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Abstract: Methods enabling stakeholders to receive information on plant stress in agricultural settings
in a timely manner can help mitigate a possible decrease in plant productivity. The present work
aims to study the soil–plant interaction using field measurements of plant reflectance, soil water
content, and selected soil physical and chemical parameters. Particular emphasis was placed on
sloping transects. We further compared ground- and Sentinel-2 satellite-based Normalized Vegetation
Index (NDVI) time series data in different land use types. The Photochemical Reflectance Index (PRI)
and NDVI were measured concurrently with calculating the fraction of absorbed photochemically
active radiation (fAPAR) and leaf area index (LAI) values of three vegetation types (a grassland,
three vineyard sites, and a cropland with maize). Each land use site had an upper and a lower
study point of a given slope. The NDVI, fAPAR, and LAI averaged values were the lowest for
the grassland (0.293, 0.197, and 0.51, respectively), which showed the highest signs of water stress.
Maize had the highest NDVI values (0.653) among vegetation types. Slope position affected NDVI,
PRI, and fAPAR values significantly for the grassland and cropland (p < 0.05), while the soil water
content (SWC) was different for all three vineyard sites (p < 0.05). The strongest connections were
observed between soil physical and chemical parameters and NDVI values for the vineyard samples
and the selected soil parameters and PRI for the grassland. Measured and satellite-retrieved NDVI
values of the different land use types were compared, and strong correlations (r = 0.761) between
the methods were found. For the maize, the satellite-based NDVI values were higher, while for the
grassland they were slightly lower compared to the field-based measurements. Our study indicated
that incorporating Sentinel-derived NDVI can greatly improve the value of field monitoring and
provides an opportunity to extend field research in more depth. The present study further highlights
the close relations in the soil–plant–water system, and continuous monitoring can greatly help in
developing site-specific climate change mitigating methods.

Keywords: land use sites; soil parameters; plant stress; spectral reflectance; NDVI; satellite imagery

1. Introduction

Plant health and productivity in agricultural settings have vital roles in ecosystem
health and economic benefits. Changes in precipitation amounts and intensities concurrent
with increasing air temperatures are a common threat to the agricultural fields arising
from climate change [1]. Food security is becoming a major issue worldwide [2], and
land suitability for crop growth might shift due to climatic change [3]. Environmental
changes, such as drought or soil chemistry modifications, can be reflected in changes in the
physical appearance of plants [4,5]. These changes can provide rapid information about
plant health, indicating the need for further action to secure plant productivity. The best
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way to prepare and to develop mitigating measures from climate change-related negative
impacts is to monitor changes of the complex plant–soil–water system to the varying
environmental conditions.

Monitoring of plant health may consist of observing belowground environmental
conditions such as soil water content (SWC) or temperature, and aboveground plant
conditions such as leaf greenness or canopy density. Spectral properties of plants, such as
the Normalized Vegetation Index (NDVI) or the Photochemical Reflectance Index (PRI),
can be used to monitor plant health and soil–plant–water relations. NDVI might be used to
retrieve data on plant greenness and density [6]. It can also be used as a proxy for annual
aboveground net primary production (NPP), commonly integrated over the entire growing
season [7]. Plant stress induced by soil water- or nutrient-related changes can be studied by
measuring PRI [8,9]. The fraction of absorbed photosynthetically active radiation (fAPAR)
values can be used for estimating the leaf area index (LAI), providing information on
canopy structure. Leaf surface area plays an important role in the global cycles of carbon,
nitrogen, and water [10]. The LAI has been widely used as an indicator of plant health.
The chlorophyll content is highly affected by leaf nitrogen concentrations as leaves are an
important part of the photosynthetic activities in many aspects [11]. The information on
plant LAI is not only a vital part of understanding a given ecosystem, but also an important
input for crop yield or climate models [12].

Soil physical and chemical characteristics can greatly influence plant growth and
development. In agricultural lands, the spatial variations of topography, physical, and
chemical characteristics of soils result in varying crop and fruit yield, which for vineyards
can be crucial for wine quality and volume [13]. While spatial heterogeneity due to erosion
or topographic conditions changes the soil characteristics the plants are growing in, the
plants also change soil conditions as they grow [14]. A healthy plant takes up a higher
amount of water and nutrients from the soil during its development compared to an ailing
plant with lower biomass or a less dense root structure.

Slope position can greatly affect plant growth, mainly due to differences in soil physical
and chemical properties resulting from soil erosion processes, or radiation exposure due
to elevation changes. SWC can vary at a different part of the slopes as soil hydraulic
conditions change [15]. Soil properties, especially organic matter content, can explain a
significant portion of crop yield or fruit production differences at a given topographical
land feature [16]. Due to soil redistribution processes, the upper portions of the slopes
are often more degraded, while at lower parts, soil depositions occur. Consequently,
NPP can also decrease towards the upper portion of a slope, as soil water content or
nitrogen availability might decrease [17]. Soil deterioration and land degradation are major
threats to crop production; therefore, to keep agricultural lands sustainable, conservational
soil management practices should be implemented whenever possible [18]. However, to
develop proper conservation strategies, some background knowledge on land resource use
and monitoring activities is necessary.

While the topography of a given area influences the spatial distribution of soil prop-
erties, such as organic matter content [19,20], the land use type is another major factor
controlling soil chemistry [21]. Plants in different land use types have varying nutrition
and water needs. For example, compared to grass, grapes need 30% less water, while
maize needs approximately 10% more [22]. Therefore, the same amount of precipitation
might be right for grapes but can cause water stress for maize in rainfed lands. Plants with
deeper root structures promote preferential water flow, enabling rainwater to enter the
deeper part of the soil matrix, which in turn is available for plant uptake during drought
conditions [23,24]. Soil water content is one of the major factors affecting soil ecosystem
health, which is highly dependent on the water-holding capacity (WHC) of a given soil.
WHC is an important soil physical parameter for plant available water in drought-prone
areas, and especially, with increasing soil temperatures due to climatic changes, the evap-
oration rates can also be expected to increase. Sandy soils have lower, while clayey soils
have higher water-holding capacities, however the soil chemistry such as organic matter
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content [25] or the soil management system used [26,27] can also affect the soils’ WHC.
Therefore, improving plant available WHC of soils is an important aspect of mitigating
climate change-related negative effects.

Satellite images have become extensively useful tools to access data on terrestrial
information, such as crop yield estimates or plant health. Sentinel-2 products with free
accessibility of the complete archive of 10–20 m resolution images along with the computing
ability of the Google Earth Engine [28] enable researchers to better assess remote sensing
applications for ground measurements. Sentinel-2 data have been successfully used for
crop yield estimation [29,30]. Furthermore, NDVI or canopy data derived from satellite
imagery can be important crop model input parameters, resulting in a better estimation of
crop or fruit yield [31].

To better understand the soil–plant–water relations under varying land use types
and environmental conditions, field measurements can offer valuable information. While
atmospheric conditions such as ozone or water vapor content can influence sensor re-
flectance [32], optical satellite imagery is dependent on cloud-free views [33]. Therefore,
field observations supplemented with satellite imagery data provide a more accurate
assessment of a given study site.

The aim of the present study was to investigate the relationship between soil parame-
ters (soil chemistry, water content, and temperature) and plant reflectance using handheld
sensor sets. We also analyzed how slope position affects plant health, as indicated by
differences in NDVI, PRI, and fAPAR. Furthermore, data from Sentinel-2 satellite imagery
provided an opportunity to further expand the information from our field measurements,
affording a more comprehensive picture of the study sites.

2. Materials and Methods
2.1. Site Description

The study sites are located in a small agricultural catchment of the Csorsza stream,
which feeds Lake Balaton in Hungary. The total area of the catchment is 21 km2.

The present experiment was carried out in 2021 during the vegetation period
(30 June–9 September). Three main land use types with a total of five slopes were se-
lected for the study, with a total of fourteen measuring points. The exact locations of the
study sites and points are shown in Figure 1. The land use types and slope inclinations are
the following: cropland with 0–5% slope, two vineyards of BCs (abbreviation is based on
location, Balatoncsicsó) and GB (abbreviation is based on location, Gergely Vineyard) with
8–10% and 12–18% slope, respectively, and grassland with 5–10% slope. The soils at the
investigated land use sites are Cambisols and Calcisols, according to WRB [34].

From the five investigated slopes, three of them were vineyard slopes, each with three
or four measurement points (upper, lower, and a middle point regarding its position on the
slope gradient; Figure 1a,c). The fourth was a cropland and the fifth was a grassland slope
having 2-2 measuring points (one upper and one lower slope position; Figure 1b,d).

Meteorological data were collected from the meteorological station located at the
catchment outlet (Figure 1). The daily cumulative precipitation and average air and midday
temperatures are shown in Figure 2. The midday data represent the average temperature
when field measurements were conducted, i.e., the points in Figure 2 were based on
measurements from 10:00 to 14:00.
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A crop rotation system was applied on the field, with maize (Zea mays L.) sown in
2021. At the BCs vineyard, the grape variety is called Riesling (Vitis vinifera L.), while at the
GB vineyard, Furmint (Vitis vinifera L.) is grown, and both are white wine grape varieties.
The GB vineyard is currently planted with grass inter-rows between the rows, with no
tillage. At the BCs site, we investigated plots with grass inter-rows (NT), as well as plots
with tilled soil management (T) performed between rows. In 2021, the tilled site had red
clover (Trifolium pretense L.) and rye (Secale cereal L.) sown between the rows. The grassland
normally has occasional mowing events performed, which in 2021 was once in early July.

2.2. Plant Measurements/Ground Validation Samples

In 2021, field measurements were collected on 7 occasions in the different land use
types using a handheld sensor set. This sensor set setup is shown in Figure 3 and included
PRI, NDVI, photochemically active radiation (PAR; METER Group, Pullman, WA, USA),
and soil water and temperature sensors (TEROS 12; METER Group).



Land 2022, 11, 774 5 of 18Land 2022, 11, x FOR PEER REVIEW 5 of 18 
 

 
Figure 3. Workflow of the experimental data collection including a schematic diagram of the 
handheld sensor set setup used to measure selected plant and soil parameters. 

From the measured PAR values, we calculated the fraction of the absorbed PAR as a 
difference of the hemispherical and below-canopy radiation flux over the above-canopy 
radiation flux [35]. Photon flux values are presented in µmol m−2 s−1. At the same time as 
the PAR measurements, spectral reflectance sensors of PRI and NDVI were measuring 532 
and 570 nm and 630 and 800 nm spectral irradiance, respectively. 

The PRI values were calculated based on Gamon [36] using the following equation: 

PRI = Pr/Pi532nm − Pr/Pi570nm 

PRI = Pr/Pi532nm + Pr/Pi570nm 
(1)

where Pr represents the field stop lens sensor for reflected radiation from the canopy, 
while Pi is the hemispherical sensor for incident radiation values. The uncorrected reflec-
tance values (Pr/Pi) were calculated for each waveband (532 and 570 nm) and used to 
calculate uncorrected PRI. 

The NDVI values were calculated based on radiance [36,37] using the following equa-
tion: 

NDVI = Nr/Ni800nm − Nr/Ni630nm 

NDVI = Nr/Ni800nm + Nr/Ni630nm 
(2)

where Nr represents the field stop lens sensor for reflected radiation from the canopy, 
while Ni is the hemispherical sensor for incident radiation values. The uncorrected reflec-
tance values (Nr/Ni) were calculated for each waveband (630 and 800 nm) and used to 
calculate uncorrected NDVI. 

While PAR sensors were placed below the canopy, the NDVI and PRI sensors were 
set into nadir view 2.5 m aboveground. All hemispheric data were collected from nearby 
immobile stations. 

Along with the spectral reflectance sensors, we also used two soil water content and 
temperature sensors to further analyze the connections between soil water and plant re-
lations. These sensors measured the volumetric water contents of the top 12 cm of the 
soils. 

Concurrent with the handheld sensor set measurements, we determined the leaf area 
index (LAI) of all three plant types using an AccuPAR LP 80 instrument, which computes 
the LAI from above- and below-canopy readings of PAR and the leaf angle distribution 
parameter. Chlorophyll content of the grapevine leaves at the veraison stage was also 

Figure 3. Workflow of the experimental data collection including a schematic diagram of the handheld
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From the measured PAR values, we calculated the fraction of the absorbed PAR as a
difference of the hemispherical and below-canopy radiation flux over the above-canopy
radiation flux [35]. Photon flux values are presented in µmol m−2 s−1. At the same time
as the PAR measurements, spectral reflectance sensors of PRI and NDVI were measuring
532 and 570 nm and 630 and 800 nm spectral irradiance, respectively.

The PRI values were calculated based on Gamon [36] using the following equation:

PRI = Pr/Pi532nm − Pr/Pi570nm
PRI = Pr/Pi532nm + Pr/Pi570nm

(1)

where Pr represents the field stop lens sensor for reflected radiation from the canopy, while
Pi is the hemispherical sensor for incident radiation values. The uncorrected reflectance
values (Pr/Pi) were calculated for each waveband (532 and 570 nm) and used to calculate
uncorrected PRI.

The NDVI values were calculated based on radiance [36,37] using the following equation:

NDVI = Nr/Ni800nm − Nr/Ni630nm
NDVI = Nr/Ni800nm + Nr/Ni630nm

(2)

where Nr represents the field stop lens sensor for reflected radiation from the canopy, while
Ni is the hemispherical sensor for incident radiation values. The uncorrected reflectance
values (Nr/Ni) were calculated for each waveband (630 and 800 nm) and used to calculate
uncorrected NDVI.

While PAR sensors were placed below the canopy, the NDVI and PRI sensors were
set into nadir view 2.5 m aboveground. All hemispheric data were collected from nearby
immobile stations.

Along with the spectral reflectance sensors, we also used two soil water content
and temperature sensors to further analyze the connections between soil water and plant
relations. These sensors measured the volumetric water contents of the top 12 cm of
the soils.

Concurrent with the handheld sensor set measurements, we determined the leaf area
index (LAI) of all three plant types using an AccuPAR LP 80 instrument, which computes
the LAI from above- and below-canopy readings of PAR and the leaf angle distribution
parameter. Chlorophyll content of the grapevine leaves at the veraison stage was also
measured to increase our understanding of the soil–plant–water interactions. We used an
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Apogee MC-100 instrument, where the values were provided in chlorophyll content index
(CCI) for general measurements. The instrument calculates the chlorophyll content from
the ratio of optical transmission at 931 nm (NIR wavelength) to the optical transmission at
653 nm (red wavelength). Due to the extreme drought conditions during the measurement
time, both the grassland and maize dried out, and therefore measurements were not
conducted at these sites.

Most measurements were reduced to 5 values (PRI, PAR, NDVI) or 10 values (SWC, soil
temperature, and chlorophyll) per sampling site for each measurement day and averaged.
For the LAI values, 40 measurements were averaged per measurement point.

2.3. Soil Sampling

Soil samples for chemical analyses were collected in triplicates, from the upper 0–20 cm
of the soil layer. Samples were homogenized, sieved (<2 mm), and analyzed for total
nitrogen, NH4

+-N, NO3
−-N, K2O (ammonium lactate soluble), P2O5 (ammonium lactate

soluble), soil organic carbon (SOC) content, electrical conductivity, and pHH2O. The amount
of total nitrogen was determined using the modified Kjeldahl method (ISO 11261:1995).
The amount of organic carbon was measured by wet digestion based on the Tyurin method.
K2O and P2O5 values were measured using inductively coupled plasma optical emission
spectrometry (ICP-OES, Ultima 2, Thermo Fischer Scientific, Waltham, MA, USA) after
ammonium lactate extraction. The soil pH was measured in 1:2.5 soil:water suspensions.
Soil element concentrations are reported as mg kg−1 dry weight soil.

2.4. Sentinel-2 Imagery and Pre-Processing

The source of the data is from the European Space Agency’s Sentinel-2 satellite
equipped with multispectral sensors. The Level-2A (MSIL2A) images are orthorectified,
corrected for atmospheric distortions, and pixel values are transformed to surface re-
flectance, with 10 m resolutions on spectral bands needed for calculations presented in
the paper. Sentinel-2 satellite images were captured every 5 days of our experimental site.
Data between June 26 (the last satellite passing before the first field measurement) and
14 September 2021 (the first satellite passing after our last field measurement) were col-
lected, and all images also covered the time when ground measurements were performed.
Therefore, during our measurement period, altogether, 17 occasions were retrieved when
the Sentinel-2 satellite passed by our field sites. For each satellite passing, four imageries
could be collected that covered our study sites, and the pixel values were averaged. Among
these 17 downloaded images, 6 were omitted due to cloudiness. The NDVI values were
calculated from the NIR and Red bands and were exported in the EOV projection sys-
tem (EPSG: 23700). In QGIS, we selected all the NDVI values corresponding to our field
measurement points for each satellite crossing date.

2.5. Statistical Analysis

The effects of slope positions and land use types (vineyard, grassland, or cropland)
on soil water contents and plant parameters (spectral reflectance and PAR values) were
analyzed using nonparametric statistical analyses of the Wilcoxon test and Kruskal–Wallis
ANOVA for the non-normally distributed datasets. Pearson’s correlation coefficient (r) was
used to evaluate the linear correlation between the soils’ physical and chemical characteris-
tics and plant parameters. Principal component analysis (PCA) multivariate analysis was
applied to explore the factor pattern of the selected soil and plant parameters. All statistical
calculations were performed using the software package R (for the figures the ggplot2, for
the correlation the Hmisc, for the Wilcoxon test the ggpubr, and for the statistical letters the
multcomp, multcompView packages were used; R Core Team, Version 4.0.2). Statistical
significance of the datasets was determined at p < 0.05.
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3. Results
3.1. Soil–Plant–Water Relations at Different Slope Positions and Land Use Types

Soil and plant measurements were conducted at the upper and lower points of slopes
for each land use type, including intermediate points in the vineyards.

Our data show that slope position has a strong influence on plant parameters. The
NDVI values were higher for plants at the bottom of the slopes for most land use types,
except the tilled BCs vineyard. The highest overall NDVI was observed for the lower point
of the cropland (0.690) and the lowest for the grassland upper point (0.280). The PRI values
were similar for the BCs sites both at the bottom and upper points of the slopes (Figure 4).
The largest difference of the PRI values between the slope positions was observed for
the maize (cropland), where plants at the lower part had over three times higher values
compared to the upper point’s values. For the GB vineyard, the grassland and the cropland
each had significantly different NDVI and PRI values between the slope positions. The
fAPAR values between the slope positions showed clear differences, whereby the vineyard
and cropland sites had higher values at the bottom than at the top (Figure 4). However,
these differences were not significant.
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Based on the mean of the seven measuring dates, the soil water content was the
lowest at the BCs no-till site lower point (9.15%), followed by the cropland upper point
(10.55%). Remarkably, the highest average SWC was observed for the BCs no-till upper
point followed, by the BCs tilled site’s upper point. The soil temperatures were similar
between the upper and lower study points for most of the respective land use types. The
soil temperature did not differ much, it was between 31.33 and 34.86 ◦C (BCs no-till upper
point and grassland’s upper point, respectively).

The lowest average NDVI was measured for the grassland (0.293) and the highest for
the maize (0.653); however, compared to the maize, the BCs sites had similarly high values
observed. All NDVI values were significantly different among land use types (p < 0.001).
The PRI values were much higher for the BCs sites compared to all other sites. Except for
the BCs tilled and no-tilled sites, and between the GB and grassland, all land use types had
significantly different PRI values (p < 0.05). The fAPAR values of maize and grapevine were
similar (average for maize 0.645, and for the grapevines 0.548), while for grassland it was
substantially lower (average 0.197). The highest average fAPAR value was observed for
maize (0.645). Statistically, the grassland had significantly lower fAPAR values compared
to the other land use types (p < 0.01), while most other sites were similar. LAI values were
relatively low in all measured points due to the extremely dry and hot conditions in the
study period. The highest overall values were observed for the two BCs vineyard sites (2.35
and 2.54 for BCs NT and T, respectively). The lowest LAI value was noted in the grassland
(0.51). Interestingly, the slope upper points had higher LAI values compared to the lower
ones, with significant differences (p < 0.01 for vineyards BCs NT and GB, and grassland),
except for the cropland, where the overall values were very similar (p > 0.05).

The SWCs of the investigated land use types were relatively alike and varied between
11.2% and 13.7% for the measurement times. Statistically, only the grassland and BCs
no-tilled site (p < 0.05) and grassland and cropland were significantly different (p < 0.01).
Similar to the SWCs, the overall soil temperatures showed small variations, between
32.0 (BCs tilled) and 34.4 ◦C (grassland) during our measuring times, and the only signifi-
cant difference was observed between grassland and BCs tilled sites (p < 0.01).

Leaf chlorophyll contents were measured for all three vineyard sites, and the content
values are shown in Figure 5. The highest chlorophyll contents were measured in the
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BCs vineyards’ tilled sites, while the lowest was observed for the GB vineyard. We found
that slope positions significantly influenced the chlorophyll contents as the lower points’
values were significantly higher compared to the middle or the upper points’ data for the
investigated slopes (Figure 5).
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3.2. Soil–Plant–Water Relations

To better understand the relationships between overall plant traits and soil charac-
teristics, selected soil physical and chemical parameters were measured in the laboratory.
The basic soil physical and chemical characteristics of the investigated land use types are
summarized in Table 1.

Table 1. Physical and chemical characteristics of the land use types investigated in the experiment.
Sand 2–0.05 mm, silt 0.05–0.002 mm, and clay <0.002 mm particle sizes. SOC represents soil organic
carbon values. Samples were collected in 2020. Different letters indicate statistically significant
differences at p < 0.05. n = 6. Mean ± SD.

Cropland Grassland Vineyard T (BCs) Vineyard NT (BCs) Vineyard (GB)

Sand (%) 10.4 ± 1.9 e 19.5 ± 3.2 c 28.6 ± 6.7 b 28.8 ± 5.9 a 13.2 ± 1.9 d
Silt (%) 45.3 ± 4.7 c 46.0 ± 1.8 c 57.3 ± 5.5 a 55.6 ± 1.7 b 40.9 ± 4.1 d

Clay (%) 44.3 ± 6.3 a 34.6 ± 3.7 b 18.0 ± 11.8 c 17.2 ± 7.1 c 45.9 ± 5.1 a
Total N % 0.24 ± 0 c 0.57 ± 0.1 a 0.17 ± 0 d 0.18 ± 0 d 0.31 ± 0.1 b

NH4-N mg/kg 7.6 ± 3.1 c 16.8 ± 9.9 a 6.0 ± 1.7 c 6.8 ± 1.7 c 11.1 ± 5.1 b
NO3-N mg/kg 27.9 ± 11.3 ab 33.2 ± 43.7 a 26.1 ± 7.4 ab 17.2 ± 7.4 b 15.1 ± 4.6 b

SOC % 1.8 ± 0.1 c 5.4 ± 1.1 a 1.3 ± 0.3 d 1.4 ± 0.3 d 2.5 ± 0.3 b
pH(H2O) 7.9 ± 0.2 a 7.1 ± 0.2 c 7.9 ± 0.2 a 7.7 ± 0.2 b 7.6 ± 0.2 b

Al-K2O mg/kg 417.3 ± 109.4 bc 442.4 ± 157.7 bc 491.7 ± 134.5 b 407.6 ± 115.2 c 1282.8 ± 284.9 a
Al-P2O5 mg/kg 513.7 ± 228.7 a 114.0 ± 77.8 d 439.5 ± 137.6 ab 375.1 ± 83.2 bc 311.5 ± 188.2 c

C/N 7.6 ± 0.3 c 9.6 ± 0.6 a 7.7 ± 0.5 c 8.1 ± 0.5 bc 8.2 ± 0.6 b

Among the land use types, cropland had the lowest sand concentration and one of the
highest clay contents (Table 1). The highest sand and lowest clay contents were observed for
the BCs vineyards, showing that even though different soil management is being performed,
the soil structure is still similar in the adjacent slopes. Soil pH was slightly basic for all land
use types. Grassland had approximately three times higher nitrogen content compared to
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the other land use sites, along with the highest SOC content (Table 1). Among the land use
sites, cropland had the highest P2O5 and vineyard GB the highest K2O content.

Correlation analysis was performed to see how strong the connections are between
the investigated soil and plant parameters. Correlation analysis was conducted based on
data from each land use type, separately.

NDVI and fAPAR values were well-correlated for the cropland (r = 0.64; p = 0.02),
while NDVI and PRI showed a weaker, positive correlation in the vineyards (r = 0.42;
p = 0.22; Table 2). The LAI was well-correlated with the NDVI values for the cropland and
the vineyards (r = 0.51 and 0.83, respectively). The SWC was moderately correlated with
the NDVI values for the vineyards (r = 0.56; p = 0.09) and showed no significant correlation
with the selected parameters (Table 2). Soil temperature negatively affected most of the
plant parameters, especially SWC (r = −0.25–−0.30; Table 2).

Table 2. Pearson correlation analysis (r) and p-value (p) between the investigated plant and soil
parameters. Correlation is significant * at the 0.05 and ** the 0.01 levels. n = 14.

Cropland

r/p fAPAR NDVI PRI SWC Temp LAI

fAPAR 0.637 −0.042 −0.009 0.139 0.140
NDVI 0.026 * −0.186 0.271 −0.023 0.506

PRI 0.898 0.562 0.244 0.137 0.231
SWC 0.977 0.394 0.444 −0.248 0.455
Temp 0.666 0.943 0.672 0.437 −0.143
LAI 0.665 0.093 0.469 0.137 0.657

Grassland

r/p fAPAR NDVI PRI SWC Temp LAI

fAPAR 0.238 0.006 −0.172 −0.138 0.183
NDVI 0.457 0.241 −0.121 0.330 −0.380

PRI 0.985 0.451 −0.225 −0.005 −0.412
SWC 0.594 0.708 0.482 −0.388 −0.172
Temp 0.668 0.294 0.989 0.213 0.200
LAI 0.568 0.223 0.183 0.592 0.534

Vineyards

r/p fAPAR NDVI PRI SWC Temp LAI

fAPAR 0.223 −0.233 −0.391 0.250 0.013
NDVI 0.536 0.423 0.564 −0.300 0.830

PRI 0.517 0.223 0.423 −0.008 0.358
SWC 0.264 0.089 0.223 −0.301 0.367
Temp 0.486 0.400 0.983 0.397 −0.132
LAI 0.971 0.003 ** 0.309 0.297 0.717

Besides soil water and plant data, we included soil chemical measurements such
as pH, soil organic carbon (SOC), total nitrogen, NH4

+, NO3
−, K2O, P2O5, and C/N, as

described in Table 1. The results of the Pearson correlation analysis for plant parameters,
soil water content, and soil temperature compared to soil physical and chemical values
are summarized in Table 3. For the vineyards, strong negative correlations were observed
between NDVI and clay, SOC, N, K2O, and NH4

−-N contents of the soil (r > −0.63; p < 0.01;
Table 3, Figure 6). For the vineyard samples, NDVI had a strong positive correlation with
soil pH (r > 0.87; p < 0.01 Table 3) and moderate correlations with sand, silt, and NO3

−

contents (r > 0.53). fAPAR values showed a moderate positive correlation with soil C/N
for the cropland (r = 0.52) and with P2O5 for the vineyards (r = 0.58). From the soil physical
parameters, sand had a positive effect (r = 0.64; p = 0.02), while clay had a negative influence
(r = −0.58; p = 0.04) on the grassland’s PRI values.
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Table 3. Pearson correlation analysis (r) and p-value between the investigated plant and soil parame-
ters. Correlation is significant * at the 0.05 and ** at the 0.01 levels. n = 14.

Cropland

r fAPAR NDVI PRI SWC Temp LAI

Sand 0.23 0.25 0.10 −0.32 0.34 −0.32
Silt 0.02 0.28 0.31 0.05 0.12 0.01

Clay −0.09 −0.29 −0.26 0.06 −0.20 0.09
N −0.15 −0.27 −0.24 −0.04 −0.13 0.06

NH4
+-N −0.24 0.01 −0.13 0.43 −0.45 0.41

NO3
−-N 0.17 0.07 −0.28 −0.29 0.46 −0.36

SOC 0.23 −0.07 −0.47 −0.11 0.20 −0.12
pH −0.31 −0.31 0.63 * 0.47 −0.57 0.25

K2O −0.04 −0.20 −0.38 −0.03 −0.21 0.01
P2O5 0.00 −0.16 −0.52 −0.18 −0.01 −0.02
C/N 0.52 0.23 −0.39 −0.09 0.48 −0.22

Grassland

r fAPAR NDVI PRI SWC Temp LAI

Sand −0.26 −0.13 0.64 * −0.24 0.01 −0.05
Silt −0.37 0.31 0.05 −0.20 0.74 ** −0.24

Clay 0.42 −0.06 −0.58 * 0.32 −0.41 0.18
N −0.19 −0.18 0.60 * −0.17 −0.11 −0.22

NH4
+-N 0.02 −0.10 0.23 0.35 −0.68 * −0.12

NO3
−-N 0.18 −0.27 0.14 −0.08 −0.53 −0.10

SOC −0.26 −0.10 0.72 ** −0.26 0.11 −0.26
pH −0.05 −0.06 0.62 * 0.25 −0.59 * −0.66 *

K2O −0.33 0.11 0.74 ** −0.24 0.05 −0.46
P2O5 −0.29 0.07 0.72 ** −0.07 −0.01 −0.46
C/N −0.22 0.25 0.36 −0.20 0.61 * −0.14

Vineyards

r fAPAR NDVI PRI SWC Temp LAI

Sand 0.41 0.53 0.43 0.00 −0.30 0.31
Silt 0.06 0.67 * 0.33 0.31 −0.49 0.51

Clay −0.24 −0.63 −0.40 −0.17 0.41 −0.43
N −0.12 −0.66 * −0.40 −0.28 0.39 −0.43

NH4
+-N 0.20 −0.78 ** −0.44 −0.57 0.38 −0.65 *

NO3
−-N −0.16 0.56 −0.04 0.50 −0.46 0.55

SOC −0.19 −0.68 * −0.38 −0.28 0.40 −0.41
pH 0.35 0.87 ** 0.12 0.50 −0.26 0.58

K2O −0.01 −0.70 * −0.58 −0.33 0.34 −0.52
P2O5 0.58 0.29 −0.15 −0.07 −0.27 0.18
C/N −0.42 −0.58 −0.04 −0.35 0.27 −0.17

The PCA revealed that the first principal component (PC1) accounted for 41.3% of the
variation caused by the interaction, while PC2 accounted for 17.2% (Figure 6). The data
show clear partitioning of grassland and vineyard GB samples from the vineyard BCs sites
and cropland along the PC1, concurrent with partitioning of grassland from vineyard GB
and cropland along PC2.
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3.3. Remote Sensing Versus Field NDVI Measurements

Ground measurements and Sentinel-2 imagery were used to study NDVI values at
each land use type and location. We found that for the GB vineyard and the grassland,
our measurements were lower than the satellite-retrieved NDVI data (Figure 7). For the
cropland, our measurements had systematically higher estimated NDVI values compared
to the Sentinel-2 values.

Land 2022, 11, x FOR PEER REVIEW 12 of 18 
 

and cropland along the PC1, concurrent with partitioning of grassland from vineyard GB 
and cropland along PC2. 

 
Figure 6. Principal component analysis (PCA) ordination biplot for the five selected slopes with 
environmental variables (selected soil parameters and plant traits) represented as vectors, and the 
pairwise representation of the study sites. Asterisks represent the study site averages. 

3.3. Remote Sensing Versus Field NDVI Measurements 
Ground measurements and Sentinel-2 imagery were used to study NDVI values at 

each land use type and location. We found that for the GB vineyard and the grassland, 
our measurements were lower than the satellite-retrieved NDVI data (Figure 7). For the 
cropland, our measurements had systematically higher estimated NDVI values com-
pared to the Sentinel-2 values. 

 

Figure 7. Measured (blue) and satellite-retrieved (red) NDVI values of the different land use types.
The square represents the lower slope points, and the triangle represents the upper slope points.



Land 2022, 11, 774 13 of 18

Figure 8 shows the correlation between the measured and satellite-retrieved NDVI
values, where the different slope positions and the overall comparison are separately shown.
The upper and lower measurement points showed very strong and strong correlations
(r = 0.811 and 0.791, respectively) when analyzed separately. Based on all the retrieved
points, we found a strong correlation (r = 0.761, p < 0.001) between the satellite imagery-
based and field-measured NDVI values (Figure 8).
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While most of the vegetation period was under dry conditions, a larger precipitation
event (16.4 mm) occurred on 1 August, which increased the top 12 cm of the soil column
from 9.4% to 21.5% average SWC for the study sites by 2 August, which was one of the
field measurement days. We observed no significant differences between the NDVI values
measured before and after the precipitation nor the satellite-retrieved NDVI data (p > 0.05).

4. Discussion

Monitoring plant responses to the changing environmental conditions might provide
immediate knowledge on stress-related changes. Besides meteorological conditions, these
changes can arise from soil nutrient or soil water content (SWC) deficiencies. The year 2021
was an exceptionally dry year for the study site, with 399.4 mm of precipitation in total
measured at the study catchment outlet. During the investigated period (June–September),
only three rain events had more than 10 mm of precipitation, which is below the average
expected in this area [38].

The physical properties of the soil can greatly influence SWC, as hydrological proper-
ties such as hydraulic conductivity are highly dependent on particle and aggregate size
distribution. While the soil particle size distribution can vary with depth and position in a
given land use type, the soil hydraulic properties can correlate well with soil pedological
properties [39]. Our study showed that at BCs sites, the slope position affected SWC, and
at the lower points, SWCs were lower compared to the upper points. One of the possible
reasons is that the upper points at this study site had 64% and 42% higher clay contents
(T and NT, respectively) compared to the lower points, where finer grain sizes such as
clay can hold more water during drought conditions [40]. Dlapa et al. [41] investigated
pore size distribution and water retention differences of various land use types and found
that grassland has higher water retention than arable land, concurrent with SOC content.
Our study also highlighted that grassland and vineyard GB were the two land use types
with the highest SOC contents, and they also had the highest SWC in the upper 12 cm
of the soil layer. However, our SWC measurements were very similar between most of
the measuring times, and therefore our deduction is not sufficiently supported without
additional measures after larger precipitation events.

The PRI can be used to assess changes in leaf reflectance that can be an outcome
of either soil nutrient- or water-related stress [5,9]. Higher PRI might be expected at
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low light intensity conditions as most light is being utilized by the plants, while the PRI
might decrease at high light intensities [42]. Our results indicate that increases in the
SWC increased the PRI values, and therefore the studied plants suggest better light use
efficiency at better soil water conditions. The overall PRI among land use types suggests
that the cropland, grassland, and vineyard GB sites were under stress, while the grapes
at the BCs vineyard sites showed the least distress. One of the most likely reasons for
the differences is the root length. Grass and maize have the densest root structure in the
upper 20–40 cm soil layer [43], while grape roots can go as deep as 10–15 m [44]. Therefore,
during drought conditions when the top soil layer is very dry, the deeper grape roots can
remove some soil water and nutrients. We also noted differences between the PRI values of
the two vineyard sites. The GB vineyard has highly eroded topsoil, and therefore the grape
roots are limited by the proximity of the bedrock, while the grape roots are not restricted
in growth at the BCs vineyard site. Based on soil chemistry, we found no connections to
the PRI variations. While we found weak connections between PRI and LAI values, others
found strong relations [45]; however, our data are limited to one vegetation period when
mainly drought conditions were present.

The effects of temperature and precipitation changes on plant biomass production
can be monitored using NDVI values. In our study sites, grassland was the driest, and
the plants had not recovered after an early July mowing event, as was shown in the very
low NDVI values both in the field measurements and satellite-retrieved data. The day
after a larger precipitation event in August, we conducted a field measurement, however
the NDVI values showed no significant differences compared to earlier values. Plant
responses to the increasing SWC might take longer than a day to show differences in their
physiology [8], which also depends on the time water takes to infiltrate into the deeper
soil layers where roots can uptake it. Drought conditions can result in decreasing NDVI
values, as was observed in many studies [4,46,47]. We found a strong correlation between
fAPAR and NDVI values for the vineyards. A healthier canopy is not only greener but can
also be denser, and therefore the connection between our parameters could be expected.
NDVI is known to reflect in canopy changes, such as leaf movement or wilting [48], and
therefore it is a useful tool to detect overall plant structural changes. However, PRI is
more suitable for plant physiological changes because it is better linked to the process of
photosynthesis [49]. The LAI and fAPAR values can correlate well, and both provide similar
information on plant canopy and health. However, while fAPAR values were measured
from the below-canopy and above-canopy values only, the LAI values were averaged from
the top to bottom measurements for the grapevines and maize, and therefore weak positive
correlations are acceptable.

The chlorophyll contents were measured for the three vineyard sites at a veraison
stage. We found that slope position greatly affected the leaf chlorophyll content; however,
soil management also showed high variations among the grape leaves’ chlorophyll values.
Chlorophyll content can decrease under drought conditions; however, depending on the
type of grapes, it might not be significantly affected [50]. Tillage can also negatively affect
the leaves’ chlorophyll content [50]; conversely, in our study, we observed positive effects
in the veraison stage. However, as leaf chlorophyll contents of grapes have high spatio-
temporal variability [51], more measurements should be performed at other phenology
phases to better understand plant development. Chlorophyll contents can be strongly
correlated to NDVI and PRI values [45], and therefore further measurements would enable
us to establish more profound deductions. Soil chemistry influences plant growth, and the
addition of nutrients to the soil can help in plant development. In many vineyards, organic
or inorganic fertilizer or compost addition might be applicable. High carbon and NPK
concentrations in compost can increase soil quality for plants, and consequently, increase
the chlorophyll concentrations of the grapevine leaves [52].

During summer months, SWC and air temperature are the main factors affecting
NDVI [53]. High soil temperature increases evaporation rates, which consequently reduces
water infiltration into the deeper layers of the soil. SWC did not correlate well with our
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plant parameters of NDVI, PRI, or fAPAR, except for the vineyards. The magnitude of
the correlations between NDVI and SWC or soil temperature values highly depended on
the vegetation type. Cui et al. [54] found positive and significant correlations between
NDVI and temperature and weak negative, non-significant correlations between NDVI
and precipitation. In our study, we only investigated soil temperature and water content,
however, with NDVI and soil temperature, we found mixed results of both negative and
positive weak correlations depending on vegetation types. In the present study, the SWC
and temperature values were based on the top 12 cm of the soil column and were highly
dependent on the time of the measurements. During the study period, there was a long
drought period along with high air temperatures. These factors limited our ability to fully
investigate the effects of SWC and soil temperature on the plant parameters under study.
Therefore, more frequent measurements, especially before and after rain events or longer
cold front events, might provide more precise deductions.

Satellite- and field-based NDVI measurements showed a strong correlation in our
study. However, the Sentinel-2 satellite-based imagery used 100 m2 data, compared to our
handheld sensors with a maximum of 2.07 m2 per measurement point depending on the
plant type and height. While for the grassland and maize after canopy closure, both meth-
ods can approximate good correlations, for the vineyard sites, the row spacing includes
either grass or cover crops. To overcome alterations in the integrated NDVI values, correc-
tions to the solar elevation (e.g., the sunlit and shaded soil) should also be considered [55].
Therefore, for the vineyards and croplands prior to full canopy development, the handheld
instrument can be a great tool to assess the differences between overall site-specific values.
On the other hand, the handheld sensor set only measures certain spectra of the reflected
lights, while the satellite imagery enables us to capture more vegetation indices, such as the
enhanced vegetation index (EVI), soil-adjusted vegetation index (SAVI), or the chlorophyll
vegetation index (CVI). These additionally derived indices can be used to further enhance
our knowledge on site-specific plant growth and development.

5. Conclusions

The soil–plant–water system was investigated by establishing soil physical, chemical,
and hydrological characteristics along with plant traits of NDVI, PRI, fAPAR, LAI, and leaf
chlorophyll content. In our study, the highest stress conditions for plants were observed
for the grassland site, where most plant parameters were much lower compared to the
vineyard or cropland sites (e.g., NDVI, fAPAR, LAI). We found that slope position can
significantly influence plant development due to soil management or erosion-related soil
physical and chemical changes. Therefore, our results highlight the importance of soil–plant–
water relationships and their interactions, as soil property changes due to environmental
conditions result in changing parameters for plants to grow, or by the plant itself by
taking up nutrients from soil or developing dense root structures. Slope position also
showed clearly distinguishable results on grapevine leaf chlorophyll concentrations, as
the plants located at the slope upper positions had significantly lower chlorophyll levels
compared to the plants at the lower points. The soil temperatures were generally higher
at the upper points of a given slope, which increases evaporation and can consequently
decrease SWC at lower soil layers. Therefore, careful evaluation should be conducted in
these areas prior to crop sowing. In addition to ground measurements, we also analyzed
satellite imagery and noted a strong correlation between the collected values. We found
that incorporating satellite imagery into our analysis could greatly improve and add depth
to our findings. Nevertheless, this study is the first analysis on the area of concern, and
the in situ measurement methods and the use of satellite imagery can be further refined.
Our field measurements were carried out in an exceptionally dry year, when SWCs were
very low and soil and air temperatures were high. To draw more accurate conclusions,
additional measurement points from a wetter growing season or even after wetter weather
periods should be included. We also plan to extend the study with multiple vegetation
indices on a spatio-temporal scale.
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