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Abstract: Land use change is an important reason for changes in carbon storage in terrestrial ecosys-
tems. Therefore, analyzing the impact of land use change on carbon storage is important for explor-
ing the sustainable development of cities and improving the value of ecosystem services. Taking
Changchun City in the northeast of China as the research area, this paper simulates land use patterns
under three scenarios up to 2030 using the FLUS model and assesses carbon storage from 2010 to 2030
using the InVEST model. It estimates the impact of land use change on carbon storage under several
scenarios in Changchun. The results show that cultivated land plays an important role in carbon
storage in Changchun. The transfer of cultivated land to construction land has been the main land
use type conversion over the past decade, which has led to most of the carbon storage loss. In the
natural growth scenario, the carbon storage would decline further. In the cultivated land protection
scenario, meanwhile, this situation would be greatly improved. In the ecological protection scenario,
the carbon storage would be increased due to the protection of ecological land. In the future, we
should protect existing resources while simultaneously comprehensively improving the economic,
social, and ecological benefits of the land.

Keywords: land use; FLUS model; InVEST model; carbon storage; scenario simulation

1. Introduction

Global climate change threatens sustainable human development. Carbon storage,
which is of great significance to mitigating global climate change, is one of the most im-
portant functional indicators of ecosystem services and a direct manifestation of terrestrial
ecosystem productivity. It is an important index for measuring the scale and quantity of the
primary productivity of an ecosystem [1]. Land use/cover change (LUCC) is an important
cause of changes in carbon storage in terrestrial ecosystems. Human activities affect the
carbon sequestration capacity of vegetation and soil by changing land cover or land use
patterns, resulting in the degradation and change of ecosystem service functions. It has led
to the imbalance of the global carbon cycle and a series of global environmental problems,
including global warming and a sharp decline in biodiversity. Therefore, analyzing the
impact of land use change on carbon storage is important for achieving sustainable urban
growth and improving ecosystem service value.

With the increase in global warming, growing attention is being paid to the impact
of land use change on carbon storage in the field of climate change research [2]. Scholars
have simulated land use scenarios and carbon storage changes in the future based on
various models that allow the prediction results to be visualized from different perspectives
and at different scales. At the national scale, Liu et al. [3] analyzed the terrestrial carbon
budget of the conterminous United States by integrating fine-scale processes including
land use and land cover change into a large-scale ecosystem framework. They believed
that most of the increase in carbon in the net primary productivity of ecosystems was offset
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by increased carbon losses caused by farming and natural disturbances. Mendoza et al. [4]
predicted land cover and carbon storage changes in Mexico up to 2050 under representative
concentration pathways (RCPs) and shared socioeconomic pathways (SSPs), arguing that
the ecosystems with the highest aboveground biomass (AGB) densities are cloud, tropical
evergreen, and temperate forests, in contrast with scrublands and grasslands, which showed
the lowest values. Liu et al. [5] assessed the impact of projected land use change on
terrestrial carbon storage in China with the FLUS–InVEST model and came to the conclusion
that carbon storage in the forests will continue to increase but will decreased in grassland
in the RCPs scenario. Eigenbrod et al. [6] analyzed the spatiotemporal changes in carbon
storage according to the simulations of urbanization and consequent land use change in
Britain. The results indicated that Britain would experience different degrees of decline in
carbon storage.

At the regional scale, Chinese scholars prefer to simulate the spatial distribution of
carbon storage under different scenarios in basin and oasis ecosystems, such as the Yanqi
oasis [7], the Shule River Basin [8], the Yili valley [9], and the Qi River Basin [1]. The
conclusions of these studies agree that carbon storage decreases with land use change,
especially if it involves the retreat of forest and grassland. As for urban ecosystems, case
studies have been conducted focused on Zichang [10], Wuhan [11,12], Beijing [13], and
Guangzhou [14], which all came to the same conclusion that carbon storage will decrease in
the case of future urban expansion. Some researchers have suggested that changes in land
use type due to increased cultivated land may increase carbon storage [15], while others
have indicated that the trend of carbon storage will inevitably decline as a whole [16]. Li
found that comprehensive spatial management could alleviate the contradiction between
urban construction and environmental protection [12]. Carbon storage can be increased
under the ecological protection scenario, but the reduction in the cultivated land area
cannot be controlled effectively [17].

In terms of methodology, carbon storage is measured mainly by actual measurements
or through the use of models. The carbon storage and sequestration module in the InVEST
(Integrated Valuation of Ecosystem Services and Tradeoffs) model can evaluate the carbon
storage over a period of time based on land use data and has the advantages of simple
parameters and visualized results. For these reasons it has been widely used by scholars.
As for simulating land use patterns, the Markov model is good at predicting quantities
but struggles to represent them in space [18]. The Future Land Use Simulation model
(FLUS) is based on the improvement of the cellular automata model to better simulate the
spatial distribution of land types. It has been widely used in recent years in the field of
land use simulation.

Nevertheless, there are few studies on the impact of urban land use change on carbon
storage in the northeast of China. As the capital of Jilin Province, Changchun is at the
center of the Northeast Asian Economic Circle and an important industrial base in China.
With the proposal of the strategy of revitalizing the old industrial bases in northeast China,
the urbanization and industrialization processes in Changchun City have accelerated
substantially in recent decades. Rapid urbanization has led to a great loss of cultivated land,
while compensation for the occupied cultivated land has resulted in further encroachment
into ecological land [19,20], which has led to a large amount of carbon exchange. Based on
the land use data of Changchun from 2010 to 2020, this paper projects the spatiotemporal
change in carbon storage under three land use scenarios by 2030 (the natural growth (NG)
scenario, the cultivated land protection (CP) scenario, and the ecological protection (EP)
scenario) by coupling the FLUS and InVEST models. Our aim is to provide a scientific basis
for optimizing urban land use structures and improving ecosystem service value.

2. Data Sources and Research Methods
2.1. Overview of the Study Area

Changchun is the capital of Jilin Province and is located at 43◦05′ N–45◦15′ N and
124◦18′ E–127◦05′ E (Figure 1). It is located in the mid-latitude area of the Northern Hemi-
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sphere and has a temperate continental monsoon climate. The annual average temperature
and the annual average precipitation are 4.8 ◦C and 522–615 mm, respectively. It has a
flat terrain with an altitude of 250–350 m, which is suitable for agriculture. Changchun
is one of the most important industrial cities in the northeast of China with a population
of 9.07 × 106 and an area of 2.06 × 104 km2. It is one of the main cities carrying out the
strategy of revitalizing the old industrial bases in northeast China, which aims to accelerate
the development of the northeastern regions.
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Figure 1. Diagram of the study area (Projected Coordinate System: Map of China: Krasovsky_1940_
Albers; Map of Changchun: WGS_1984_UTM_Zone_52N).

2.2. Data Sources

The data used for future land use simulation mainly include land use, natural, and
socioeconomic data (Table 1). The land use map of Changchun includes six land use
types: cultivated land, forest, grassland, water bodies, construction land, and unused land.
Land use maps from 2010 and 2020 and the distribution of gross domestic product (GDP)
were obtained from the Resource and Environment Science Data Center of the Chinese
Academy of Science [21], along with data on natural environmental factors including
climate and terrain. Slope and aspect were extracted from the Digital Elevation Model
(DEM) using ArcGIS10.6. Data on the city center, railway, and highway were obtained from
the Changchun Natural Resources Bureau, along with restricted data including ecological
redlines and permanent primary farmland. Distances were extracted by using Euclidean
distance in ArcGIS10.6.

2.3. Research Method
2.3.1. The Research Framework

Based on land use data, we obtained the quantity of land use types under different
scenarios in 2030 using the Markov model. With all the data prepared, we simulated land
use patterns in 2030 under three scenarios using the FLUS model. Then, we estimated the
carbon storage of Changchun during 2010–2030 based on the InVEST model. The research
framework is shown as Figure 2.
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Table 1. Data source.

Data Type Data Name Data Source

Land use Land use maps of Changchun in 2010 and 2020 RESDCCAS 1

Terrain factors
DEM RESDCCAS
Slope Calculated using ArcGIS10.6

Aspect Calculated using ArcGIS10.6

Climate factors
Annual average temperature RESDCCAS
Annual average precipitation RESDCCAS

Socioeconomic factors

GDP RESDCCAS
Distance to city center CNRB 2; Calculated using ArcGIS10.6

Distance to railway CNRB; Calculated using ArcGIS10.6
Distance to highway CNRB; Calculated using ArcGIS10.6

Restricted Data
Ecological redline CNRB

Permanent primary farmland CNRB
1 RESDCCAS represent Resource and Environment Science Data Center of Chinese Academy of Science [21].
2 CNRB represent Changchun Natural Resources Bureau.

Figure 2. The research framework.

2.3.2. Defining Scenarios

It is necessary to consider multiple constraints in future land use simulation. We
adjusted the transfer probability, intensity, and direction between different land use types
and set parameters to reflect development under multi-scenario simulations. We set
three scenarios by combining land use needs with urban planning.



Land 2022, 11, 647 5 of 17

(1) Natural growth (NG) scenario: As the basis of the other scenarios, this scenario is
based on the transfer probability matrix of land use in Changchun from 2010 to 2020 without
considering local policies and planning. With economic and technological development,
converting construction land into other land use types is becoming impossible to achieve,
so we set the corresponding value in the cost matrix to 0.

(2) Cultivated land protection (CP) scenario: This scenario was aimed at protecting
cultivated land. We modified the transfer probability matrix in the Markov model on the
basis of the NG scenario. The probability of transferring cultivated land to construction
land is reduced by 60% and the probability of transferring cultivated land to unused land
is set to 0. Cultivated land is not allowed to be converted into other land use types in this
scenario. We added permanent primary farmland into the FLUS model as restricted data.

(3) Ecological protection (EP) scenario: This scenario aimed to strengthen the protec-
tion of ecological land such as forests, grasslands, and water bodies. The probability of
transferring forest and grassland to construction land is reduced by 50%, the probability of
converting water bodies to construction land is decreased by 10%, and forest, grassland,
and water bodies are forbidden from being converted to unused land. The probabilities
of transferring cultivated land to construction land and transferring cultivated land to
forest are reduced by 35%. Forests and water bodies are not allowed to be converted into
other land use types. Grassland can be transferred to forest and water bodies but not to
other land use types. Additionally, ecological redlines were taken into consideration in the
FLUS model.

The Markov model is a method of predicting the occurrence probability of events. It
assumes that the current state is only related to the state at the previous moment but has
nothing to do with other factors. It predicts the amount of future land use types according
to a land use transfer probability matrix. The formula is as follows:

S(t+1) = Pij × S(t) (1)

where S(t) and S(t+1) denote the land use states in the study area at moments t and t+1,
respectively, and Pij is the land use transfer probability matrix.

2.3.3. FLUS Model

The FLUS model introduces an artificial neural network (ANN) to construct trans-
formation rules on the basis of the cellular automata (CA) model, which has the advan-
tage of coupling human and natural activities to allow for higher accuracy [22]. The
FLUS model is composed of an artificial neural network (ANN) and an adaptive inertia
competition mechanism.

(1) Suitability probability calculation based on an artificial neural network

The ANN includes input, hidden, and output layers, and the optimal results are
achieved by continuously updating the weight coefficients between the layers through a
back propagation algorithm, which has the advantage of being able to learn and fit the
complex relationship between the input data and the training target through multiple
iterations [23,24]. It is an effective tool for iterating, adjusting, and fitting the relationship
between the input data and the training target through learning–recall [25].

p(d, k, t) = ∑
j

wj,k × sigmoid
(
netj(d, t)

)
= ∑

j
wj,k ×

1

1 + e−netj(d,t)
(2)

where p(d,k,t) denotes the adaptive probability of land use type k at moment t on element d,
wj,k is an adaptive weight between the output layer and the hidden layer, netj(d,t) denotes
the signal received by neuron j in the hidden layer, and sigmoid is the activation function
of the connection between the input layer and the hidden layer. The hidden layer of the
neural network is set to 12 in this paper.
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(2) Self-adaptive inertia and competition mechanism

Based on a roulette selection mechanism, this mechanism incorporates the spatial
computing function of CA and the self-adaptive inertia competition mechanism adjusts
the land quantity and the land use demand to reach the target value, which can crack the
uncertainty and complexity of mutual transformation in land use types [26]. The inertia
coefficient is the core of the self-adaptive inertia competition mechanism, and the final
simulation results not only depend on the probability of land distribution obtained from
the neural network but are also subject to constraints such as neighborhood and conversion
costs, reflecting the competition pattern of interactions in land use type changes [27]. The
inertia coefficient is as follows:

Inertiat
k = Intertia


Inertiat−1

k , if
∣∣∣St−1

k

∣∣∣ ≤ ∣∣∣St−2
k

∣∣∣
Inertiat−1

k × St−1
k

St−1
k

, if
∣∣∣St−1

k

∣∣∣ ≤ ∣∣∣St−2
k

∣∣∣ < 0

Inertiat−1
k × St−1

k
St−2

k
, if 0 <

∣∣∣St−2
k

∣∣∣ ≤ ∣∣∣St−1
k

∣∣∣
(3)

where Intertiak
t is the adaptive inertia coefficient of land use type k at moment t and Sk

t−1

and Sk
t−2 represent the differences between the demand of land use type k and the current

land quantity at moments t−1 and t−2, respectively.
After the total probability of each raster is calculated, the final integrated suitability

probability is calculated as:

TPt
d,k = p(d, t, k)×Ωt

d,k × Inertiat
k × (1− scc→k) (4)

where: TPt
d,k is the probability of element d becoming land use type k at moment t; p(d,k,t)

is the suitability probability of land use type k at moment t on element d; Ωt
d,k denotes the

neighborhood action; scc→k denotes the transfer cost of converting the original land use type c
to land use type k, and 1-scc→k denotes the difficulty of land use type conversion occurring

Ωt
d,k =

ΣN×Ncon(ct−1
d = k

)
N × N − 1

×Wk (5)

where ∑N×Ncon(cd
t−1=k) is the total number of rasters of land use type k at the end of

the last iteration in the Moore neighborhood window of N × N and Wk is the weight of
land use type k in the neighborhood role. The neighborhood factor weight indicates the
expansion intensity of the land use type with parameters ranging from 0 to 1. A value close
to 1 indicates strong expansion ability of the land use type [28]. The neighborhood factor
weights according to the actual situation are shown in the table below (Table 2).

Table 2. Neighborhood factor weight (Wk).

Land Use Type Cultivated
Land Forest Grassland Water

Body
Construction

Land
Unused

Land

Neighborhood
Factor Weight 0.7 0.6 0.5 0.5 1.0 0.5

The cost matrix indicates whether the conversion of land use types is allowed. We set
the corresponding value to 0 when the conversion is allowed, while setting to 1 means that
the conversion is forbidden. The cost matrix of the scenarios is set out in Table 3:
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Table 3. Cost matrix.

NG Scenario CP Scenario EP Scenario

Land Use Type * 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

Cultivated Land 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1
Forest 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0

Grassland 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0
Water Body 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0

Construction
Land 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0

Unused Land 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

* 1, 2, 3, 4, 5, 6 represent cultivated land, forest, grassland, water body, construction land, and unused land
respectively.

2.3.4. InVEST Model

The InVEST model aims to weigh the relationship between land use and ecosystem
service functions [29], and it has been widely used to estimate carbon storage [30,31].
Carbon storage in terrestrial ecosystems mainly includes four basic carbon pools: above-
ground biomass, below-ground biomass, soil organic carbon, and dead organic matter. The
model combines land use data with the average carbon density of each land use type to
estimate the total ecosystem carbon storage. Meanwhile, the impact of land use change on
the carbon storage of the terrestrial ecosystem under various scenarios is quantitatively
evaluated. The calculation of carbon storage can be expressed as follows:

Ci = Ci_above + Ci_below + Ci_soil + Ci_dead (6)

Ctotal =
n

∑
i=1

Ci × Ai (7)

where Ci is the average carbon density of land use type i, Ci_above is the above-ground
vegetation carbon density of land use type i, Ci_below is the below-ground vegetation carbon
density of land use type i, Ci_soil is the soil carbon density of land use type i, Ci_dead is the
carbon density of dead organic matter, Ctotal denotes the total carbon storage of the study
area, and Ai is the area of land use type i.

Since the content of dead organic matter carbon storage is very low and difficult to
obtain, it is not considered in this paper for the time being. According to Chen et al. [32],
Giardina et al. [33], and Alam et al. [34], biomass carbon density and soil carbon density
have a significant linear correlation with climate factors. The models on the relationship
between carbon density and annual average temperature and annual average precipitation,
respectively, are as follows:

CBP = 6.798e0.0054MAP (R2 = 0.70) (8)

CBT = 28MAT + 398 (R2 = 0.47, P < 0.01) (9)

CSP = 3.3968MAP + 39996.1 (R2 = 0.11) (10)

where CBP and CBT denote the biomass carbon density calculated from average annual
precipitation and average annual temperature, respectively; CSP denotes the soil car-
bon density; MAP is the annual average precipitation; and MAT denotes the annual
average temperature.

The carbon density correction factor equations are as follows.

KBP =
C′BP
C′′BP

; KBT =
C′BT
C′′BT

; KB = KBP × KBT =
C′BP
C′′BP
×

C′BT
C′′BT

(11)
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KS =
C′SP
C′′SP

(12)

where KBP is the biomass carbon density precipitation factor correction factor, KBT de-
notes the biomass carbon density temperature factor correction factor, KB denotes the
biomass carbon density correction factor, and KS denotes the soil carbon density correction
factor. C’ denotes the data from Changchun, while C” denotes the data from China or
Jiangsu province.

We obtained the vegetation and soil carbon density data of the cultivated land, forests,
and grassland of China from the research by Li et al. [35]. Vegetation carbon density is
divided into above-ground biomass carbon density and below-ground biomass carbon
density. According to the ratios of above-ground biomass to below-ground biomass of
different kinds of vegetation [36–38], the above-ground and below-ground biomass carbon
densities of cultivated land, forests, and grassland in China were calculated. We obtained
the above-ground biomass carbon density of water bodies, construction land, and unused
land in China from the research by Chen et al. [39] and the soil carbon density of water
bodies, construction land, and unused land in Jiangsu Province from Chuai et al. [40]. The
carbon densities of the below-ground biomass of water bodies, construction land, and
unused land were defaulted to 0 according to Zhu et al. [1]. The annual average temperature
of China, Jiangsu province, and Changchun City are 9 ◦C, 15.7 ◦C, and 4.8 ◦C, respectively.
Additionally, the annual average precipitation in these areas is 628 mm, 1040.4 mm and
570.3 mm, respectively [1]. Finally, using formulas 8, 9, 10, 11, and 12, we calculated the
carbon density of land use types in Changchun (Table 4).

Table 4. Carbon density of different land use types (Mg/hm2).

Land Use Type Ci_above Ci_below Ci_soil

Cultivated Land 2.88 0.54 104.93
Forest 35.31 7.69 184.70

Grassland 0.28 1.76 96.71
Water Body 0.18 0.00 63.90

Construction Land 0.15 0.00 57.52
Unused Land 0.08 0.00 58.78

3. Results and Analysis
3.1. Multi-Scenario Simulation for Future Land Use and Carbon Storage Estimation

The driving factors used for future land use simulation included DEM, slope, aspect,
annual average temperature and precipitation, GDP, distance to city center, and railways
and highways. The terrain of Changchun is high in the east and south. Most areas are
flat. The distribution of annual average temperature is related to the terrain, and the
temperature is lower in places with high terrain. Affected by the monsoon, the annual
average precipitation is high in the east and low in the west. The municipal districts are
located in the southwest, where the GDP is much higher than that of other counties. The
administrative centers of districts and counties are shown as large patches of construction
land in land use maps. According to the distance to highways and railways, the traffic
condition in the southwest of Changchun was better than in other areas.

Based on a land use data map from 2010 and nine driving factors, we simulated the
spatial distribution of land use types in 2020 using the FLUS model (Figure 3). We used the
kappa coefficient to test the accuracy of the model. Our research showed that when the
kappa coefficient is greater than 0.75, the simulation accuracy is reliable and has statistical
significance [24]. Compared with the actual land use map of 2020, the overall accuracy
of the FLUS model was 91.07%, and the Kappa coefficient was 77.43%, which means a
high consistency. Therefore, it is credible to simulate future land use patterns based on the
FLUS model. We modified the transfer probability matrix of land use from 2010 to 2020
to obtain quantities of land use types in 2030 under three scenarios. Figure 3 shows the
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multi-scenario simulation for future land use under three scenarios in 2030. Under the NG
scenario, urban expansion is evident, especially in the southwest of Changchun. Under
the CP scenario, meanwhile, the expansion of construction land has been suppressed and
cultivated land is well-preserved. It can be seen from the figure that the forest area has
increased significantly under the EP scenario.

Figure 3. Land use map in 2010, 2020, simulation for 2020, and simulation under three scenarios for
2030 of Changchun.

From Table 4 we can see that the order of carbon density from high to low is forest,
cultivated land, grassland, water, unused land, and construction land. By inputting carbon
density data and land use data into the InVEST model, we estimated carbon storage in 2010
and 2020 and potential carbon storage under three scenarios in 2030 (Figure 4).

3.2. Impact of Land Use Change on Carbon Storage from 2010 to 2020

In the past decade, the carbon storage of terrestrial ecosystems in Changchun has
shown a downward trend, with carbon storage falling from 2.22 × 108 Mg in 2010 to
2.16 × 108 Mg in 2020. The average carbon density was 107.68 Mg/hm2 and 104.87 Mg/hm2,
respectively, exhibiting a reduction of 2.81 Mg/hm2. Total carbon storage has been reduced
by 5.81 × 106 Mg and the average annual reduction rate was 0.26%. From the perspec-
tive of spatial distribution, carbon storage of high value was generally distributed in the
southeast of Changchun and that of the central part was lower (Figure 5). Areas with high
carbon storage were concentrated in forests, which had a carbon density of 227.70 Mg/hm2.
The second-lowest carbon storage areas were mainly concentrated in cultivated land and
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grassland. The carbon density in these areas was higher than 98.75 Mg/hm2 and lower
than 108.35 Mg/hm2. The lowest carbon storage areas were concentrated in water bodies,
construction land, and unused land. All the carbon storage values in these areas were lower
than 64.08 Mg/hm2.

Figure 4. Carbon storage and average density in 2010, 2020, and under three scenarios in 2030.

Figure 5. Spatial distribution and variation of carbon storage in Changchun from 2010 to 2020.

The characteristics of land use changes in Changchun from 2010 to 2020 were that
the area of cultivated land in Changchun City decreased significantly, while the area of
construction land and water bodies increased. This reflects an obvious characteristic of
urban expansion. Cultivated land has always been the main land type, which is widely
distributed in various regions of Changchun City, especially in the central and northern
regions, accounting for about 80% of the total area of Changchun City. Over the past
10 years, the area and proportion of cultivated land have decreased by 1106.81 km2 and
5.37%, respectively. This has caused a carbon loss of 1.20 × 107 Mg. The second is most
common land use type is construction land, with an area of 2590.30 km2 in 2020, accounting
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for 12.57%, which is 905.73 km2 (4.40%) higher than in 2010. This land use type if mainly
distributed in the municipal districts of southwestern Changchun and the built-up areas of
counties. From 2010 to 2020, the expansion of construction land was enhanced by rapid
urban development, and a large area of cultivated land was converted to construction land.
The carbon storage around the city center in the southwest of Changchun was significantly
reduced, as well as that of the built-up areas of various counties. Forests generally extend
along the northeast–southwest direction and are distributed along Dahei mountain, with
an area of 772.80 km2 in 2020, accounting for 3.75% of total land area. Grassland is mainly
distributed around forests and water bodies. The carbon sequestration increased slightly in
the western part due to the conversion of water bodies into grassland. The carbon storage
in the Yinma River and Songhua River Basin decreased due to an increase in the water
bodies. The area of unused land is small and accounts for only 0.03% of the total area. The
area of woodland, grassland, and unused land decreased by 12.21 km2 (0.06%), 36.75 km2

(0.17%), and 0.34 km2 (0.00%), respectively, between 2010 and 2020, which caused carbon
losses of 2.78 × 105 Mg, 3.63 × 105 Mg, and 2.88 × 103 Mg, respectively. Some of these
losses were offset by the increase in water body and construction land areas.

By overlaying the land use map in 2010 with the land use map in 2020 in ArcGIS10.6,
we obtained the land use transfer matrix for 2010–2020 (Table 5). According to the land use
transfer matrix, there were mutual conversions among various land use types in Changchun
City. The area of cultivated land transferred into other types was 1686.89 km2, which was
about three times the area of other types transferred into cultivated land (580.07 km2). The
area of construction land transferred into other types (1266.08 km2) was about four times
the area of other types transferred into construction land (320.34 km2). The transfer of
cultivated land to construction land has been the main land use type conversion over
the past decade, which led to most of the carbon storage loss. A total of 1181.40 km2 of
cultivated land was converted to construction land in 2010–2020, causing carbon losses
of 5.99 × 106 Mg. This was mainly due to urban expansion. The area transferred from
forests was mainly turned into grassland (101.30 km2), with some also being transferred
to cultivated land. Grassland ecosystems have lower stability than forest ecosystems, so
grassland is easy to convert into or from other land use types. The transferred-in area of
water (314.14 km2) was significantly larger than the transferred-out area (63.61 km2). The
main source was cultivated land (279.88 km2) and the carbon loss caused by conversion
was 1.24 × 106 Mg.

Table 5. Land use transfer matrix in Changchun during 2010–2020 (km2).

Land Use Type Cultivated
Land Forest Grassland Water

Body
Construction

Land
Unused

Land Sum Transferred-Out
Area

Cultivated Land 15,413.09 95.88 129.50 279.88 1181.40 0.23 17,099.97 1686.89
Forest 83.75 584.17 101.30 4.08 11.55 0.16 785.01 200.84

Grassland 160.66 88.39 385.95 27.21 29.75 3.56 695.52 309.57
Water Body 24.47 1.00 34.91 276.59 3.20 0.02 340.20 63.61

Construction Land 311.06 3.06 3.44 2.76 1364.22 0.01 1684.57 320.34
Unused Land 0.12 0.29 3.67 0.20 0.19 2.29 6.75 4.46

Sum 15,993.16 772.80 658.77 590.73 2590.30 6.26 20,612.01 2585.70
Transferred-in Area 580.07 188.62 272.82 314.14 1226.08 3.98 2585.70

3.3. Potential Impact of Land Use Change on Carbon Storage from 2020 to 2030

The potential spatial distribution and variation of carbon storage under three scenarios
in 2030 are shown in Figures 6 and 7, respectively. It was estimated that the total carbon
storage would be 2.12 × 108 Mg under the NG scenario, which is 4.36 × 106 Mg less than
in 2020 (a decrease of 2.02%). The average carbon density was 102.75 Mg/hm2. In this
scenario, the land use pattern would tend to be stable. The expansion of construction land
would still be serious, and it would occupy cultivated land and forests, which have higher
carbon densities. The cultivated land around the heart of the city would be more likely to be
converted to construction land in the future, and the aggregation of patches in the built-up
areas would also increase. Every county would experience different degrees of decline
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in carbon storage, especially those with a large area of cultivated land in the northern
regions of Changchun such as Nong’an, Jiutai, Dehui, and Yushu. They exhibit a more
serious reduction in carbon storage than other counties. Comparatively, the decrease in
carbon storage was significantly weakened under the CP scenario. The spatial distribution
pattern of carbon storage does not change significantly. The total carbon storage would
be 2.16 × 108 Mg, which is 2.60 × 105 Mg less than in 2020 (a decrease of 0.12%), and
the average carbon density would decrease by 0.13 Mg/hm2, which indicates that carbon
storage in the construction land protection scenario remains basically unchanged. As the
main land use type of Changchun, cultivated land plays an important role in the carbon
storage of the terrestrial ecosystem. In the EP scenario, the carbon storage of the terrestrial
ecosystem would increase due to an increase in ecological land area. Forests, grassland,
and water bodies would be protected in this scenario. The carbon storage and average
carbon density would be 2.18 × 108 Mg and 106.00 Mg/hm2, respectively, increasing by
2.33 × 106 Mg and 1.14 Mg/hm2, respectively, compared with 2020. In terms of spatial
distribution, the decrease in carbon storage due to the conversion of cultivated land into
other land types would mainly be distributed in the northern region, while the areas with
increased carbon storage would mainly be distributed around the Dahei Mountain and
Shuangyang District. The reason for these reductions is the increase in forest area.

Figure 6. Potential spatial distribution of carbon storage under three scenarios in 2030.

Figure 7. Potential spatial variation of carbon storage from 2020 to three scenarios in 2030.

The potential impact of land use change on carbon storage under various scenarios
was quantitatively evaluated. Under the NG scenario, the carbon storage around the city
center would decreased the most due to the expansion of construction land. The area
and proportion of cultivated land under natural growth and ecological protection scenar-
ios were 15,171.00 km2 (73.60%), which decreased by 822.16 km2 (3.99%) compared with
2020, causing a carbon storage decline with 8.91 × 106 Mg. Meanwhile, cultivated land
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is well preserved, as is revealed by the fact that the area of cultivated land increased by
8.88 km2 (0.06%) under the cultivated land protection scenario, which increased carbon
storage by 9.62 × 104 Mg. The area of woodland and grassland was 755.20 km2 (3.66%) and
655.71 km2 (3.18%) under the NG and CP scenarios, respectively. The area of water under
the NG scenario was 775.67 km2 (3.76%), an increase of 184.95 km2 (0.89%) compared with
2020. Under the cultivated land protection scenario, the area of water was only 601.58 km2,
accounting for 2.92% of land area, due to the control of cultivated land being transferred to
other land use types. Forests, grassland, and water bodies, as ecological land, were effec-
tively protected under the EP scenario. The area and proportion of forest land, grassland,
and water were 1144.52 km2 (5.55%), 673.17 km2 (3.27%), and 776.86 km2 (3.77%), respec-
tively, which show increases of 371.73 km2 (1.80%), 14.40 km2 (0.07%), and 186.14.78 km2

(0.90%), respectively, compared with 2020. The carbon storage or sequestration of forests,
grassland, and water bodies increased by 8.46× 106 Mg, 1.42× 105 Mg, and 1.19 × 106 Mg,
respectively. Construction land would still expand to a large extent under the NG scenario
and may come to occupy other types of land that have higher carbon densities. The carbon
storage of construction land increased by 3.79 × 106 Mg under the NG scenario, far less
than the carbon loss of cultivated land. This would be controlled under the CP and EP.
The expansion rate of construction land would be greatly slowed down under the CP and
EP scenarios and the construction land area would increase by 0.96 km2 and 249.60 km2,
respectively, compared with 2020. The total area of unused land is projected to increase by
0.25 km2 under the NG scenario, while it would be developed and utilized under the CP
and EP scenarios. The impact of unused land change on carbon storage was very small.

4. Discussion
4.1. Implications for Future Development Plan

About 90% of organic carbon in Changchun is stored in cultivated land and forests.
Although the carbon density of cultivated land is lower than that of forests, the carbon
storage of cultivated land accounts for more than 80% of the total carbon storage due to the
large area of cultivated land, which shows the land uses type with larger areas and higher
carbon densities have a greater influence on carbon storage. Forest cover is mainly found
on the Dahei mountain range. The high altitude of the mountain determines the slope and
aspect, limits the expansion of urban land, and occupies the dominant ecological niche in
water conservation and forest resources [41]. It will remain an important carbon sink area in
Changchun in the future, which is of great value for carbon balance and ecosystem stability
over the whole city. Most of Changchun is located on the Songnen Plain, which is flat
terrain that is suitable for human activities. Cultivated land is extensively distributed in the
central and northern part of the city, and is greatly affected by human activities. Compared
to areas with high forest coverage, the carbon storage in most areas of Changchun was
maintained at a medium level. Low-density carbon storage was mainly distributed in the
southwest of the city and in built-up areas. Although the carbon density of water is lower
than that of cultivated land and grassland, the ecological service value of water is higher.
Furthermore, the water area showed an increasing trend in all three scenarios, which is
also one of the reasons for the loss of carbon storage. Urban carbon storage decline remains
an inevitable problem under continuous urban expansion. It is worth thinking about how
to slow down this decline in carbon storage. This paper showed the impact of land use
change on carbon storage under several scenarios, which can provide a reference for urban
sustainable development. With the proposal of the strategy of revitalizing the old industrial
bases in northeast China, there are many cities experiencing different degrees of decline in
carbon storage, including Changchun. Cultivated land plays an important role in carbon
storage. It is equally important to protect cultivated land while protecting ecological land.
The priority of a territorial development plan should be the overall improvement of the
economic, social, and ecological benefits of land.
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4.2. Limitations and Improvement

Our study has some limitations. The potential impact of land use on carbon density
depends largely on the simulation of land use patterns. The Markov and FLUS models
combine the advantages of quantity prediction and spatial distribution, and the accuracy
of land use pattern simulation has been improved to a certain extent. However, land use
change is a complex and dynamic process, and urban development is influenced by several
of factors. In this paper, we considered nine driving factors in our model and simulated
three scenarios: NG, CP, and EP. The more factors that are taken into account, the more
accurate the results will be. The parameters set in the FLUS model are subjective and
idealized. The Markov chain assumes that the current state is only related to the state at
the previous moment, without considering long-term economic and social development’s
role in the current situation [10,42]. The demand area of land use types is calculated only
by modifying the transfer probability matrix in the Markov model, which is less related to
planning and policies in the study area, such as ecological protection redlines. In future
research, we should take local planning into consideration in order to improve the accuracy
of the models.

As for the source of carbon density, many scholars have collected carbon density data
from papers in their study area or via experimental measurements. In regions with few
research results it can be difficult to obtain comprehensive and complete data. Moreover,
using multiple sources will affect the accuracy of the results. In order to improve the
accuracy of carbon storage estimation in a terrestrial ecosystem, we used a carbon density
correction method to calculate carbon density in this paper according to Zhu et al. [1]. It
is fast and effective to use this method, but it also comes with uncertainties. Taking data
of China as the basic data for carbon density correction, the present study was a detailed
study within this context. Due to the vast area of China, the data need to be improved
in the future. Biomass carbon density is mainly influenced by climate, terrain, nitrogen
deposition, hydrological conditions, tree species composition, etc. Soil carbon density is
mainly influenced by soil type, soil respiration rate, and vegetation cover [43]. Due to the
difficulty of quantifying many of these factors, only temperature and precipitation were
considered when correcting the carbon density in this paper. This should be improved
in future research. As it is affected by human activities and climate change, the carbon
density will change dynamically over time. Therefore, there is inherent uncertainty in
estimations of carbon storage that use a fixed value of carbon density for different periods.
In future research, we should verify the accuracy of carbon density through experimental
measurements to improve the accuracy of the estimation results in the InVEST model.

4.3. Soil Carbon Pool

It can be seen from Table 4 that the carbon density of the soil is much higher than that
of the vegetation. The soil carbon pool is the largest carbon pool in the terrestrial ecosystem,
which is composed of organic carbon pools and inorganic carbon pools. Its carbon storage
is three times that of atmospheric carbon pools and 3.8 times that of biological carbon
pools [44]. The global soil organic carbon (SOC) is about 1550 Pg and the inorganic carbon
(SIC) is about 750 Pg [45]. In the InVEST model, we only took soil organic carbon into
consideration. According to Wu et al. [46], tillage measures can lead to a significant increase
in inorganic carbon in the Songnen Plain. The significant impact of land use on soil
inorganic carbon cannot be ignored [46–48]. In addition, the soil types in Changchun City
mainly consist of dark brown soil, albic soil, black soil, black calcareous soil, and alluvial
meadow soil. The soil carbon density varies by soil type. These factors should be taken
into account in future studies.

5. Conclusions

Taking Changchun City in northeast of China as the study area, we combined the FLUS
model with the Markov model to simulate land use patterns in 2030 under three scenarios
(a natural growth scenario, a cultivated land protection scenario, and an ecological protec-
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tion scenario) based on land use data from 2010 and 2020. Then, we assessed terrestrial
ecosystem carbon storage over the past decade and over the next 10 years based on the
carbon storage and sequestration module in the InVEST model. This paper estimates
the impact of land use changes on carbon storage in terrestrial ecosystems under several
scenarios in Changchun, which can provide a reference for urban sustainable development.

The results show that cultivated land plays an important role in carbon storage in
Changchun. From 2010 to 2020, rapid urban development led to the expansion of con-
struction land and a significant decrease in cultivated land. The transfer of cultivated land
to construction land has been the main land use type conversion over the past decade,
which led directly to most of the carbon storage loss. In the NG scenario, the counties with
a large area of cultivated land in the northern regions would experience a more serious
reduction in carbon storage than others. In the CP scenario, this situation would be greatly
improved. In the EP scenario, the carbon storage would be increased due to the protection
of ecological land. Cultivated land accounts for nearly 80% of the total area of Changchun.
As for other cities with similar backgrounds and situations in northeast China, it is equally
important to protect both cultivated land and ecological land. In the future, the priority of
any territory development plan should be protecting existing resources, such as cultivated
land and ecological land, while simultaneously comprehensively improving the economic,
social, and ecological benefits of the land.
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