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Abstract: The cultural landscape of Chiang Mai city, which is characterized by the interlinkage
between mountain and historical settlement, has faced the adverse impacts of visual intrusion
in its buffer zone from urbanization. However, there are challenges to creating a quantitative
visual evaluation for decision making in response to rapid urban change. This study evaluated the
impact of building height on the city skyline and utilized existing cultural heritage locations on
the mountain to define a protected visual zone while conducting a 3D-GIS-based visibility analysis
to identify obstruction in three scenarios: the actual condition scenario (ACS) considering current
conditions, the land use scenario (LUS) considering the land use ordinance, and the proposed scenario
(PPS) considering mountain skyline protection, using computer-generated 3D city modeling. The
comparative results from the analysis of viewshed, line of sight, and development area calculations
revealed that the number of obstructed locations in the LUS decreased by 48.46%, and in the PPS,
they decreased by 77.99%, while the development area increased by similar amounts, demonstrating
that the city can grow and develop despite stricter height controls. In addition, based on a visual
assessment, this study established a buffer distance and intensity to protect the integrity of the
heritage while allowing the city to develop.

Keywords: 3d modeling; mountain-historic city; cultural heritage; land-use performance; visibility
analysis; visual integrity assessment

1. Introduction

In the past decade, challenges to urban heritage conservation have prompted local
authorities to consider integrating the HUL concept, which is a relatively new approach to
cultural landscape and urban heritage conservation that focuses on the incorporation of
change management into policy and implementation. The school of thought on townscapes
proposed by Gordon Cullen [1] of implementing the protection of visual integrity into
urban conservation is one of the elements that the HUL approach focuses on. UNESCO has
recognized the urban area as a cultural landscape that is the combination of natural and
cultural heritage in a changing environment [2]. Recommendations have been made for
adopting the idea of ‘landscape’ as an approach to urban heritage conservation that includes
moving beyond protecting only the heritage property to considering a larger territory by
taking into account the natural and cultural properties as well as the surrounding buffer as
a holistic entity. Consequently, natural elements are not seen as physical features; rather,
they are perceived as significant landmarks that express local identity and culture. As a
result, effective management should be applied holistically and dynamically to fit the local
context [3–5].
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Urbanization is the primary reason for the decrease in the cultural landscape’s values
and integrity because it results in intrusive buildings and development, which potentially
contributes to adverse impacts on the interlinkage of natural–cultural heritages and breaks
up the skyline. Recently, numerous cultural landscapes have been endangered or removed
from the WH List because of the inappropriate built environment located in the crucial
view zone (e.g., Dresden Elbe Valley in 2009, the Historic Centre of Vienna in 2017) [6,7].
Urbanization is taking place in developing countries, particularly in Asia. The urban
growth rate will rise from 48% to 64% in 2050 [8], and the most populated mountain regions
are based in Asia [9]. There are many mountains that are home to numerous cultural
heritage sites representing local beliefs and the respect for nature, for instance, the sacred
mountains in China, Japan, and South Korea. There are concerns that the rapidly growing
infrastructure and development will accelerate the vulnerability of the cultural landscape,
especially in historical cities that are not yet well-prepared [10]. Safeguarding the integrity
and authenticity of the cultural landscape must be accomplished through important view
protection and the management of visual impact in buffer zones. Nevertheless, the buffer
zones are seen not only as intermediate settings that protect the property from potential
threats outside the boundary, but also as places that connect the cultural landscape values
as well as serving to encourage developments that are beneficial for the local community
and/or restrict potential danger to the heritage’s values [11]. The recent Historic Urban
Landscape approach (HUL) defines urbanization as a threat to historical/cultural assets
and provides opportunities for the social and economic development of local communities.
For this reason, effective buffer zone planning is needed to provide sufficient control and
safeguard existing heritage values when adapting to the rapidly continuous changes of
urbanization and growth. In the meantime, development planning requires effective tools
to quantify the maximum level of change that could be allowed in the historic urban
landscape or be acceptable to the local community [12,13]. As a result, both the impact and
outcome of the new development proposal in the heritage buffer should be considered.
This will provide scientific data of land use that will lead to the preservation of important
skylines, contributing to the integrity and values of the cultural landscape.

In urban planning, the purpose of visual impact assessment is to preserve the view of
important landmarks and natural areas. Most cases are based on the creation of a threshold,
visual zone, or view cone [14–17]. Building intrusion accounts for visual impact whose
inappropriate appearance in-between the observer and the target view can contribute to
reducing the visibility of the feature or obstructing the visibility of specific features/views
due to its height and dominance [18,19]. Visibility determines whether one or more
locations can be seen from one another. Among various methods, viewshed and line
of sight analyses are widely applied in the research and investigation into changes in the
skyline and visual interrelationship between sites. The viewshed is a measurement of
the visible surface from a specified location, while the line of sight tests the probability of
seeing the visible target. Therefore, the concepts are similar, literally seeing or not seeing the
target and determining whether it is visible or invisible. Both analyses consider elevation
surface and use a sightline originating with the observer to the target points to calculate
the ratio for each cell along the line and determine the cell ratio below. The height of the
sightline ratio is considered visible and therefore obscured from view, which is estimated
as the visual impact [14,20–25]. A series of factors and conditions can influence visibility,
including the observer’s conditions (e.g., altitude, visual limitation), the viewing target’s
conditions (e.g., size, distance), the condition of in-between space such as viewing direction,
the height and location of landscape elements, and the atmospheric conditions [26]. The
effectiveness of land use planning and the urban design strategy should also be examined
as building construction is a consequence of land use decisions that may contribute to
visual impacts on the significant landscape [27–29]. In the actual situations, many historical
cities have integrated the idea of the visibility of the important natural/cultural heritage
sites in their city planning. Kyoto is an excellent example of a city that is quite similar to
Chiang Mai in terms of its character, which includes mountains, historical temples, and
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shrines. The city has adopted the ideology of Shakkei (referring to the imitation of famous
scenic spots in garden design) [30] to incorporate the view of mountain landscape and
the cultural heritage site as elements in planning the city and urban design. The different
characters of the viewing zone were identified according to the significance to the sacred
mountain and the important temples on it. The city has created two conservation concepts
called ‘Perspective and Borrowed Landscapes’, to incorporate the visible areas of the sacred
mountains as a background to the specific locations (e.g., gardens, historical sites, and
public open spaces), and ‘Surrounding Scenery and View Area’, to include Kiyomizudera
Temple on the sacred mountain as a protected view target. The concepts enhance and
sustain the significant values of historical properties and their relationship to the mountain.
Additionally, they protect significant views and historical sites in the mountainous city
from the inappropriate intrusion of the built environment. This resulted in the designation
of preservation district areas with regulations on the height and design of buildings at
different view distance zones around the city and within the 50 m buffer zone of the
temple [31]. Similar to Vilnius city, which aimed to preserve the panoramic views of
the city, 3D modeling was adopted to examine the visibility of new development. The
city conducted the analysis by investigating changes in the appearance of the panoramic
historical landscape as a result of the emergence of new development. Consequently, it
created guidelines for the visual protection and the development zoning that is proper to the
city’s character [32]. Another example is Florence, Italy, a UNESCO site since 1982, which
required an updated approach and/or charter to safeguard the Historic Garden as well as
the intercultural development of the city’s people [33]. The city symbolizes Renaissance
art, which is intertwined with complex artistic realization [34]. Florence’s management
plan is still evolving and developing in collaboration with academic organizations (such as
Heritage CITYlab, a joint laboratory) to apply scholastic interpretations of the historical
landscape [35–37]. As seen, the city mainly determined the protected zoning code by
considering the influence of new structures on its surrounding landscape. However, failure
to consider the existing structures may adversely impact the significant landscape because
of their potential to obstruct and decrease the visibility of the heritage views.

To illustrate potential changes and assess the visual impacts of new development
on the urban landscape, three-dimensional (3D) city modeling using Geospatial Infor-
mation System (GIS) data is helpful as it can forecast the effectiveness of both pre- and
post-planning and evaluate against measures, urban design strategies, and controls. It can
also provide the public with information that is easier to understand by creating various sce-
narios. Furthermore, the tool can help reduce time and labor when applied in the research,
particularly concerning skyline protection and development impact mitigation, because
of its capacity for processing large amounts of complex city spatial data [38]. In recent
studies, the main focus has been on the challenge of visualizing future built environments
to create inclusive urban planning/designing for non-expert stakeholders [39–41] and to
integrate the add-on components into the historical context in order to foster economic
and environmental sustainability [42]. Three-dimensional modeling creates a digital ar-
tifact that can lead to urban planning strategic debate and negotiation among multiple
urban planning stakeholders [43–45]. However, static 3D modeling is becoming obsolete
as the digital age progresses [46,47]. Dynamic modeling and interchangeable feedback
according to its parameters or updated zoning regulations are considered important for
responsive scenario evaluation in land use planning [48,49]. The automatic architectural
massing generated by 3D GIS [50] is essential for evaluating the land use ordinance that
will control building mass. Many studies on city design use procedural modeling tools
to generate 3D massing studies [51–57]. In the critical land use zone containing historic
and sensitive properties, generative urban planning such as 3D massing combined with
GIS analytics creates a variety of evaluations and essential data collections [58–61]. These
applications and toolkits enable researchers and practitioners to investigate critical issues
while continuously testing the simulated environment in response to its problems.
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2. Study Area

This study was conducted in Chiang Mai city, Thailand. The distinctive cultural
landscape of Chiang Mai city is formed by the interrelationship between the historical
walled settlement and the sacred mountain called Doi Suthep, which has been included
in the World Heritage Tentative Lists since 2015 [62]. The historical walled city consists of
traditional temples located east of the Doi Suthep mountain, where the mountain temples
represent the places of worship. They are far from each other, approximately a 3 km
distance, and the mountain landscape can be seen from many spots in the city. The area
around the sites has been designated as the buffer zone, resulting in some areas that connect
to one another serving as buffers for both heritage sites (see Figure 1).
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The study area included the mountain, the city wall, and the buffer zone area that
lies between them. The mountain rises approximately 1658 m above mean sea level and
has a total area of 165,604,500 m2 on the east side. Because of the city’s cultural landscape
represented by the mountain and the old city, the mountain was determined as the target
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view, and the city wall area was chosen as the viewpoint location, while all buildings in the
buffer zone were defined as obstacles.

The next section describes the characteristics of the cultural landscape of the city, the
current condition, land use, and building height zoning, and states the issues surrounding
cultural landscape conservation in the study area.

2.1. Chiang Mai’s Cultural Landscape

The cultural landscape of Chiang Mai city is characterized by the setting of the his-
torical city wall and the sacred mountain. The city occupies a uniquely attractive setting,
with the sacred Doi Suthep mountain in the west and sloping down to the east where the
historical city wall with traditional temples is located. Chiang Mai had been the ancient
capital of the Lanna Kingdom for 726 years. It is a walled city settlement located in the
mountain region. The historical walled city is characterized by a rectangularly shaped
city encircled by moats and walls, similar to what can be found in other Asian cities such
as Xi’an and Kyoto. Nonetheless, the Chiang Mai city wall was planned by adopting the
concept of the neighboring capital of Sukkhothai, which exemplified the knowledge and
creativity in city planning [63]. Chiang Mai city adopted a perimeter design that was
advantageous during wartime with respect to the sacredness of the mountain.

The city was carefully planned based on the animistic beliefs of indigenous Tai and
Lawa, which combine the Hindu-Buddhist concepts of cosmology in association with the
sacred mountain. Doi Suthep was considered sacred by the Chiang Mai people. It was
worshipped long before the establishment of the city. The indigenous people view it as
the place where their ancestors’ spirits reside and the key feature representing Mount
Sumeru—the center of the universe that links between humans and devas in the Hindu-
Buddhist cosmology. It was the essential element in planning the city. The historical city is
located approximately 3 km from the foothills. The historical walled city is surrounded
by moats and is a nearly square area of approximately 2.5 km2 located east of the sacred
mountain and designated as territory of the sacred universe [64].

Within the historical city walls, the zoning layout of the temple is also influenced by
the cosmology concept representing the universe. The pagoda represents Mount Sumeru;
the main vihara (the pavilion for religious ceremonies) faces the eastern entrance of the
temple and is surrounded by other viharas in four directions. This feature represents the
four sacred continents, while the sand courts represent the ocean [65]. The temples within
the city walls were built in different periods. Some were built during the time as the city’s
establishment as the former king’s residence. Others were built in the early 20th century
Buddha, influenced by the establishment of the pagoda containing Buddha relics on the
Doi Suthep mountain [64], resulting in the cultural significance of each temple and its role
in holding ceremonies in the city and/or at the community level. The pagoda was first
established in Lanna history. It inspired building the temples on the mountain—Sri Soda,
Fai Hin, Pha Lad, and Phra That Doi Suthep, located along the worship trail to the top of
the mountain representing the four stages of enlightenment [66]—and other cities were
inspired to place the pagodas on the mountain to express worshipfulness [64] (see Figure 1).

2.2. Current Building Heights in the Study Area

Building heights range from 12 to 23 m. In Thailand, according to building control
acts [67] and zoning ordinances [68], the height of a low building is 12 m, a medium-high
structure is 15 m, and buildings taller than 23 m are designated as large/tall buildings.
As seen in Figure 2, most buildings in the study area are low-rise buildings, while some
are buildings taller than 15 m, particularly in the middle part of the study area. The large
group of high-rise buildings (>23 m) is located directly opposite the historical city walls.
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2.3. Land Use and Building Height Zoning in the Study Area

Before 2012, Chiang Mai city lacked building-control regulations. From 1996 to 1999,
and again from 2006 to 2012, uncontrolled projects were only suppressed at the municipal
level, where they would occupy historical areas. Uncontrolled and unregulated urban
planning, resulting in massive projects and inappropriate building height, had a signif-
icant impact on urban development and the visual integrity of the site [69]. The lack of
regulation created challenges and tension in the communication among stakeholders. The
cultural environment was the key to maintaining nature’s sustainable role in responding to
modernized developed areas.

According to the City Comprehensive Plan [68], the objective was to enhance efficient
use that conformed to further community expansion as well as to support and encourage
economic development. The land use of Chiang Mai was categorized into 11 zones. There-
fore, there are eight categories in the study area, which are: low-density residential area,
medium-density residential area, commercial and high-density residential area, educational
area, religious area, government institutions and public utility area, recreational open space
and environmental quality area, and cultural and identity conservation area. The land use
in Chiang Mai city seems to determine the actual setting. The city core area was designated
for conservation because of the existence of the ancient city wall and historical temples.
Residential areas with high, medium, and low density were designated accordingly in
the areas outside the conservation zone to allow the developments. The other land uses,
such as educational and government institutions and public utilities, are near the city wall
area, and the cultural and identity conservation area is near the foothills because of its
original location.

The heights of buildings were determined according to their use. Buildings of 12 m
height were determined for most land uses and around temples, while some areas needed
to refer to the adjacent zone, and in some parts of the medium-density residential area are
limited to 15 m (See Figures 3 and 4 and Table 1).
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Table 1. Building Heights Allowed According to Chiang Mai City Comprehensive Plan 2012.

Types of Land Use Building Height (m.) Open Space (%)
Low-density residential area <12

Medium-density residential area <12 -
<15 -

Commercial and high-density residential area <12 -
<12 >40%

Educational area Refer to the adjacent area. -

Religious area Refer to the adjacent area. -

Government institutions and public utility area Refer to the adjacent area. -

Recreational open space for recreation and <12 -
environmental quality area

Cultural and identity conservation area <12 >30% for
planting

Multiple changes have transformed the urban landscape in the city center, probably
leading to the vulnerability of values and integrity in the nature–culture heritage. The
urban sprawl has expanded into the agricultural area near the foothills [70], increasing
the built-up area to 45% in the residential zone over the past 15 years [71]. The high
building construction was in response to tourist activities and residential use after the
city became the center of the northern region for several developments [72], enhancing
the pressure on the buffer area. However, the preservation efforts of the city government
to preserve the historical landscape have been insufficient and inefficient at balancing
with modernization and globalization [73]. Even though various regulations and controls
(e.g., Chiang Mai city land use comprehensive plan in 2012, the zoning ordinance, building
control acts) have been implemented to manage building construction in the city, several
aspects have hindered effective protection of the unique cultural landscape from the
impact of intrusive buildings. First, failure to include cultural landscape conservation
concepts into the current city planning has made Chiang Mai more vulnerable. The city
has determined the building height levels with regard to the land use zoning based more
on attempts to encourage economic developments, but less on considering the significant
views. The mountain view as seen from places that have been listed as heritage properties
should be protected from vertically intrusive buildings. Second, less attention to specific
measures/controls supporting the interlinkage of the natural–cultural heritage has kept the
city from providing effective protection. Specific approaches have not yet been integrated in
city planning to enhance the buffer zone functions. According to the Chiang Mai city land
use comprehensive plan (2012), the city zoning determining the land use seems to conflict
between development and conservation zones. The medium-density residential zone was
designated in the area adjoining the conservation area near the city wall. Without placing a
buffer zone between them, medium-high-rise buildings (15 m high) are allowed close to
the historical city wall. Finally, assessing the visual impacts in the urban landscape requires
advanced tools that can provide a realistic estimation. However, the city plan is based on
2D evaluation, which is insufficient to investigate the visual impacts of building intrusion
in the rapidly growing urban area. The view of Doi Suthep is important to the skyline of
Chiang Mai city and needs specific protection. However, the current city plan and land
use strategy overlook the visual integrity of the urban heritage. Rapid urbanization has
exerted tremendous pressure on the nature–culture interlinkage, and the impacts of the
proposed development in its buffer boundary zone need to be assessed, as well as the
subsequent outcomes. Visual impact assessment to support specific treatment of the city’s
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unique cultural landscape is needed, using the most effective and advanced tools and in
response to the ongoing rapid transformation in the area (see Figure 5).
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Reprinted/adapted with permission from Ref. [74]. 2020, CMWHI).

This study has two aims: (1) to explore changes in the historical urban landscape of the
mountain-historical city as a result of the zoning ordinance and land use designation, and
(2) to contribute planning criteria for building heights and development to support decision
making for the cultural landscape conservation of Chiang Mai city. Various scenarios will be
created considering the current and future conditions by applying 3D city modeling, while
the effectiveness of both pre- and post-planning will be investigated using GIS analysis.
The findings will offer optimum values through a comparison of the results regarding the
number of obstructions and locations and the amount of protected and development area in
different scenarios that have adverse impacts on the visual integrity of the mountain-culture
heritage. The conclusion may provide information to supporting further management and
decision making on optimal criteria for future development in the buffer zone of Chiang
Mai city.

3. Methodology

Visual intrusion zoning policies for historical cities, such as the Kyoto City Landscape
Policy (2007) and Local Action Plan Vilnius Old Town (2011), have indicated a visual zone
from specific places to the historical features and natural landmarks that maintain their
heritage integrity. Preserving the mountain landscape view by considering the specific
height level of buildings where historical temples are located to designate the protected
skyline in Kyoto city, and using the 3D model to illustrate the impacts of new building on
the panoramic historical landscape of Vilnius city, have proved useful in creating guidelines
for future development that are in harmony with the existing wider setting.

This study was extended from those of the above cities to conduct an analysis of the
mountain-historical landscape of Chiang Mai city, as the city is characterized by the inter-
relationship between the mountain and the historical walled city consisting of traditional
temples. The view of the mountain should be protected, and the observer location can
be set at the temples in the city wall. This study determined the Doi Suthep mountain
as a target protected skyline. There are three important mountain temples located along
the worship trail to the mountain top, and their location levels were determined as the
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protected skyline view zones. Moreover, the 3D model favored creating different scenarios
of the city that were close to reality. This was applied to aid in evaluating the impacts of
various height buildings in each scenario. Finally, we quantified the amount of change by
considering protected and development areas in the area. The methodology included the
following steps:

(a) Identifying important landscape elements and viewpoint locations considering the
relationship of cultural significance;

(b) Creating scenarios regarding the actual condition, the current land use ordinance, and
the future proposal;

(c) Conducting a visibility analysis to assess the obstruction of the mountain skyline by
building height designations in each scenario;

(d) Calculating the amount of protected and development area to explore landscape change;

Comparing the results from all scenarios to provide quantitative information for future
development and decision making.

3.1. Data Preparation for the Analysis Parameter
3.1.1. The Temples as Viewpoint Locations (The Observer)

Before conducting the visibility analysis, the viewpoint location should be determined
and its location and value input considering the human field of vision added to the
parameter to ensure accurate measurement. Viewpoint locations were usually chosen
for public accessibility and the purpose of the study. For example, the study aimed to
encourage tourism by selecting lookouts and scenic spots [75], while it aimed to improve
the mountain forest scenery by choosing locations that many observers could publicly
access and that provided spaces for the observer to see various target views [76].

The main purpose of this study was to examine the specific landscape of Chiang
Mai city. The viewpoint locations were considered with regard to historical and cultural
significance and the relationship between heritage properties. As the cultural landscape of
Chiang Mai city consisted of mountain and the heritage properties, particularly traditional
temples, we considered the temples within the historical city wall as observer locations.
There are more than 40 traditional temples in the city wall area, including abandoned
temples. This study includes only the temples that are still in use because the abandoned
temples have not remained in their original condition. They are only a ruined pagoda
and inaccessible areas (such areas do not offer a viable location). Thus, 38 temples located
within the city wall area were set as the viewpoint locations for this study. The viewpoints
were placed at the access points of these 38 temples (No.1–38 in Figure 5). The observer
height was set at 1.6 m above ground level according to an average human eye level.

3.1.2. Determination of the Mountain Skyline Levels (The Target View)

The view of the Doi Suthep mountain as seen from temples is the important skyline
that defines Chiang Mai city’s image. This was used as the baseline for the analysis in
the study.

This study focused on the natural skyline of the mountain, discovering that features
appearing in the foreground could affect the attractiveness of the scene. According to
the prior study, inappropriate building development has critical impacts, particularly
vertical structures that negatively affect visual attractiveness and have a stronger impact
than horizonal ones [77]. Therefore, to promote development in the city while protecting
the views of the mountain, the city can set the mountain ridgeline as the baseline in
determining proper buildings heights for future development. The studies focusing on
aesthetic evaluation and preferences of building silhouette and mountain skyline suggested
that the building height can be set in relation to the maximum height of the mountain [19,78].
Meanwhile, a recent study argued that the closest and lowest vegetation ridgeline with
high value landscape elements could be the skyline threshold in setting the parameters for
building-height intrusion because the closest ridgeline provides the mountain landscape
with the most picturesque detail and results in better visual quality [79].
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Moreover, as seen in the example of Kyoto city, a protected visual zone defines the
levels of building height in relation to the height of the mountain where the temple heritage
is located. In the case of this study, the studied mountain was where the three important
temples were located, so this study took the similar step of utilizing the different height
levels of the mountain ridgeline to identify the area sensitive to building obstruction. Three
out of the four mountain temples are still active: Sri Soda temple, Pha Lad temple, and
Phra That Doi Suthep temple. Their locations at elevation surface levels—350, 550, and
950 m, respectively—were determined as the protected visual zone (see Figure 6).
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3.2. Three-Dimensional City Model Scenarios for Visual Impact Assessment

The existing condition of buildings and the future of buildings affected by the land use
ordinance were considered visual obstructions in this study. The actual condition scenario
served as the baseline for visual integrity to define the current situation in the study area.
In contrast, the land use scenario simulated possible future situations and the efficiency of
the land use ordinance in protecting visual integrity in the buffer area. Figure 7 illustrates
the 3D city model process in this study using the conventional method of GIS 3D extrusion
and computer-generated architecture.

3.2.1. Conventional GIS 3D Extrusion for the Actual Condition Scenario (ACS)

The input parameter for the actual condition was critical in this study. The focus was
on the baseline of visual obstruction. Building data for input parameters were existing
shapefiles of building footprints transformed into 3D modeling in ArcGIS Pro using 3D
analysis. The extruded building used the attribute of building height as the z value, and
then the extruded polygon was used to retrieve the model. Because the study focused
on the accuracy of 3D buildings based on DEM data of the ground surface, the extrusion
type used in this study was the base height approach. The developed area comprised the
secondary essential data. The existing building’s shapefile attribute contained the number
of floors, calculated as the gross floor area (GFA). The GFA represented the developed
area, which was calculated by multiplying the number of floors by the area of the footprint.
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The obstructed visual result was used to create the mountain skyline protection map. The
map showed the location of the obstructed points that have been built up. The point was
then processed using kernel analysis to determine the intensity of the visual obstruction.
The kernel density map was used as an input parameter for the proposed scenario. When
combined with visual assessment and developed area volume, this scenario served as the
baseline for comparison with the following scenarios.
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3.2.2. CGA (Computer-Generated Architecture) of Land Use Scenario (LUS) and Proposed
Scenario (PPS)

The effectiveness of the current land use ordinance in protecting the visual integrity of
the natural–cultural area was assessed in this finding. The simulation of future building
compliance with the ordinance was required to evaluate the land use scenario. CGA, or
computer-generated architecture, was the solution for simulating the 3D obstruction model.
CGA is the systematic and procedural built-up environment generated by the area’s rules,
determined in this study by its land use [80,81]. The user-defined rule file generated the 3D
model through the initial shape from the CGA procedural [51,82,83]. ArcGIS CityEngine
was used to create the 3D modeling in this process.

The initial shape in the study area was a land parcel/land plot. The rule was based
on a land use zoning ordinance that specified the shape of a potential building. The rule
in this study was building height, which was the result of floor height and the number
of floors. However, Chiang Mai’s land use regulation determined only the maximum
height permitted in each zone. As a result, the floor heights in this study ranged from
2.5 m to 3.0 m, with the number of floors varying from one to five. The zone’s land use
ordinance determined the maximum number of floors; for example, if the zone’s land use
ordinance specified a maximum height of 12 m, the maximum number of floors was four,
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and the maximum height was 12 m (3 m floor height × 4 number of floors). There were
eight zoning ordinances in the study area that determined the maximum building height
allowance. Furthermore, a less complicated rule to generate the model, such as setback
from the street and building, was included in the CGA rule [84]. The building’s shape was
adjusted and generated in a systematic manner based on its initial shape (land parcel).

In addition to the LUS, the proposed scenario (PPS) was evaluated to simulate the
best-case scenario for the site’s visual integrity. The proposed scenario used the same set
of zoning determinations and CGA method as LUS, but it included the mountain skyline
protection map from the ACS as another factor in determining building height. Instead
of the heritage adjacent zone, the proposed scenario allowed for the development of an
appropriate zone. For example, in the northern part of the historical city, building heights
are limited to 15 m. In this scenario, affected by the skyline map, they were reduced to
6–9 m, whereas in future areas of mixed-use/commercial zone, 15 m building height were
allowed instead of the LUS’s 12 m. They contained the same buildings as the LUS, but with
different building heights based on the mountain skyline protection map’s coefficient. As a
result, the CGA rule was based on the LUS, but with the additional coefficient factor of the
mountain skyline protection map to multiply the number of floors, whereas some zones
decreased them, especially those adjacent to historical areas, and some zones increased,
ranging from −2 to 2 floors, but none exceeded 15 m. Table 2 indicates the input parameter
and factors that generated the 3D modeling of each scenario.

Table 2. Input parameter and factors to generate 3D modelling by scenario.

Input/Process

Scenario Actual Condition
Scenario

(ACS)

Land Use
Scenario

(LUS)

Proposed
Scenario

(PPS)

Application ArcGIS Pro CityEngine CityEngine

Input Building footprint Land plot Land plot

Modeling method 3D extrusion Rule-based
modeling

Rule-based
modeling

Use of land use ordinance x o o

Use of mountain skyline protection map x x o

Building height control N/A 3–15 m 3–15 m

The generated models in LUS and PPS represented views obstructed by buildings in
the same way that the actual condition scenario did. To evaluate the land use ordinance’s
efficacy as LUS and simulate the best-case scenario as PPS, the model was further embedded
in the DEM as ground elevation. The developed area was generated as GFA by CityEngine.
The model and its attributes were transferred to ArcGIS as the geodatabase for visual
evaluation and comparison with the actual condition scenario.

3.3. Mountain Skyline Obstruction Analysis

This analysis identified the area sensitive to building height with regard to the
three ridgelines of the mountain mentioned above. In this case, the linear line of sight
(LLOS) tool in ArcGIS 2.7 (ESRI Inc., Redlands, CA, USA) was applied, which determines
if one or more targets are visible from a given viewpoint considering elevation surface
and obstruction within a visual radius in the calculation of visibility analysis. The tool
requires specific materials for input in the analysis parameter–elevation surface, multipatch
building data, viewpoint data, and target point data. This study used the Digital Elevation
Model (DEM) with a resolution of 30 m × 30 m provided by NASA’s EARTHDATA [85].
Viewpoint data needs to determine the value of the field of view (FOV) and observer’s
height for the visibility analysis. In general, 124 degrees is the proper value to set as the
human visual field [86,87], and the observer’s height should be set at 1.6 m above the
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ground level according to the average human eye level. Therefore, when setting the FOV
at 124 degrees in the initial experiment, the visible area was found to cover the studied
mountain. Therefore, it can be assumed that the observer could see the whole range of
the mountain. Hence, the FOV value was not required to set in this phase of analysis
(see Table 3).

Table 3. The Input Data Types and Values for the Analysis Parameter.

Input Data
The Analysis Method

Viewshed Linear Line Of Sight

1. The target mountain DEM (30 × 30 m resolution)
- DEM (30 × 30 m resolution)
- Target point data at 350, 550, and 950 m elevation levels

2. Building Shapefile data Multipatch data

3. Viewpoint - 1.6 m above ground level
- 124 Horizontal FOV - 1.6 m above ground level

The tool works by creating sightlines that extend from the observer to the viewing
target (point data) and determining visibility along the created lines. The point data were
set as the target view at each elevation level. The distance from the north to south of
the mountain is approximately 5 km, so that we created the target point data at every
100 m distance, 50 points in total owing to the limitation of computation. After that we
conducted the LLOS analysis for all 38 viewpoints separately and with regard to three
elevation levels. Finally, the locations of obstructing buildings were identified, and the zone
of mountain skyline sensitivity was later defined considering the number of obstructing
buildings (see Figure 8).

3.4. Calculation of Protected and Development Areas

In all scenarios, the visible area proportion of the mountain was determined as the
protected area for this study. It was measured by the viewshed, the raster-based analysis
tool to determine the visible areas of the wide topographic vista with different terrain
heights from one or more observers. The tool created outputs to represent visible and
invisible surface areas indicated by values of 1 and 0, respectively. As this study attempted
to examine the visible area of a particular mountain and the number of observers who
can see it, which may increase or decrease according to different scenarios, the cumulative
viewshed was rather suitable. This tool required elevation surface, building data, and
viewpoint data for the analysis parameters. In this case, the value of viewpoint data was
set at a 124-degree FOV and the observer’s height at 1.6 m above the ground level. In
addition, the Digital Elevation Model (DEM) was used as the input elevation surface for
viewshed analysis (see Table 3). However, the original DEM data only represented the bare
ground surface and excluded building data such as heights or locations. Therefore, this
study generated the surface map by combining building data into the ground elevation
(DEM). As a result, the new raster dataset was created for analysis. Finally, the visible
mountain area was computed in square meters (m2), as indicated by the output surface
raster (see Figure 9).

This study considered the total gross floor area (GFA) of each scenario for the de-
velopment area. The number of floors was multiplied by the footprint area contained in
the building shapefile’s attributes, and all the values were aggregated. The GFA of both
scenarios was calculated in square meters (m2).

By applying all the results from the mountain skyline obstruction analysis, calculations
of the protected and development areas were compared (see Figure 10).
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4. Results and Discussion

In the ACS results, the 3D modeling was noticeably varied in its height and mass
(see Figure 11a). The historical city is bordered by medium- and high-rise buildings, which
include massive buildings in the northwest and medium-rise buildings along this corridor.
Meanwhile, high-rise facilities buildings cluster near the historical area in the west corridor
to the mountain, but they are still farther away than the northwest buildings cluster. As
seen in the example in Figure 11b, the viewshed analysis result revealed the visible area of
the mountain; in the ACS, it was abundantly obvious that the low-to-mid elevation area
was cut off and invisible. The northwest corridor leading to the mountain was the most
obscured area on the viewshed map. The ACS’s 3D modeling largely obstructed the line of
sight in the northwest of the historical area; even the 950 m elevation LLOS was obstructed
in this location, according to the LLOS analysis, which was consistent with the viewshed
analysis (See Figure 11a,c). The highly obstructed LLOS can be seen in the obstruction
location and density maps (see Figure 11d–f). According to the kernel density map, the
obstruction location was pervasive in the northwest corridor. This high level of obstruction
might be the cause of the invisible viewshed area in the mountain’s low-to-mid elevation.
The west corridor to the mountain appeared to be obstructed by buildings along the west
corridor, though not to the same extent as the northwest corridor. Although the LLOS in
the northwest area was seriously obstructed at 950 m, the viewshed result still presented a
visible area in the mid-high level of the mountain, and the mid-to-high elevation level was
still intact.

Because the land plot size varied for the LUS, the 3D modeling that simulated the
land use ordinance, the CGA was able to generate different sizes of 3D mass based on
its land because of the minimal distribution in the building height range, which was
limited to 12–15 m (see Figure 12a,b). The low level of building height influenced the view-
shed study outcome; the observers could see the low-mid-high elevation area (temples)
(see Figure 12a,c). Consistent with the viewshed result, the 950 m elevation level had visibil-
ity lines and a few obstructions. In the northwest and west corridors, the 550 m and 350 m
elevations were currently the most obstructed LLOS (see Figure 12d–f). According to the
obstructed location and density maps, the obstructed locations continued to cluster in the
historical city’s northwest. These maps illustrated the critical location for view protection
from the temples to the mountain, which was identical to the ACS location. On the other
hand, the kernel density clustered primarily at the northwest corner and did not extend
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into the corridor. Under LUS height regulation, visual impediments in the west section and
its corridor were at a minimum. In summary, the LUS was significantly beneficial in terms
of protecting visual integrity, and both viewshed and LLOS findings revealed improved
performance. Nonetheless, this scenario was entirely based on regenerated buildings at the
study site to assess the efficacy of a recent land use ordinance with the aim of preserving
the site’s conservation area.
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The generated 3D modeling for the PPS was influenced by the mountain skyline
protection map. The map was utilized as a factor in determining whether to raise or lower
building heights in accordance with LUS’s land use ordinance. According to the mountain
skyline protection map, the building height adjacent to the historical city was reduced
from 12–15 m to 3–6, or 6–9 m, mainly in the northwest and west of the historical city
(see Figure 13a,b). On the contrary, the greater the distance from the historical city of the
commercial/mixed-use zoning ordinance, the higher the building height. Depending on
the land plot and addition regulations, this ranged from 9–12 m to 12–15 m. This map’s
conditional factor strengthened the viewshed and LLOS while still allowing the develop-
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ment area to grow. The viewshed analysis result reflected the intention of view protection.
It completed the viewable region of Doi Suthep mountain (See Figure 13a,c). All elevation
levels were visible. The LLOS data demonstrated a decrease in the number of obstructed
lines of sight, particularly in the historical area’s northwest corner. The obstructed location
and kernel density map confirmed the efficiency of PPS in view protection; the high-density
area was greatly reduced (see Figure 13d–f). It was concentrated in the northwest but had a
low density, indicating that the buildings obstructed fewer lines of sight.
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The LLOS 3D view indicated a sparsely obstructed points of 950 m and 550 m (red and
orange, respectively), with the majority of the obstructed points being at 350 m elevation
level (see Figures 11–13). This resembled the LUS, including the coherence with the
viewshed analysis and LLOS. The land use ordinance, which was also implicated in this
scenario, proved to protect views effectively. To improve visual integrity, the mountain
skyline protection used in this scenario demonstrated its ability to reduce visual intrusion
in both study outcomes while retaining the development area by relocating high (high-rise)
buildings to the appropriate zones.

Scenarios Comparison

According to the results shown in Table 4, the actual condition scenario (ACS) had a
total number of buildings of 10,663, while the land use scenario (LUS) and the proposed
scenario (PPS) had 12,256 in total. They were not significantly different in terms of the
number of buildings. There would be 1593 more buildings if all land plots were built up.
The LUS and PPS shared the same land plots and rule package, as stated in the methodology.
Thus, the number of buildings and average building height shared similar values, with
the only difference being the building height locations in zones defined by the mountain
skyline protection map.

Table 4. Results of the linear line of sight and viewshed analysis, the area calculation, and change (%).

Scenario

Actual Condition (ACS) Land Use (LUS) * Change (%) Proposed (PPS) ** Change (%)

Total no. of obstructed points 4081 3638 −12.18% 3248 −25.65%
- Elevation surface level at 350 m 1630 1623 0.00% 1520 −7.24%
- Elevation surface level at 550 m 1440 1334 −7.95% 1160 −24.14%
- Elevation surface level at 950 m 1011 681 −48.46% 568 −77.99%

Total no. of viewpoint 38 38 0% 38 0%
Visible mountain area (m2) 6,805,800 8,676,000 21.56% 9,016,200 24.52%

Total no. of buildings 10,663 12,305 13.34% 12,305 13.34%
Total development area (m2) 8,367,136 24,486,333 65.83% 24,935,318 66.44%

* Percentage of change between LUS and ACS, ** Percentage of change between PPS and ACS.

In effect, lower building height contributed to more mountain visibility. The lower the
building heights, the easier it was to see the mountain area. The perceptual scenes with
the same viewpoint at human eye level, as depicted in the square frame image, showed
that the LUS and PPS provided more visible areas of the mountain than the ACS scene
(see Figures 11, 12 and 13a–c). Considering each elevation surface level, the number of
obstructing buildings was less significantly changed (%) at all levels, except the 950 m
elevation surface, where the number of obstructing buildings in the LUS decreased to
nearly half the number in the ACS (LUS at 681 compared to ACS at 1011). As expected,
the number of obstructing buildings in the PPS decreased 77% from that of the ACS
(PPS at 568). Moreover, the 550 m and 350 m elevation surfaces in the PPS decreased
24 and 7.2%, respectively, while the LUS was only 550 m decreased at 7.95%. The visible
mountain area of the ACS was 6,805,800 m2, the LUS was 8,902,800 m2, and the PPS
was 9,016,200 m2, which were increased 21.56 and 24.52% from the ACS, respectively
(see Table 4).

As shown in Figures 11, 12 and 13d–f, the locations of obstructing buildings and their
heights in the area near the city wall were critical, considering height. The obstruction
locations were mostly the buildings in the ACS that were higher than 9 m and in the LUS
and PPS where the height was limited at 12 m. The building height in the ACS was also
considerably high. The obstruction points were concentrated in the buildings higher than
23 m. This meant that the high buildings in the northwest area near the city wall affected
the mountain visibility, and in order to protect the visual integrity of the heritage, the height
of buildings within the zone should be lower than those determined by the current land
use regulation. The land use ordinance showed an effective performance at safeguarding
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the visual connection in both the LUS and PPS. Additionally, the increased view protection
variables from the mountain skyline protection map were applied to the PPS to limit the
height in an adjacent historical region while constructing buildings in more suitable places
revealed a significant difference in view protection from the ACS and LUS. Furthermore,
the LUS and PPS suggested that greater distance can allow the building height at higher
levels, such as 15 m, when other essential factors are considered.

The above results indicated that lowering the height of buildings does not mean
decreasing development area. The number of buildings was not significantly different
between both scenarios. However, the results indicated the possibility for development
areas that increase 66% in both the LUS and PPS if determining the building height ac-
cording to land use regulation. This indicated that the land use regulation can protect
the visual integrity of the city’s cultural landscape and encourage development growth in
appropriated areas such as mixed-use and commercial zones that are nonadjacent to the
historical area.

There was a significant change in the level of visual obstruction, with the obstruction
at 350 m elevation slightly decreasing. Because of the rising angle of elevation, the lowest
level of elevation was the most obstructed, even by a low-to-mid building height. To qualify
the level of change in visual obstruction, the study found that the radius from the historical
area, as defined by temple observers, was clustered along the eastern and northern parts
of the historical area. According to this discovery, the area adjacent to the historical city
may require a higher intensity of visual height control, differing from 12 m in the 2012 land
use ordinance (4 floors) to 6–9 m (2–3 floors), depending on the distance from the historical
area (see Figure 14). On the other hand, the greater the distance from the historical city,
the greater the possibility for the building to increase its height for development purposes
from 12 m to 15 or 18 m (from 4 floors to 5–6 floors). Even though the developed area
volume in the LUS and PPS was increased by more than threefold, the scenario used the
maximum developed area capacity of 70%. Furthermore, it is necessary to achieve a balance
between the buffer of a protected area (lower building height) and the opportunity for the
city to grow as a developed area (increased building height). The findings of this study
indicated that an urban plan capable of intensifying and qualifying visual control to protect
the historical area as a buffer area should be implemented. Although the LUS and PPS are
idealistic generated scenarios, the method proved to be useful in assessing the effective
performance of land use ordinances and establishing the leverage in negotiations between
view protection and city development growth.

Between the ACS, LUS, and PPS, nearly every zoning ordinance stated a maximum
building height of 12 m, but the ordinance cannot be enforced for the ACS buildings that
exceeded the 2012 urban plan before it was enacted. Some ACS buildings in the commercial
zone and facility zone adjacent to a historical area have had significant negative effects on
the visual integrity of the area; these buildings, especially those in the facility zone, cannot
be changed to comply with the 2012 urban plan building height level. Notably, at least
for the expansion of these facilities, the relocation option may be considered to reduce the
adversary effect, not only on the historical area’s visual integrity but also on other factors.
On the other hand, the study indicated that the sensitive area for visual protection adjacent
to the historical area for the commercial ordinance zone comprised of the medium-density
residential zone. The commercial area in this sensitive zone could be separated or new
overlay zoning created to reduce the visual threat of low-mid-rise building height. To
comply with this protection ideology while minimizing the impact on urban economic
growth, the medium-density residential area farther away from the historical area may
allow mid-rise as the maximum allowed height of buildings. The Transfer Development
Right (TDR) is an intriguing tool to consider in this situation. The commercial area may be
able to transfer the development rights of the area, with height as an intensive bonus, to a
medium-density residential area.
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Moreover, this study defined the buffer zone’s boundary to provide adequate sup-
portive protection for the interlinkage of the natural–cultural heritage of Chiang Mai city.
In general, it has been set as 200–400 m around the property [11], while this study sug-
gested setting it based on the potentially obstructed location. The area around the city wall
should be set as another layer in addition to the buffer to determine the level of manage-
ment/control and ensure that uses and activities in the adjacent area will not adversely
impact the visual integrity of the mountain-historical city (see Figure 11). In this area, it can
be useful to more closely define zoning intensity than in other areas to protect potential
visual threats from mid-rise and high-rise buildings.

5. Conclusions

Previous investigation of changes in the urban landscape has frequently taken the
form of map visualization in response to development dynamics, but limited data are
available. As a result, numerical data are equally vital for decision making, particularly
when it comes to the foreseeable protected and development areas because they provide
a concrete estimate of the plan’s benefits, both to heritage and the local community. This
research provided a measurable approach for exploring, measuring, and comparing the
area as well as possible changes in the urban landscape, which can be considered in future
development designations. However, the calculation was based only on the building area
without considering its uses and design, which could impact the outcome.

Many historical cities have demonstrated potential approaches to creating criteria for
development zoning and assessing building intrusion impact on the visual integrity of the
distinctive skyline expressed by historical structures. This study applied the 3D-GIS-based
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analysis to contribute planning criteria for building heights to support conservation of
Chiang Mai city’s significant skyline as expressed by the mountain and the historical city.
This study used 3D-GIS-based analysis as a visualizing tool in the context of landscape
conservation. The ability to project changes to the city’s important skyline based on the
maximum heights permitted in the land parcel was enabled by 3D city modeling, making
it more accessible to a wider range of users and providing stakeholders with the complete
picture. This will support spatial governance by facilitating discussion and enhancing
dialogue among diverse stakeholders, resulting in increased transparency in government
decision making. All 3D modeling were viable for comparative evaluation when used with
GIS visual analysis. They were able to define an acceptable amount of change and evaluate
the effectiveness of land use ordinances in protecting the visual integrity of historical cities
and natural resources such as mountains.

This study’s main visual assessment methods were the linear line of sight and the
viewshed analysis. The temples in the historical city of Chiang Mai were chosen as observer
locations, while the mountain that provides a natural resource for the city was chosen to
be targeted, to highlight the cultural element that is expressed through its natural setting.
As for Chiang Mai, the important landscape elements of the religious city were identified
as temples according to their cultural significance. This study found that by conducting
LLOS analysis on various heights of the mountain ridgeline, it was possible to assess
the mountain skyline obstruction and identify the building height sensitive zone. As a
result, the ridgeline elevation levels for the targeted mountain were determined by three
temples on the mountaintop. The LLOS was able to reveal extensive information on the
obstructed view location from the observer to a target, where the 3D modeling of the
scenario was located. Furthermore, the viewshed analysis was crucial for extracting visible
areas and determining the protected area as an overview visual visibility area of the entire
mountain at the same location as observer and target. Then, the additional development
areas in different scenarios retrieved from 3D modeling provided supportive information
for discussing optimum criteria for future development allowed in the buffer zone and the
future benefits. In response to the study’s objective, various scenarios (ACS, LUS, and PPS)
provided visual assessment results and the number of development areas to be considered
and plausible criteria for a forthcoming land use ordinance.

The results revealed that current building height zoning and land use regulation
can protect the cultural landscape’s integrity. The LLOS result improved the most in
the 950 m surface level of LUS and PPS, from 48.5 to 78%, respectively. In the best-case
scenario of PPS, it enhanced the LLOS at 550 and 350 m, which LUS slightly increased. In
addition, using viewshed analysis in both LUS and PSS, the overall mountain visibility
area increased by about a quarter compared to the ACS. Furthermore, the PPS revealed
the optimal building height requirement to ensure adequate preservation of the mountain
skyline by restricting building height adjacent to the historical city region. The economic
growth allowance continued to perform well in terms of the development area, with
both scenarios increasing by more than 65%. These critical results suggested that the
mountain skyline obstruction analysis can be used as a tool for establishing quality control
in visual resources and is an appropriate measure to mitigate the adversary visual impact
of development with optimum/reasonable intensity of control rather than zoning the
same height in the whole area; as shown in this study, the area close to the city wall
requires a more intense level of height controls in order to reduce the adverse impacts of
the inappropriate built environment on the interlinkage of mountain-urban heritage. To
protect the interlinkage in the natural–cultural area described in this study, a stronger land
use ordinance may be required. Meanwhile, proper zones of land use distant from the
historical city should allow for additional building height to encourage urban development
growth. Balancing preservation and urban development in a visual integrity strategy is
challenging. To encourage implementation, planning management instruments such as the
Transfer Development Right (TDR) allow the exchange of rights in land-plot ownership,
and an incentive bonus such as lower taxation for owners who comply with the visual
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protection is necessary. These innovative urban planning strategies to promote visual
integrity balancing might be implemented through overlay planning that superimposes
the current land use ordinance and/or is included in the upcoming land use ordinance of
Chiang Mai historical city.

In the absence of appropriate buffer zone management of Chiang Mai city, the ap-
proach to determine the buffer zone in this study can provide an alternative way to define
the protected boundary by considering the levels of visible mountain ridgeline and lo-
cations of intrusive buildings. This could be a starting point for the city in setting the
buffer boundary. It sheds some light on the UNESCO buffer zone definition and the visual
integrity in mountain-urban heritage. In the same way, as Kyoto’s view protection plan
attempts to safeguard the important tangible heritage by supporting the strong relation-
ship between nature and heritage, Chiang Mai shares the proximity of a mountain and a
religious city. Furthermore, as recommended by the city of Vilnius, it is necessary to build a
technological platform to communicate and balance the challenges of change management
in accordance with the Historic Urban Landscape approach to protect visual integrity. The
finding could aid the city in deciding land allocation for high building construction and
defining the level of change management and control. It is true that we cannot demolish
excessively tall buildings to give them a new height. Furthermore, in most circumstances,
the regulation has no retroactive consequence, and it cannot control existing buildings.
As a result, by employing two scenarios, this study attempted to provide a comprehen-
sive picture of what could occur following the execution of a specific proposal. On the
other hand, the LUS and PPS are idealistic scenarios for evaluating the performance of the
land use regulation and offering the best-case scenarios to the historical city area. Apart
from visual integrity, this study disregarded potentially concerning issues, such as natu-
ral/environmental factors or any socioeconomic issues. Further research can be conducted
to extend the findings of this study and provide a clear direction for ensuring the impact
and outcome of proposal development.
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