model that excluded wood density of Quara and Ho-
mosha poorly performed with an EF of <90%, resulting in a large bias in the AGB estimate 
of testing data. The MPE and RE of the models ranged from −23.50% to 19.67% and from 

Figure 2. The relationship between relative errors and the classes of diameter at breast height (DBH)
indicates the fitness of the general models. The error bar indicates the 95% confidence intervals of
the mean.

3.2. The Impact of Site Variation on the Accuracy of Allometric Models

Five species with 129 trees collected from a different site were used to validate the
stability of the best-performing model (M2). Variation in the intraspecific models of the
species was thus observed among the sites. The validation succeeded for the Anogeissus
leiocarpa, Combretum molle, and Terminalia laxiflora, with an EF of ≥90.1%, and the MPE
ranged from −11.73% to 9.28%. However, validation failed when we applied the M2 of
Pterocarpus lucens developed from Quara and Homosha to the testing data of the species
collected from Metema, and vice versa, with MPE ranging from −25.14% to 15.17%. A
similar result was attained for Combretum harotomannianum (Table A5 in Appendix E),
explained by a significant variation among sites (p < 0.0001). Combining species collected
from several sites into a single species-specific model, however, improved the performance
of the model by up to the RE of 22.6%, resulting in unbiased models. With the exception of
tree Combretum harotomannianum, the addition of the site factor alone or interaction with
DBH in the GLM did not show a significant (p > 0.05) difference in both the slopes and
intercepts among sites.

Furthermore, the mixed-species model that excluded wood density of Quara and
Homosha poorly performed with an EF of <90%, resulting in a large bias in the AGB
estimate of testing data. The MPE and RE of the models ranged from −23.50% to 19.67%
and from 41.3% to 74.4%, respectively, indicating that model choice can be a source of
uncertainty in AGB. This was significantly explained by variation in the sites. The model
that included wood density, however, could attain a positive validation with a stable
variance of residual errors (Figure 3), resulting in a substantial decrease in the MPE and
RE values (Table 3), and confirmed the effect of wood density on the accuracy of AGB
estimation. These validations were tested with the GLM; there were significant differences
in the parameter estimates of the models among the sites but with multiple comparisons
(Bonferroni method) showing that the main difference was only significant between sites
when the model was based on DBH alone and/or H.
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Table 3. The performance of mixed-species models and their validation indicators over the testing
dataset. The bolded model forms indicate the best-performing models over the testing dataset.

Model Validated Testing Dataset Model Forms
Validation Indicators

EF% MPE% RE%

Models of Quara

Metema

M2 66.5 −13.48 74.4
M3 81.0 −4.26 56.1
M4 87.3 −0.11 45.8
M5 89.4 4.21 41.7

Homosha

M2 86.6 −23.50 51.1
M3 90.9 −20.10 42.1
M4 91.4 −7.80 40.8
M5 93.4 −10.10 35.8

Models of Homosha

Metema

M2 75.0 7.60 64.3
M3 81.6 14.78 55.1
M4 93.2 6.58 33.4
M5 92.6 11.22 35.0

Quara

M2 85.7 19.67 44.1
M3 87.5 19.05 41.3
M4 93.0 −6.52 30.8
M5 93.4 −2.97 30.1
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3.3. The Uncertainty in the AGB Estimate Associated with the Mixed-Species Model

The mixed-species M4 was better than M2 for the plot AGB estimate with an MAPE
of 16.3–20.5%, and nearly 90% of plots fell within the CIs of corresponding estimations
based on the species-specific models. A more accurate AGB estimate was obtained when
using the models that included H with DBH and combined DBH, H, and wood density
(Figure 4a, green color dotes). Apart from the Homosha site, the M3 model provided
similar accurate results to the across-plot AGB estimate with the MPEA ranging from 13.6%
to 14.8% (Figure 4b, red color dotes). Moreover, M5 gained additional accuracy in the
plot-level (MAPE ranged from 11.2 to 16.9%) and the across-plot AGB estimates with an
MPEA of 10.5–15.1% and RE of 16.6–22.5%. Similar results were attained when comparing
the AGB estimates using the site-specific and general models.

Land 2022, 11, x FOR PEER REVIEW 11 of 23 
 

Homosha 

M2 86.6 −23.50 51.1 
M3 90.9 −20.10 42.1 
M4 91.4 −7.80 40.8 
M5 93.4 −10.10 35.8 

Models of Homosha  

Metema 

M2 75.0 7.60 64.3 
M3 81.6 14.78 55.1 
M4 93.2 6.58 33.4 
M5 92.6 11.22 35.0 

Quara  

M2 85.7 19.67 44.1 
M3 87.5 19.05 41.3 
M4 93.0 −6.52 30.8 
M5 93.4 −2.97 30.1 

3.3. The Uncertainty in the AGB Estimate Associated with the Mixed-Species Model 
The mixed-species M4 was better than M2 for the plot AGB estimate with an MAPE 

of 16.3–20.5%, and nearly 90% of plots fell within the CIs of corresponding estimations 
based on the species-specific models. A more accurate AGB estimate was obtained when 
using the models that included H with DBH and combined DBH, H, and wood density 
(Figure 4a, green color dotes). Apart from the Homosha site, the M3 model provided similar 
accurate results to the across-plot AGB estimate with the MPEA ranging from 13.6% to 14.8% 
(Figure 4b, red color dotes). Moreover, M5 gained additional accuracy in the plot-level 
(MAPE ranged from 11.2 to 16.9%) and the across-plot AGB estimates with an MPEA of 10.5–
15.1% and RE of 16.6–22.5%. Similar results were attained when comparing the AGB esti-
mates using the site-specific and general models. 

  
Figure 4. The relative errors in plot (a) and across-plot (b) AGB estimates result from combining the 
species in mixed-species models and using the distant models. The symbols of MM, Ch5, and Ch14 
refer to the models of Mugasha and Chave, respectively, as defined in Section 2.6.1. The error bar 
indicates the 95% CIs of the mean. 

The best selected model (M4) that included wood density and DBH using fit statistics 
and testing data at tree level was not performing well when applying the plot and across-
plot AGB estimates, except for the model of Homosha (Table 4). The model produced a 
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refer to the models of Mugasha and Chave, respectively, as defined in Section 2.6.1. The error bar
indicates the 95% CIs of the mean.

The best selected model (M4) that included wood density and DBH using fit statistics
and testing data at tree level was not performing well when applying the plot and across-
plot AGB estimates, except for the model of Homosha (Table 4). The model produced a large
bias estimate for the study sites. Similarly, for the study site, a generic model produced
a large bias, resulting in a higher variation in the MAPE (23.7–26.8%) of AGB among
plots (Figure 4a, orange and light blue color triangles). Likewise, an unreliable across-plot
estimate was attained using the generic models with an MPEA of 25.4–27.2% (Figure 4b)
and RE of 22.2–36.4%. It was more noticeable for Chave et al.’s [31,32] models, making the
selection of the model and predictor variable an important source of uncertainty.

Finally, a mean estimate of the landscape AGB ranged from 40.2 (±2.21) to
66.1 (±3.42) Mg ha−1. This variation in AGB stocks was reflected in the variability of
mixed-species models used for estimation. With the Tukey post hoc test, the differences
were significant between estimates using the generic models of pantropical forests and
models developed in this study (p < 0.05). However, the estimates were comparable and
accurate when using the M3 and M5 of each site, combined dataset, and Mugasha’s [28]
model, with the mean AGB ranging from 55.0 (±2.80) to 63.3 (±3.24) Mg ha−1. Moreover,
the general model based on both DBH and H slightly improved the precision of landscape
AGB estimate by 0.2% of the coefficient of variation when compared with the model that
included DBH, H, and wood density.
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Table 4. Performance of mixed-species models resulted in bias in the plot and across-plot AGB estimates.

Origins of the Models Model Forms
Validation Indicators

MAPE% Std. dev. MPEA% Std. Error RE%

Homosha

M2 24.1 16.52 22.8 2.15 31.3
M3 18.1 9.85 18.2 1.98 26.8
M4 16.3 22.16 14.7 1.86 23.7
M5 11.2 12.35 10.5 1.29 16.6

Metema

M2 23.4 24.65 21.5 2.28 31.2
M3 14.4 15.76 13.6 1.61 21.0
M4 19.6 25.97 17.4 2.17 27.7
M5 16.9 18.68 15.1 1.67 22.4

Quara

M2 26.1 33.37 23.2 2.76 35.9
M3 15.5 17.77 14.4 1.69 22.1
M4 20.5 26.641 18.6 2.26 292
M5 12.8 14.87 12.3 1.55 19.7

Combined dataset

M2 23.4 23.96 21.6 2.29 31.4
M3 15.2 13.20 14.8 1.73 22.7
M4 17.4 22.74 16.0 1.99 25.4
M5 12.9 15.87 12.2 1.57 19.8

Miombo woodlands MM 16.6 17.88 15.1 1.63 22.2

Pantropical forests Ch5 23.7 7.96 25.5 2.62 36.4
Ch14 26.8 7.80 27.3 2.32 35.7

4. Discussion

The uncertainty in the AGB estimation can be generated from various sources. The
first source occurs in the model, and it is called model prediction uncertainty [57]. The
model building process involves three steps including formulating, fitting, and validat-
ing the model. In each step, model uncertainty can occur due to (a) inadequate predictor
variables used to avoid problems of multicollinearity and lack of wood density data and
(b) validating the fitted model based on the same data. The second source of uncertainty is
also the application of the model developed for a given site to other site-based estimations,
which has been assessed in very few studies (e.g., Paul [23]). In most previous studies, the
model diagnosis and selection process has often involved the same data [28,30]. However, the
uncertainty due to combining tree species into a single mixed-species model and the choice
of the model using independent data, including field inventory, has been rarely assessed.
Such issues were addressed in this study, using AGB measurements of 321 trees comprising
13 species collected from three sites in the CTW of Ethiopia. Moreover, the reliability of the
fitted and the generic models to landscape AGB estimation was validated with the field survey
of 100 plots.

4.1. Developed Allometric Models

The DBH of the sample trees in this study ranged from 5 to 65 cm, resulting in a large
variation in branch architectures and stem forms and a difference in AGB among trees.
Such tree growth phenomena including the structure and functional variables are expressed
by the scaling relationship between DBH and AGB, called the allometric model [59]. The
allometric model thus provided a reliable AGB estimate for all studied species. The
variability of tree size (DBH) reflected in ontogeny impacted the model accuracy as evident
in the review of Enquist [60]. For Albizia malacophylla species, for instance, young trees (the
DBH of 5–20 cm) had the predicted universal scaling exponent and deviated to 2.062 as
trees began to senesce (or reached the DBH of 31–44 cm). Therefore, the selection of sample
trees used to build the model should consider all growth stages (DBH size classes) to match
the target population. Then, trees can be proportionally selected in each class, as done here
and also as suggested by Roxburgh [16].

Regardless of the site, three species attained the predicted universal scaling relation-
ship between DBH and AGB, whereas most of the remaining species deviated below the
theoretical scaling exponent. Similar to the present finding, a lower empirical scaling expo-
nent from the predicted universal value was also attained elsewhere [61]. This variability
in the scaling exponents may be attributed to constraints in ecological conditions [60],
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resulting in structural differences across forest types, and influencing the applicability of a
distant model outside its range.

Despite the non-significant variability of the scaling exponent [60,62], the predicted
scaling exponents differed among species in this study. Such difference may be associated
with the variation in growth conditions, resulting in marked variability of branch architec-
tures and stem forms as detected in the studied species. Consequently, a significant wood
density difference was observed among species (data not shown in this manuscript) and
resulted in a difference in their allometry of AGB. Similarly, a difference in interspecific
models among species was reported [26,43] that was explained by the variability in wood
densities [22,26] and may be associated with a difference in the structures of tree DBH or
H among species. Our result suggests that the presented species-specific models can be
applied to obtain an improved estimate of tree AGB in the CTW.

A mixed-species model was developed with a different form. The results indicate that
the fitted models were highly significant, providing reliable parameter estimates. The AGB
of Quara was accurately determined by M3 with DBH and H together, which is consistent
with comparable studies conducted in Tanzania [28] and Ethiopia [42]. In contrast, adding
more predictors to the model can generate uncertainty that is associated with collinearity
problems among predictors [13,28,63] and availability of wood density [64]. The issue of
collinearity between DBH and H is recognized, but it has no significant impact on the
overall model and associated fit statistics [51]. It has thus been argued that the models with
DBH and wood density [26,32,43] and combined DBH, H, and wood density improve the
accuracy of the AGB estimate [31,32,43]. The result obtained here supports this conclusion;
adding wood density in M2 provided more evidence for the accuracy of AGB than adding
H for all mixed-species datasets, explained by variation in wood densities among species.
In addition, the performance of M2 was significantly improved when H and wood density
were included as compound predictor variables, maintaining the relationship between
residual errors and DBH, and gaining an advantage of decreasing uncertainty in the model.

4.2. The Impact of Site Variations on the Accuracy of Allometric Model

Here, an intraspecific allometry variation was found, resulting from the variability in
geometries and wood densities among trees despite the pattern being inconsistent across
species. This was explained by a difference in wood densities among trees, resulting from
site variations. Similarly, a significant variation in wood densities within species was
reported for tropical forests [25]. In this study, variation in sites did not adversely impact
the mixed-species model accuracy and attained an unbiased AGB estimate with acceptable
uncertainty, which has been previously assigned [58]. This was achieved when using the
model that included wood density, maintaining a linked factor such as species and sites. It
was consistent with the results showing that wood density accounted for a large proportion
of the variation in AGB and improved the performance of mixed-species models [31,41,43].
The best models of a specific site thus provided an accurate AGB estimation for other sites,
which is partly conditioned by similarity in species composition and climatic conditions
over the sites found in the CTW biome.

Moreover, the reliability of the generic models of pantropical forest [31] has often
been tested based on empirical data. The result indicates the absence of consistency in the
validation results among studies: success for miombo woodland [28] and dry Afromontane
forests [30,41] but failure in other studies [43,65]. In this study, the generic models produced
a large error, resulting in a biased estimate, and confirmed that the use of a distant model
is an important source of uncertainty. In contrast, the model developed for miombo
woodland [28] provided reasonable accuracy of AGB estimation for CTW.

4.3. The Uncertainty Associated with the Selections of Mixed-Species Models

The biomass of a forest community may not vary significantly with species compo-
sition, diversity, and altitude and can be represented by a single allometric model [60,66].
This has been assumed to hold a universal scaling exponent that is predicted from individ-



Land 2022, 11, 811 14 of 23

ual trees [62], simplifying the issues of species-specific information. Using such theory, we
quantified the uncertainty in the plot and across-plot AGB estimates associated with the
use of mixed-species models based on field inventory data.

The variability of MAPE in the AGB of plots and across-plot estimates may be at-
tributed to a variation in the tree structures and densities among plots reflected when trees
that did not belong to the studied species were removed. The best mixed-species models,
M5 followed by M3, of specific sites provided accurate plot and across-plot AGB estimates
to the focal site. It agreed with the previous reports showing local multispecies model
results in a reliable estimation for the focal site [26]. For AGB estimation with the allometric
model, precision is particularly important [23] for policy involved in climate change miti-
gation including the REDD+ initiative [64]. In addition, the mixed-species models with an
MAPE of 18–20% did not require additional validation [67]. These arguments support the
results of this study, which obtained a precise across-plot AGB estimate using the M3 and
M5 of Metema. When compared to the site-specific models, the general models attained a
similar accuracy of the plot and across-plot AGB estimates and were slightly better than
the site-specific models of the Metema site.

In contrast to the finding of van Breugel [26], the inclusion of wood density with
DBH inflated the bias of plot and across-plot AGB estimates in this study. A large part
of the variation in the AGB estimates was explained by M3 but performed poorly in
the model building and validating process. This indicates that a model formulation and
selection process based on only statistical inference, especially when the model diagnosis
is performed on the same data, may reject a useful variable, which was supported by
Chatfield [57]. Wood density, however, was a key predictor of AGB when it was combined
with DBH and H in the model and contributed to the improvement in the accuracy of
AGB estimates. It was consistent with results indicating that incorporating wood density
with DBH and H in the model can reduce the effect of environmental factors on the AGB
estimates of tropical forests. Moreover, assigning the threshold of PRSE alone may not be a
useful indicator for evaluating model performance as found here and verified in a previous
study [51]. Our result suggests that the model diagnosis should be supported by existing
theory with the knowledge of experts in addition to statistical inference.

In this study, a mixed-species model based on DBH alone consistently provided an
unreliable estimate of landscape AGB. For a given model form, although the evidence was
not significant, the model that included H with DBH achieved slight improvement in the
accuracy of the landscape AGB estimate. It was consistent with the previous result showing
that a model that included wood density and DBH is unreliable to estimate landscape
AGB [26]. This may be partly explained by assigning the averaged wood density of the
community to the trees not belonging to the studied species. When compared to site-specific
models, the selected general models did show very slight improvement in the accuracy of
the landscape AGB estimate with the relative standard error of 5.1%, illustrating a negligible
effect of site variations, and confirmed the advantage of combining species into a single
allometric model. The general model based on both DBH and H contributed to obtaining
precision in the landscape AGB estimate for CTW. This is particularly important to reduce
the availability and cost of the collection of wood density data. Direct measurement of
tree height is also relatively practical since the density of trees of CTW is lower than other
natural forests, making an advantage of reducing error in height measurements.

Furthermore, the best mixed-species models of CTW were more accurate than the
generic models of pantropical forests. The generic models significantly influenced all levels
of estimations and underestimated the landscape AGB by more than 20%. This may be
associated with a difference in ecological features especially structural diversity resulting
from the variation in succession stages between forests. For instance, the generic models
constitute a large size of trees collated from matured tropical forests growing in optimum
conditions [44]. In contrast, dry woodland including CTW is characterized by a prolonged
dry season and frequent fires, which affect plant growth. This variation in environmental
conditions may contribute to the variability in plant growth over sites and then result in unique
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phylogenetic allometry. The model that included DBH with H of miombo woodlands [28],
however, provided reasonable precision of the AGB estimate for CTW, indicating the similarity
in vegetation between sites. The results of this study suggest that developing a guideline for
the selection of models can reduce uncertainty in AGB estimation, especially in developing
countries including Ethiopia where allometric models are scarce.

5. Conclusions

The tree allometry of the DBH and AGB relationship was influenced by species and
site, which indicates that applying the distant models is a potential for uncertainty in the
AGB estimate. For a given species, ontogeny allometry comprising all sizes matching the
target population provides an accurate AGB estimate. Tree allometry differences among
species reflect the variation in the growth features of plants such as stem form, branch
architecture, and then wood density among species. Although the impact of site factors
was significant, the best site-specific models are sufficient tools for the estimation of other
sites found in the CTW. The general models based on a dataset of several species collated
from multisite could reduce the uncertainty of the AGB estimate associated with the effects
of species, site variations, and model selection. Our results highlight that tree height with
DBH contributed consistently to the accurate estimate from plot to landscape AGB and
was comparable with the estimate using a model that combined DBH, height, and wood
density. In contrast, the influence of wood density with DBH was restricted to model
calibration, showing the importance of species-specific information. This suggested the
need for collecting community-wide wood density data, especially for model fitting used
for the estimation of landscape-scale AGB. Our best species-specific and mixed-species models
can provide sufficiently reliable AGB and carbon stock estimations, providing a base for forest
carbon accounting and quantifying ecosystem services of the Combretum-Terminalia woodlands,
which is essential to support implementation of payment for environmental services.
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Appendix A

Table A1. The statistical summary of biometric variables such as diameter at breast height (D) and height (H) of the harvested tree species.

Scientific Name

Homosha Quara Metema

n DBH (cm) H (m) n DBH (cm) H (m) n DBH (cm) H (m)

Mean (min–max) Mean (min–max) Mean (min–max) Mean (min–max) Mean (min–max) Mean (min–max)

Albizia malacophylla 51 24.6 (6.8–44.3) 11.5 (4.7–15.0) - - - - - -
Anogeissus leiocarpa 9 29.3 (14.5–44.5) 14.6 (10.4–17.4) 10 21.4 (5.0–40.0) 10.7 (6.0–17.0)
Boswellia papyrifera - - - - - 10 32.1 (9.0–40.0) 10.3 (6.0–14.0)
Combretum collinum - - 21 20.3 (5.0–46.0) 10.7 (3.5–17.5) - - -
Combretum harotomannianum 11 10.7 (6–16.5) 6.8 (5.3–9.5) 12 15.1 (5.0–27.0) 8.7 (4.9–12.8) 13 16.9 (5–30) 8.5 (4.0–13.0)
Combretum molle 23 15.6 (5.0–31.0) 8.5 (4.5–13.4) 13 17.5 (6.0–30.0) 8.2 (4.0–12.0)
Entada africana 12 19.8 (7.8–32.0) 9.6 (6.0–12.2) - - - - - -
Lannea fruticosa 12 22.0 (10.2–31.5) 9.2 (6.6–11.4) 9 27.2 (14.5–43.5) 9.9 (7.3–13.3) 12 18.3 (6.0–34.0) 7.3 (4.0–10.0)
Lonchocarpus laxiflorus 12 18.5 (5.0–32.0) 7.9 (4.0–12.0)
Pterocarpus lucens 12 23 (7.5–60) 12.6 (7.0–19.5) 9 28.8 (8.5–48.6) 12.5 (6.5–17.7) 11 25.2 (8.0–41.0) 10.6 (5.0–16.0)
Sterculia setigera - - - - - 8 39.5 (15.0–65.0) 11.3 (8–15)
Syzygium guineense 9 21.3 (12.5–31.0) 10.1 (7.0–14.0) - - - - - -
Terminalia laxiflora 11 21.0 (7.0–33.5) 10.9 (5.2–14.0) 19 18.8 (5.0–41.3) 8.4 (3.7–13.7) 12 25.1 (7.0–54.0) 9.8 (6.0–17.8)

Appendix B

Table A2. Species-specific models with their parameters (and standard errors) and fit statistics of the species in the Combretum-Terminalia woodlands (CTW). The
abbreviations in the table are defined in Section 2.6.

Species Name Model Forms n

Parameters Fit Statistics

β0 β1 β2 VIF R2 MSE CF
PRSE%

MAPE%
β0 β1 β2

Species-specific equations for dataset of Quara district

A. leiocarpa
M2

9
−1.285 (0.633) *** 2.244 (0.189) *** - - 0.946 0.030 1.015 49.3 8.4 - 13.5

M3 −1.924 (0.874)ns 2.087 (0.240) *** 0.433 (0.411)ns 1.63 0.947 0.030 1.015 45.4 11.5 97.9 12.9
M6 −2.514 (0.759) * 0.931 (0.081) *** - - 0.943 0.032 1.016 30.2 8.7 - 14.4

C. collinum
M2

21
−2.143 (0.217) *** 2.478 (0.075) *** - - 0.982 0.040 1.020 10.1 3.0 - 16.2

M3 −2.199 (0.308) *** 2.416 (0.247) *** 0.101 (0.383)ns 10.39 0.981 0.042 1.021 14.0 10.2 379.2 16.1
M6 −2.632 (0.262) *** 0.944 (0.032) *** - 0.977 0.051 1.026 10.0 3.4 - 18.3

C. harotomannianum
M2

12
−1.863 (0.312) *** 2.392 (0.118) *** - - 0.972 0.047 1.024 16.7 4.9 - 17.6

M3 −3.459 (0.724) ** 1.412 (0.427) ** 1.945 (0.825) * 19.00 0.982 0.032 1.016 20.9 30.2 42.4 12.7
M6 −2.663 (0.296) *** 0.958 (0.040) *** - - 0.981 0.034 1.017 11.1 4.2 - 14.9



Land 2022, 11, 811 17 of 23

Table A2. Cont.

Species Name Model Forms n

Parameters Fit Statistics

β0 β1 β2 VIF R2 MSE CF
PRSE%

MAPE%
β0 β1 β2

C. molle
M2

23
−1.465 (0.113) *** 2.170 (0.042) *** - - 0.992 0.014 1.007 7.7 1.9 - 11.6

M3 −1.791 (0.227) *** 2.124 (0.128) *** 0.201 (0.213)ns 4.40 0.984 0.028 1.014 12.7 6.0 106 11.9
M6 −2.232 (0.215) *** 0.873 (0.029) *** - - 0.977 0.039 1.020 9.6 3.3 - 14.0

Lannea fruticosa
M2

9
−1.917 (0.711) * 2.299 (0.218) *** - - 0.932 0.049 1.025 37.1 9.5 - 16.4

M3 −1.293 (0.958)ns 2.535 (0.326) *** −0.611 (0.625)ns 2.20 0.932 0.049 1.025 74.1 12.9 102.3 13.4
M6 −2.611 (1.054) * 0.930 (0.120) *** - - 0.881 0.085 1.044 40.4 12.9 - 23.9

P. lucens
M2

9
−2.735 (0.254) *** 2.622 (0.078) *** - - 0.993 0.016 1.008 9.3 3.0 - 9.9

M3 −3.119 (0.354) *** 2.307 (0.228) *** 0.566 (0.388)ns 10.00 0.994 0.013 1.010 11.3 9.9 68.6 7.8
M6 −3.409 (0.261) *** 1.023 (0.029) *** - - 0.994 0.014 1.010 7.7 2.8 - 8.6

T. laxiflora
M2

19
−2.086 (0.312) *** 2.439 (0.110) *** - - 0.965 0.076 1.039 15.0 4.5 - 20.8

M3 −2.767 (0.386) *** 1.978 (0.209) *** 0.945 (0.379) * 4.72 0.973 0.058 1.029 14.0 10.6 40.1 18.6
M6 −2.789 (0.290) *** 0.980 (0.037) *** - - 0.975 0.055 1.028 10.4 3.8 - 18.6

Species-specific equations that were developed based on datasets of the three study sites

A. malacophylla
M2

51
−2.641 (0.176) *** 2.511 (0.055) *** - - 0.976 0.021 1.011 6.7 2.2 - 12.3

M3 −3.436 (0.231) *** 2.276 (0.07) *** 0.631 (0.140) *** 2.23 0.983 0.015 1.008 6.7 3.1 22.2 9.7
M6 −3.901 (0.186) *** 1.051 (0.021) *** - - 0.980 0.017 1.009 4.8 2.0 - 11.1

A. leiocarpa
M2

19
−1.462 (0.177) *** 2.299 (0.056) *** - - 0.989 0.021 1.010 12.1 2.4 - 11.4

M3 −1.705 (0.304) *** 2.162 (0.150) *** 0.268 (0.272)ns 7.11 0.989 0.021 1.010 17.8 6.9 101.5 11.1
M6 −2.254 (0.221) *** 0.911 (0.025) *** - - 0.986 0.026 1.013 9.8 2.7 - 13.4

C. collinum
M2

21
−2.143 (0.217) *** 2.478 (0.075) *** - - 0.982 0.040 1.020 10.1 3.0 - 16.2

M3 −2.199 (0.308) *** 2.416 (0.247) *** 0.101 (0.383)ns 10.39 0.981 0.042 1.021 14.0 10.2 379.2 16.1
M6 −2.632 (0.262) *** 0.944 (0.032) *** - - 0.977 0.051 1.026 10.0 3.4 - 18.3

C. harotomannianum
M2

36
−2.120 (0.190) *** 2.428 (0.073) *** - - 0.969 0.043 1.022 9.0 3.0 - 16

M3 −2.395 (0.219) *** 2.140 (0.148) *** 0.498 (0.227) * 4.61 0.972 0.039 1.019 9.1 6.9 45.6 15.4
M6 −2.596 (0.201) *** 0.935 (0.028) *** - - 0.970 0.042 1.021 7.7 3.0 - 16.3

Combretum molle
M2

36
−1.535 (0.139) *** 2.187 (0.051) *** - - 0.981 0.029 1.015 9.1 2.3 - 13.8

M3 −2.057 (0.182) *** 1.843 (0.101) *** 0.689 (0.183) ** 5.42 0.986 0.021 1.011 8.8 5.5 26.6 11.3
M6 −2.185 (0.130) *** 0.873 (0.017) *** - - 0.986 0.021 1.011 5.9 1.9 - 11.3

L. fruticosa
M2

33
−2.089 (0.308) *** 2.348 (0.101) *** - - 0.943 0.079 1.040 14.7 4.3 - 23.6

M3 −1.923 (0.402) *** 2.442 (0.176) *** −0.209 (0.320)ns 2.96 0.942 0.080 1.041 20.9 7.2 153.1 23.6
M6 −2.694 (0.402) *** 0.938 (0.049) *** - - 0.920 0.110 1.057 14.9 5.2 - 28

P. lucens
M2

32
−2.685 (0.229) *** 2.638 (0.072) *** - - 0.977 0.043 1.022 8.5 2.7 - 15.9

M3 −2.998 (0.306) *** 2.451 (0.143) *** 0.368 (0.244)ns 4.06 0.978 0.041 1.021 10.2 5.8 66.3 15.1
M6 −3.503 (0.272) *** 1.042 (0.031) *** - - 0.973 0.051 1.026 7.8 3.0 - 17.5

T. laxiflora
M2

42
−2.439 (0.192) *** 2.551 (0.065) *** - - 0.974 0.053 1.027 7.9 2.5 - 18.5

M3 −2.773 (0.231) *** 2.273 (0.133) *** 0.522 (0.222) * 4.73 0.977 0.047 1.024 8.3 5.9 42.5 17.4
M6 −3.039 (0.205) *** 1.002 (0.025) *** - - 0.975 0.052 1.026 6.7 2.5 - 18.9

Where ***, **, *, and ns refer to significance level at p < 0.0001, 0.01, 0.04, and non-significant, respectively.
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Appendix C

Table A3. Difference in fit statistics when models based on D alone were compared with models that used compound predictor variables (combination of predictor
variables) for the mixed-species data. A negative change in R2 (∆R2) indicates that the second model exhibits greater R2 value so that the second model performed
better than the first model. A positive change in the relative mean absolute error (∆MAPE%), root mean square error (∆RMSE in kg), and Akaike’s information
criterion (∆AIC) with increasing values indicates that the second model is better than the first model.

Modes Comparison of Models Involved
Fit Statistics

∆R2 ∆MAPE% ∆RMSE (kg) ∆AIC

Quara
M2 using D alone–M3 using D and H −0.004 2.0 4.7 8.1
M2–M4 using D and ρ −0.001 1.0 14.3 30.2
M2–M5 using D, H, and ρ −0.005 2.4 11.2 20.9

Homosha
M2–M3 −0.010 2.4 20.3 41.9
M2–M4 −0.021 5.5 48.1 115.5
M2–M5 −0.024 6.7 54.1 134.9

Combined data
M2–M3 −0.006 1.6 21.7 99.1
M2–M4 −0.020 7.4 53.2 281.1
M2–M5 −0.022 7.9 56.6 302.2
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Appendix D

Table A4. The parameters of mixed-species models (and the standard errors) with their PRSE% of the sites and CTW.

Model
Parameters

R2
PRSE%

β0 β1 β2 β3 β0 β1 β2 β3 VIF

I. Allometric models of Quara site (n = 102)

M2 −1.972 (0.115) 2.394 (0.039) - - 0.974 5.8 1.6 - -
M3 −2.447 (0.143) 2.022 (0.085) 0.688 (0.142) - 0.979 5.8 4.2 20.6 - 5.73
M4 −1.704 (0.150) 2.393 (0.038) - 0.528 (0.198) 0.975 8.8 1.6 - 37.7
M5 −2.215 (0.178) 2.049 (0.084) 0.636 (0.142) 0.387 (0.184) 0.979 8.0 4.1 22.3 47.5 5.90
M6 −2.604 (0.114) 0.940 (0.014) - - 0.978 4.4 1.5 - -

II. Allometric models of Homosha site (n = 118)

M2 −2.374 (0.145) 2.450 (0.048) - - 0.957 6.1 2.0 - - -
M3 −3.007 (0.168) 2.094 (0.074) 0.731 (0.125) - 0.967 5.6 3.5 17.1 - 3.09
M4 −1.514 (0.133) 2.451 (0.035) - 1.169 (0.113) 0.978 8.8 1.4 - -
M5 −2.004 (0.168) 2.238 (0.059) 0.436 (0.101) 1.017 (0.111) 0.981 8.4 2.6 23.2 - 3.44
M6 3.188 (0.144) 0.980 (0.017) - - 0.966 4.5 1.7 - - -

III. Allometric models for combined dataset of Quara, Homosha, and Metema (n = 321)

M2 −2.064 (0.088) 2.381 (0.030) - - 0.953 4.3 1.3 - - -
M3 −2.491 (0.106) 2.063 (0.056) 0.605 (0.093) - 0.959 4.3 2.7 15.4 - 4.10
M4 −1.462 (0.078) 2.394 (0.023) - 0.982 (0.064) 0.973 5.3 1.0 - 6.5 -
M5 −1.758 (0.098) 2.205 (0.045) 0.358 (0.075) 0.911 (0.064) 0.975 5.6 2.0 20.9 7.0 4.33
M6 −2.691 (0.092) 0.938 (0.011) - - 0.957 3.4 1.2 - - -
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Appendix E

Table A5. Validation of species-specific models and fit statistics that show the effect of site variation on the accuracy of aboveground biomass.

Best Model of Quara (QM), Homosha (HM), and
Mixed Trees (MMt) over Metema Data Best Model of Metema (MM), HM, and MMt over Quara Data Best Model of MM, QM, and MMt over Homosha Data

EF% MPE% RE% EF% MPE% RE% EF% MPE% RE%

Pterocarpus lucens

QM 86.4 15.17 36.3 MM 87.9 −20.89 30.3 MM 98.7 −5.31 19.8
HM 91.9 −3.07 28.3 HM 82.3 −25.14 36.7 QM 98.7 11.56 20.3
MMt 91.3 4.41 29.5 MMt 93.2 −14.87 22.8 MMt 99.7 −0.02 10.2

Terminalia laxiflora

QM 97.5 6.29 20.7 MM 91.4 9.28 40.5 MM 95.0 4.24 17.7
HM 99.6 −3.47 8.2 HM 92.1 4.83 38.7 QM 95.6 0.49 16.5
MMt 99.3 2.52 10.7 MMt 90.1 6.98 43.5 MMt 95.6 0.47 16.5

Combretum harotomannianum

QM 87.7 −22.73 63.2 MM 90.7 16.04 25.8 MM 90.1 −5.94 18.8
HM 82.2 19.43 25.5 HM 73.9 31.29 43.2 QM 32.8 −37.13 49.1
MMt 95.3 −5.82 39.4 MMt 93.0 10.96 22.3 MMt 80.4 −15.82 26.5

Combretum molle Combretum molle

QM 90.1 −11.73 25.9 MM 98.4 3.25 11.6
MMt 90.4 −10.70 25.4 MMt 98.4 2.05 11.5

Anogeissus leiocarpa

QM 97.1 2.84 24.2 MM 91.1 −4.47 16.3
MMt 97.3 2.25 25.4 MMt 92.3 −3.02 15.2
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