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Abstract: Rapid urbanization has triggered significant changes in urban land surface temperature
(LST), which in turn affects urban ecosystems and the health of residents. Therefore, exploring
the interrelationship between urban development and LST can help optimize the urban thermal
environment and promote sustainable development. Based on remote sensing data from 2004–2019
within the sixth ring road of Beijing, this study investigates the spatiotemporal coupling law of night
time light (NTL) and LST using an overall coupling model and analyzes the degree of coordination
between them using a coordination model. The spatial response law between them was also analyzed
using standard deviation ellipses and bivariate spatial autocorrelation. The results show that, from
the perspective of spatiotemporal evolution, the spatial distributions of NTL and LST within the sixth
ring road of Beijing were closely related from 2004 to 2019, although the overall coupling of NTL and
LST was initially decreased and then continuously increased. From the perspective of coordination
types, the main types of coordination between NTL and LST deteriorated over time. The increase
in LST lagged behind NTL from 2004 to 2009 (heating hysteresis type), while LST increased ahead
of NTL from 2014 to 2019 (heating advance type). This suggests that urban development became
less efficient, while LST increases became more significant. In terms of correlation, NTL and LST
showed significant positive correlation and spatial positive correlation; the correlation coefficient first
decreased significantly and then continued to increase. From 2004 to 2009, the temperature increase
caused by urbanization was suppressed due to the 2008 Beijing Olympics and related ecological
protection policies, resulting in a significant decrease in the correlation coefficient between NTL
and LST. From 2009 to 2019, short-term measures taken by Beijing during the Olympic Games were
no longer effective, and the opposition between urban development and related policies made the
policies increasingly less effective, thereby increasing the correlation coefficient between NTL and
LST, and the increase in LST was more significant. This will greatly affect the urban ecological
environment and residents’ health and make the previous government investment to suppress the
temperature increase all in vain. This study can provide theoretical and practical support for the
development of thermal environment optimization schemes and LST mitigation strategies in Beijing
and other cities.

Keywords: urban development; night time light; land surface temperature; coordination model;
spatial autocorrelation; Beijing
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1. Introduction

Land surface temperature (LST), combining the results of all surface–atmosphere
interactions and energy fluxes between the atmosphere and the ground, plays an important
role in studying the urban thermal environment [1]. Since the implementation of The
Reform and Opening-up Policy, China’s accelerated urbanization in recent decades has led
to an increase in the LST in its urban areas, which directly affects urban air quality [2,3],
the local climate [4–6], energy utilization [7], thermal comfort [8,9], and the biological
community [10]. Furthermore, a high temperature environment can pose a threat to human
health from both physiological and psychological aspects. It not only directly causes
heat stroke and dehydration but also affects sleep quality and induces irritability and
mental disorders, thus increasing the probability of depression and other psychological
disorders [11–13]. These effects degrade the quality of the urban environment, which in
turn slows down urban development. Therefore, exploring the relationship between urban
development and LST can help guide the sustainable development of cities [14].

Most previous studies on the spatial distribution characteristics of LST and the in-
fluence of urban development on LST [15–23] mainly focused on two aspects [24]: (1)
the characterization of the urban development using land cover factors, including land
use-cover change [25–27], the normalized difference vegetation index (NDVI) [28–30] and
normalized difference built-up index [31,32], impervious surface area, and impervious
surface distribution density [33,34]; and (2) the characterization of the urban development
using socioeconomic factors, including gross domestic product (GDP) [35], population
density [36,37], and industrial production activities [38]. Furthermore, many studies have
emphasized the importance of landscape composition and configuration in mitigating
urban surface temperature elevation [16,39–41].

However, it is difficult to synthesize spatial urban development data using a single
geographic element. Previous findings suggest that the indicators used to quantify urban
development should cover three aspects: economy, population, and land [42]. In the past
two decades, night time light (NTL) images have been rapidly developed. Compared with
ordinary remote sensing satellite images, NTL images record surface light intensity informa-
tion that more directly reflects intensity of human activities and are therefore widely used in
urban studies, including for mapping urban areas [43] and detecting trends in urban spatial
spread [44]; in addition, NTL imagery is considered a major data source for estimating
changes in urban population size and density [45], detecting socioeconomic activities [46],
measuring energy and electricity consumption [47], and assessing gas emissions [48]. The
results of various studies show that the pixel values of NTL data are significantly correlated
with various indicators for assessing urban development, such as economic density [49],
population density [50], urbanization level [51], and energy consumption [52]. Most previ-
ous studies in this area have focused on the influence of urban development on LST; fewer
studies have systematically analyzed the relationship between NTL and LST.

Methods such as Pearson’s correlation coefficient [53], linear regression analysis [36,54],
and stepwise multiple linear regression [55] have been widely used to study the influence
of various types of factors on LST. However, the above methods ignore the spatial het-
erogeneity of such factors and LST, resulting in an inability to adequately measure their
interrelationships. In contrast, the overall coupling model can be used to analyze the level
of coordination among variables [56,57], while the coordination model can capture the
degree of coordination in the evolution of two variables [58]. These two methods are thus
more appropriate to reveal the spatiotemporal coupling laws of NTL and LST than the
aforementioned methods. In addition, the standard deviation ellipse can reflect the degree
of concentration and dominant direction of the spatial pattern of variables [59], while
bivariate spatial autocorrelation can effectively reflect the association and dependence char-
acteristics of the spatial distribution of two types of variables [60]. These two techniques
can be used to explore the spatial response law between NTL and LST.

Beijing is one of the most populous metropolitan areas in the world. Intensive human
activities and urban development within the sixth ring road of Beijing have led to a
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significant increase in the LST in this area, posing a major threat to human comfort and
environmental health [61]. Therefore, based on remote sensing data obtained within the
sixth ring road of Beijing from 2004 to 2019, the spatiotemporal coupling and correlation
of NTL and the LST were explored in this study using an overall coupling model, a
coordination model, standard deviation ellipse (SDE), and bivariate spatial autocorrelation.
This study provides theoretical and practical support for the development of thermal
environment optimization schemes and LST mitigation strategies in Beijing and other cities.

2. Materials and Methods
2.1. Study Area

As the capital of China, Beijing is located in the northern part of the North China
(39◦56′ N, 116◦20′ E). Its topography is high in the northwest and low in the southeast, and
the total administrative area is 16,410 km2 (Figure 1). The research area was defined as the
area within the sixth ring road of Beijing, as this is where the city’s population and diverse
functions are concentrated. Therefore, it is a key area of urban construction in Beijing.
From 2004 to 2019, the population of Beijing grew from 1492.7 million to 2190.1 million,
with an increase of 697.4 million. GDP grew from 625.25 billion to 3544.51 billion, with an
increase of 2919.26 billion. Population growth, economic development, and the hosting of
large events such as the 2008 Olympic Games, among other factors, have led to accelerated
urbanization within this area. From 2004 to 2019, the construction land in Beijing grew from
1708.61 km2 to 2153.88 km2, with an increase of 445.27 km2. This means the conversion of
considerable areas of natural surfaces into asphalt, cement, and other artificial surfaces,
thus causing changes in LST and triggering a series of environmental problems such as the
creation of urban heat islands [62].
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of Beijing.

2.2. Data Sources

In this study, Landsat 5 TM and Landsat 8 OLI multispectral and thermal infrared remote
sensing images were obtained from the United States Geological Survey (USGS) data center
(https://glovis.usgs.gov/, accessed on 3 October 2021). Collection of remote sensing image
data was conducted during the summer with clear weather, with a cloud cover of less than 10%.
The remote sensing image is preprocessed by ENVI 5.3 software, such as radiometric calibration,
atmospheric correction, and area of interest clipping [63]. Then, the images were classified into
seven land cover categories, namely, cropland, forest, shrub, grassland, water, impervious land,
and barren land. In this study, the NTL data used are Defense Meteorological Satellite Pro-
gram/Operational Linescan System (DMSP/OLS) NTL data and National Polar-orbiting Opera-
tional Environmental Satellite System Preparatory Project/Visible Infrared Imaging Radiometer

https://glovis.usgs.gov/
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Suite (NPP/VIIRS) NTL data (Table 1). The NTL data are preprocessed by ENVI 5.3 software,
such as data fusion denoising, clipping, and radiometric correction [64]. Both NTL datasets were
obtained from the National Geophysical Data Center website (http://www.ngdc.noaa.gov/,
accessed on 3 October 2021).

Table 1. Data sources and descriptions.

Data Data Identification Time Data Source

Landsat4-5 TM LT51230322004252BJC00 8 September 2004

http://www.gscloud.cn/, (accessed on
3 October 2021).

Landsat4-5 TM LT51230322009265IKR00 22 September 2009
Landsat8 OLI_TIRS LC81230322014247LGN01 4 September 2014
Landsat8 OLI_TIRS LC81230322019261LGN00 18 September 2019

DEM ASTGTM_N39E116 -

Road network - 2020 https://www.openstreetmap.org/,
(accessed on 3 October 2021).

POI - 2020 https://map.baidu.com/, (accessed on
3 October 2021).

DMSP/OLS NTL - - http://www.ngdc.noaa.gov/, (accessed
on 3 October 2021).NPP/VIIRS NTL - -

2.3. Methods

This study is based on remote sensing data obtained within the sixth ring road of
Beijing from 2004 to 2019. The spatiotemporal coupling and correlation of NTL and LST
were explored using an overall coupling model, a coordination model, and standard
deviation ellipse (SDE). A flowchart depicting the methodology employed in this study is
provided in Figure 2.
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2.3.1. Retrieval of LST

The radiative transfer equation [65,66] was applied to invert the LST through the
thermal infrared band in the Landsat images.

First, the surface-specific emissivity was calculated using NDVI, which is calculated
as follows [67]:

PV = [(NDVI − NDVImin)/(NDVImax − NDVImin)]
2 (1)

εv = 0.9625 + 0.0614× PV − 0.0461× P2
V

εb = 0.9589 + 0.0860× PV − 0.0671× P2
V

εw = 0.9950
(2)

where PV is the proportion of vegetation in the mixed pixel. NDVI is the normalized
differential vegetation index. NDVImin and NDVImax are the normalized vegetation index
values of bare soil and vegetation, respectively, and take the values of 0.05 and 0.70,
respectively [67]. εv, εb, and εw are the specific emissivities of natural surface, construction
land, and water bodies, respectively, where ‘natural surface’ is a mixed image element
composed of vegetation and bare soil and ‘construction land’ is a mixed image element
consisting of impervious surfaces, vegetation, and bare soil [36].

Next, the corresponding radiative brightness (Lλ) was calculated from the image
element values of the thermal infrared band in the Landsat data. Then, the brightness
temperature (Ts) was calculated and converted to LST as follows:

Lλ = ML × DN + AL (3)

B(Ts) =
[
Lλ − Lup − τ × (1− ε)× Ldown

]
/(ε× τ) (4)

Ts = K2/ ln
[

K1

B(Ts)
+ 1
]

(5)

where B(Ts) denotes the blackbody thermal radiation brightness; Ts denotes the surface
temperature; DN is the image element value of the thermal infrared band; and ML and
AL are the slope and gain of the radiometric calibration of the thermal infrared band,
respectively. Lup and Ldown represent the upward and downward radiation brightness of
the atmosphere, respectively, and K1 and K2 are constants.

The Lup, Ldown, K1, and K2 values for Landsat 5 TM thermal infrared band 6 were
0.38 W/(m2·sr·µm), 3.65 W/(m2·sr·µm), 607.76, and 1260.56, respectively. The Lup, Ldown,
K1, and K2 values for Landsat 8 OLI thermal infrared band 10 were 1.25 W/(m2·sr·µm),
2.37 W/(m2·sr·µm), 774.89, and 1321.08, respectively.

The accuracy of the inversion results was verified by studying the LST of the cor-
responding dates measured at the meteorological stations in the region. These data
were obtained from the database of daily values of Chinese terrestrial climate data (http:
//data.cma.cn/, accessed on 6 October 2021). It was found that the absolute errors between
the inverse LST and the measured LST were less than 3.42 ◦C, and the relative errors were
less than 15%. In addition, the Pearson correlation coefficients of the inverse LST and
the measured LST were all higher than 0.768, and all correlation analysis results passed
the significance test at the 0.01 level. Therefore, the inversion results meet the accuracy
requirements of the study.

Using the standard deviation method [68], the study area was divided into seven
thermal class zones based on LST: extremely high temperature, high temperature, relatively
high temperature, medium temperature, relatively low temperature, low temperature, and
extremely low temperature. Since the LST values in the extremely high temperature, high
temperature, relatively high temperature, and medium temperature zones of the study
area are generally higher than the average LST, these areas were considered as urban heat
island zones [63].

http://data.cma.cn/
http://data.cma.cn/
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2.3.2. Data Gridding

Considering the spatial resolution of NTL data and related research results [36,69,70],
the study area was divided into 1 × 1 km grid cells using ArcGIS 10.2 software. The NTL
in each grid cell was extracted, and the average LST value in each grid cell was regarded as
the LST of that grid cell to realize the unification of the two kinds of data. Finally, the LST
and NTL were normalized using the polar difference normalization method, and a map
was produced using the formula operation and the interpolation method.

2.3.3. Overall Coupling Model

The overall coupling model measures the coupling of the evolution of spatial variables
by comparing the similarities in the distance and the moving direction of the weighted
centers of different spatial variables. The smaller the distance between the weighted centers
of the spatial variable and the smaller the included angle of the moving trajectory of the
weighted centers, the higher the overall coupling of the two variables. The overall coupling
model [56] can be calculated as follows:

CNTL,t(XNTL,t, YNTL,t) =

(
∑n

i=1 mNTL,tiXNTL,ti

∑n
i=1 mNTL,ti

,
∑n

i=1 mNTL,tiYNTL,ti

∑n
i=1 mNTL,ti

)
(6)

CLST,t(XLST,t, YLST,t) =

(
∑n

i=1 mLST,tiXLST,ti

∑n
i=1 mLST,ti

,
∑n

i=1 mLST,tiYLST,ti

∑n
i=1 mLST,ti

)
(7)

L =
√
(XLST,t − XNTL,t)

2 + (YLST,t −YNTL,t)
2 (8)

α = arccos

 ∆XLST × ∆XNTL + ∆YLST × ∆YNTL√(
∆X2

LST + ∆Y2
LST
)
×
(
∆X2

NTL + ∆Y2
NTL

)
× π (9)

where CNTL,t is the weighted center of the NTL, CLST,t is the weighted center of the LST,
XNTL,t and YNTL,t are the coordinates of the NTL weighted center in period t, XLST,t and
YLST,t are the coordinates of the LST weighted center in period t, mNTL,ti is the value of the
NTL in pixel i of period t, mLST,ti is the value of the LST in pixel i of period t, L is the spatial
distance between the weighted center of the NTL and LST in period t, and α is the included
angle of moving trajectory of the weighted center of LST and NTL in a certain period of
time. ∆XLST and ∆YLST and ∆XNTL and ∆YNTL represent the changes in the weighted center
coordinates of LST and NTL, respectively, compared with the previous period.

2.3.4. Coordination Model

The coordination model reflects the degree of coordination of the development and
evolution of the two variables. A coordination model was used to quantitatively reflect the
coordination level between NTL and LST, and the specific classification is shown in Table 2.
The calculation [58] is as follows:

O =

∣∣∣(UR + TR)/
√

2
∣∣∣

√
UR2 + TR2

(10)

where O is the coordination coefficient of NTL and LST, and UR and TR are the average
annual growth rates of NTL and LST, respectively.
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Table 2. Classification of coordinated change types between NTL and LST.

Category Formation Conditions Meaning

Coordinated enhancement type 0.8 < O ≤ 1.0, UR ≈ TR > 0 The coordination degree of NTL and LST is high, urban
development and LST are coordinated enhanced

Antagonistic heating advance type 0 ≤ O < 0.5, TR > UR The coordination degree of NTL and LST is low, LST
increases ahead of urban development

Running-in heating advance type 0.5 ≤ O < 0.8, TR > UR NTL and LST are barely coordinated, LST increases
ahead of urban development

Running-in heating hysteresis type 0.5 ≤ O < 0.8, TR < UR NTL and LST are barely coordinated, and LST increase
lags behind urban development

Antagonistic heating hysteresis type 0 ≤ O < 0.5, TR < UR The coordination degree between NTL and LST is low,
and LST increase lags behind urban development

Coordinated decline type 0.8 < O ≤ 1.0, UR ≈ TR < 0 The coordination degree of NTL and LST is high, urban
development, and LST decrease in coordination

2.3.5. Standard Deviation Ellipse (SDE)

The SDE was first proposed by Lefever in 1926 [59], and with the rapid development
of GIS technology, the SDE method based on geographic information has become a conven-
tional statistical tool for spatial statistics modules [71]. In this study, a two-dimensional
scatter plot including NTL data on the x-axis and LST data on the y-axis was constructed,
and the SDE was used to identify relatively clustered regions and describe the correlation
between NTL and LST.

2.3.6. Bivariate Spatial Autocorrelation

Spatial autocorrelation analysis reveals whether the distribution of spatial variables
is related to neighboring variables. Bivariate spatial autocorrelation analysis proposed by
Anselin effectively reflects the correlation and dependence of the spatial distribution of the
two types of variables [60].

3. Results
3.1. Spatiotemporal Coupling Correlation between Urban Development and the LST

This section first analyzed the spatial distribution pattern of NTL and LST within
the sixth ring road of Beijing from 2004 to 2019 and then investigated the spatiotemporal
coupling relationship between NTL and LST using the overall coupling model and the
coordination model. The overall coupling model can be used to analyze the level of coordi-
nation among variables, the coordination model can capture the degree of coordination in
the evolution of two variables. These two methods are thus more appropriate to reveal the
spatiotemporal coupling laws of NTL and LST.

3.1.1. Urban Development and Spatial Distribution Pattern of the Thermal Environment

The spatial distribution of NTL within the sixth ring road of Beijing from 2004 to 2019
shows that high NTL values were concentrated in the central part of Beijing, where dense
populations and dense traffic road networks occur (Figure 3). The areas with high NTL
values showed a polycentric irregular clustering distribution in 2004 and 2009 and central
clustering and diffusion along the traffic road network in 2014 and 2019.

Table 3 shows that, in 2004, 27.56% of the study area was characterized by high NTL
values, which were concentrated in the central part of the study area. The average NTL
value within the sixth ring road of Beijing was 15.51, with high values concentrated in the
western part of the Chaoyang District, southern part of the Haidian District and the eastern
part of the Fengtai District. Low values were concentrated in the northern Haidian, eastern
Chaoyang, northern Changping, and southern Daxing districts. The highest value, 91.83,
was observed in the southeast part of the Chaoyang District in 2004.
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Table 3. Proportions of areas with high and low NTL values in each administrative region within the
sixth ring road of Beijing from 2004 to 2019.

Type

2004 2009 2014 2019

Low Value
Area

High
Value Area

Low Value
Area

High
Value Area

Low Value
Area

High
Value Area

Low Value
Area

High
Value Area

Changping 13.18 3.60 13.08 4.58 13.91 1.30 13.01 2.75
Chaoyang 15.19 34.52 13.72 36.52 17.65 28.42 17.74 29.31

Daxing 11.89 7.24 13.14 4.66 11.9 7.06 12.76 3.81
Dongcheng 0.82 4.74 1.16 3.64 0.30 6.29 0.68 5.75
Fangshan 7.46 1.08 8.08 0.11 7.33 1.24 6.98 1.66
Fengtai 10.17 15.68 10.74 13.91 10.51 14.91 10.19 16.40
Haidian 15.55 19.37 17.33 14.88 15.85 18.66 16.9 15.66

Mentougou 1.77 0.06 1.85 0.00 1.77 0.00 1.71 0.00
Shijingshan 3.80 3.39 4.07 2.76 3.98 2.86 3.71 3.60

Shunyi 7.70 1.51 6.46 4.89 6.61 4.29 6.12 5.57
Tongzhou 10.67 5.39 8.82 10.15 9.94 7.25 9.56 8.15
Xicheng 1.80 3.42 1.55 3.90 0.25 7.72 0.64 7.34

Sum 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

In 2009, the number of areas with high NTL values was higher than that in 2004,
accounting for 29.84% of the study area. The average NTL value in the study area was
21.09. After 2004, the speed of urban development within the sixth ring road of Beijing
accelerated, and the Chaoyang, Haidian, and Fengtai districts were greatly developed.
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Therefore, high NTL values were still concentrated in these regions and the proportion of
each district slightly increased. Owing to the Beijing Olympic Games, the proportion of
the Tongzhou District increased, and the district became an area with high NTLs. Except
for the Tongzhou District, areas with low NTL values insignificantly changed. The highest
NTL value in the study area, 129.67, was observed in the south of the Shunyi District.

In 2014, the area with high NTL values had decreased, accounting for 26.70% of the
study area; the average value was 17.89. The high NTL values were still concentrated in
the Chaoyang, Haidian, and Fengtai districts. The proportion of area with high NTL values
in the Chaoyang District significantly decreased and that of the rest of the districts slightly
increased. The area with high NTL values in the Xicheng and Dongcheng districts doubled.
The area with low NTL values in the study area remained stable. The highest NTL value
(255.27) was observed in the northeast of the Chaoyang District.

In 2019, the area with high NTL values decreased compared with that in 2014, account-
ing for 24.06% of the study area; the average value was 21.93. The distribution of high
NTL values remained unchanged. The proportion of area with high NTL values in the
Haidian District slightly decreased and that of the Chaoyang and Fengtai districts slightly
increased. The area with low NTL values remained stable. The highest NTL value (381.49)
was observed at the junction of the Dongcheng and Xicheng districts.

The heat island areas within the sixth ring road in Beijing from 2004 to 2019 showed a
polycentric irregular clustering distribution, and the four temperature zones representing
heat islands were concentrated in built-up urban areas with dense buildings and popula-
tions (Figure 4).
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Table 4 shows that, in 2004, the heat island area was relatively small and concentrated
in the central and southwestern parts within the sixth ring road in Beijing (Chaoyang, Feng-
tai, Haidian, and Daxing districts). The mean surface temperature of the heat island area
in 2004 was 32.898 ◦C. The cold island areas were concentrated in the Haidian, Chaoyang,
Changping, and Tongzhou districts. In 2004, the highest and lowest surface temperatures
within the sixth ring road in Beijing were 41.02 and 21.22 ◦C, respectively, representing a
difference of 19.8 ◦C.

Table 4. Proportions of cold and heat islands within the sixth ring road of Beijing from 2004 to 2019.

Type

2004 2009 2014 2019

Cold
Island Area

Heat
Island Area

Cold
Island Area

Heat
Island Area

Cold
Island Area

Heat
Island Area

Cold
Island Area

Heat
Island Area

Changping 18.07 7.04 14.72 8.85 12.20 9.84 13.01 9.51
Chaoyang 18.45 21.44 21.13 20.17 17.06 22.25 20.05 20.67

Daxing 3.98 13.99 5.24 13.12 10.06 11.06 8.75 11.65
Dongcheng 0.41 2.55 1.19 2.15 0.53 2.54 0.49 2.51
Fangshan 4.13 6.53 3.85 6.58 7.17 5.00 5.78 5.73
Fengtai 2.98 15.97 5.36 14.52 6.49 14.44 6.19 14.37
Haidian 20.39 14.34 20.64 14.42 18.72 15.07 18.35 15.35

Mentougou 3.28 0.41 3.38 0.45 1.71 1.16 3.55 0.29
Shijingshan 3.27 3.92 3.52 3.79 2.92 4.11 4.10 3.51

Shunyi 10.90 3.57 8.96 4.65 8.91 4.43 8.50 4.75
Tongzhou 13.78 7.11 10.96 8.55 13.74 6.96 10.81 8.56
Xicheng 0.36 3.13 1.05 2.75 0.49 3.14 0.42 3.10

Sum 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

In 2009, the heat island area expanded compared with 2004, and the mean surface tem-
perature in the heat island area was 27.959 ◦C. After 2004, the speed of urban development
of the study area accelerated and the Chaoyang, Fengtai, Haidian, and Daxing districts
were greatly developed. Therefore, heat islands were still mainly concentrated in these
areas, the proportion of each district insignificantly changed, and the spatial location of the
heat island area changed. Cold island areas were concentrated in the Chaoyang, Haidian,
Changping, and Tongzhou districts. The spatial location of cold island areas insignificantly
changed. The proportion of cold island areas in the Chaoyang District increased, while
that in the Changping and Tongzhou districts decreased and that in the Haidian District
insignificantly changed. In 2009, the highest and lowest surface temperatures within the
sixth ring road of Beijing were 51.96 and 15.76 ◦C, respectively, representing a difference of
28.52 ◦C.

The Beijing Municipal Government Report 2010 points out that Beijing’s environmen-
tal problems require urgent attention. It introduces strict control policies, such as total
population control and traffic restrictions, as well as measures to protect water sources
and strengthen planning constraints. It appears to have achieved some results: The heat
island area slightly decreased in 2014. The heat island areas were still concentrated in the
Chaoyang, Fengtai, Haidian, and Daxing districts. The proportion of the heat island area in
the Chaoyang District to the total heat island area slightly increased, while in the Daxing
District, it slightly decreased and in the Fengtai and Haidian districts, it remained stable.
Cold island areas were concentrated in the Haidian, Chaoyang, Tongzhou, Changping, and
Daxing districts. The proportion of cold island areas in the Haidian, Chaoyang, and Chang-
ping districts to the total cold island area slightly decreased, while that in the Tongzhou
and Daxing districts significantly increased.

The area of heat islands in 2019 increased compared with 2014 because of the opposing
effects of urban development and ecological protection policies. The heat island areas were
still concentrated in the Chaoyang, Fengtai, Haidian, and Daxing districts. The proportion
of the heat island area in the Chaoyang District to the total heat island area slightly de-
creased, while it remained stable in the other districts. Cold island areas were concentrated
in the Chaoyang, Haidian, Changping, and Tongzhou districts. The proportion of cold
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island areas in the Chaoyang and Changping districts to the total cold island area slightly
increased, while that in the Tongzhou, Daxing, and Haidian districts slightly decreased.

In summary, the LST strongly correlates with urban development. The highest tem-
peratures of the study area were observed in the urban development zone. Lower tem-
peratures were mainly recorded in rivers, inner lakes, and high mountains, as well as in
less-developed areas at the edge of the city. According to the comparison of the four-phase
time series diagram of the NTL and thermal class, the extension direction of the heat island
area from 2004 to 2019 is the same as that of the built-up area.

3.1.2. Spatiotemporal Coupling of the NTL and LST

The coupling degree of the NTL and LST of the study area was measured using the
overall coupling model (Figure 5 and Table 5). Overall, during 2004 to 2019, the distance
between the weighted centers of the NTL and LST and the angle between the moving
directions of the weighted centers initially increased significantly and then decreased,
with an overall small increase. The overall coupling first significantly weakened and then
continuously strengthened. The moving direction of the weighted centers of the NTL and
LST was overall identical, but their directions were opposite in the late stage. From 2004
to 2009, the northeastern part of the study area, Chaoyang and Shunyi, had higher urban
construction rates due to the Olympic Games, resulting in a shift in the weighted center of
NTL to the northeast and a significant shift in the weighted center of LST. From 2009 to
2014, the moving direction of the weighted center of the NTL was the same as the direction
of urban construction in Beijing, which still moved toward the northeast of the study area.
At the same time, the weighted center of the LST shifted toward southwestern Beijing
because of the UHI effect driven by the event activities weakened after the Beijing Olympic
Games. The development of Daxing and Tongzhou districts in the southeast of the study
area from 2014 to 2019 caused the weighted center of the NTL to move to the southeast,
whereas the weighted center of the LST moved to the northeast in the same direction as the
weighted center of the NTL from 2009 to 2014 because the effect of the urban development
on the LST is hysteretic.
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Table 5. Coupling analysis of the LST and NTL within the sixth ring road of Beijing from 2004 to 2019.

Year Distance between Weighted Centers (km) Period Angle of the Moving Direction of the Weighted Center (◦)

2004 1.609 2004–2009 47.498
2009 3.872 2009–2014 160.812
2014 2.119 2014–2019 159.678
2019 2.190 2004–2019 70.305

3.1.3. Spatial Coordination Characteristics of the NTL and LST

Table 6 shows that the area of each coordination type of the NTL and LST of the
study area varied widely in different periods. The area of coordinated enhancement,
coordinated decline, and antagonistic heating hysteresis continued to decrease, whereas
that of antagonistic heating advance and running-in heating advance continued to increase.
The area of running-in heating hysteresis first increased and then decreased, with an overall
decreasing trend. The coordination types of the NTL and LST of the research area in all
three time periods showed an irregular circular distribution.

Table 6. Areas and proportions of coordination types between NTL and LST within the sixth ring
road of Beijing from 2004 to 2019.

Year

Coordinated
Enhancement Type

Antagonistic Heating
Advance Type

Running-In Heating
Advance Type

Running-In Heating
Hysteresis Type

Antagonistic Heating
Hysteresis Type

Coordination
Decline Type

Area
(km2)

Proportion
(%)

Area
(km2)

Proportion
(%)

Area
(km2)

Proportion
(%)

Area
(km2)

Proportion
(%)

Area
(km2)

Proportion
(%)

Area
(km2)

Proportion
(%)

2004–2009 207.06 9.13 217.81 9.60 432.16 19.06 514.87 22.70 514.49 22.68 381.69 16.83
2009–2014 40.68 1.79 320.67 14.14 583.57 25.73 563.61 24.85 392.63 17.31 366.92 16.18
2014–2019 36.27 1.60 782.77 34.51 676.84 29.84 366.34 16.15 218.00 9.61 187.87 8.29

Figure 6 shows that from 2004 to 2009, the coordination type in the central part of the
study area was mainly coordination decline due to the Olympic events. The proportions of
the running-in heating hysteresis and antagonistic heating hysteresis types were the largest,
together accounting for 45.38% of the study area. They were mainly distributed in the
Xicheng, Dongcheng, southern Haidian, western Chaoyang, and northern Fengtai districts.
The running-in heating advance was concentrated in the northern part of the research area
and the coordinated enhancement was concentrated in the eastern part. The coordination
decline, antagonistic heating hysteresis, running-in heating hysteresis, running-in heating
advance, antagonistic heating advance, and coordinated enhancement types within the
sixth ring road of Beijing showed a circular distribution from the center to the periphery.
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From 2009 to 2014, the main coordination type in the central part within the sixth ring
road of Beijing was coordinated enhancement, but the proportion was small, accounting
for only 1.79% of the research area. The antagonistic heating advance type was concen-
trated in the southern Haidian and western Chaoyang districts. The proportions of the
running-in heating advance and running-in heating hysteresis types were the largest, to-
gether accounting for 50.58% of the research area. The two types were mainly located in
peripheral areas such as the Fangshan, Changping, Daxing, Tongzhou, northern Haidian,
and Mentougou districts. The coordinated enhancement, antagonistic heating advance,
running-in heating advance, coordination decline, antagonistic heating hysteresis, and
running-in heating hysteresis types in the study area presented a circular distribution from
the center to the periphery.

From 2014 to 2019, the main coordination type in the central part within the sixth
ring road of Beijing was antagonistic heating advance. This type was concentrated in the
Xicheng, Dongcheng, Eastern Fengtai, and eastern Haidian districts. The proportions of
the antagonistic heating advance and running-in heating advance types were the largest,
accounting for 64.35% of the study area. The hysteresis type running-in heating was mainly
distributed in the Mentougou District and northern part of the Shijingshan District. The an-
tagonistic heating advance, running-in heating advance, coordination decline, antagonistic
heating hysteresis, running-in heating hysteresis, and coordinated enhancement types in
the study area presented a circular distribution from the center to the periphery.

Table 7 shows that the proportion of coordination types in the study area continued to
decrease. From 2004 to 2009, the coordinated enhancement type was mainly distributed in
the Chaoyang, Tongzhou, and Shunyi districts, accounting for 31.14%, 28.08%, and 24.19%,
respectively. From 2009 to 2014, it was mainly distributed in the Chaoyang and Changping
districts, accounting for 25.94% and 23.11%, respectively. From 2014 to 2019, this type
was mainly distributed in the Tongzhou District, accounting for 33.86%. In the 2004 to
2009 time period, the coordination decline type was mainly distributed in the Chaoyang,
Fengtai, and Haidian districts, accounting for 29.46%, 19.66%, and 15.84%, respectively.
From 2009 to 2014, it was mainly distributed in the Chaoyang and Tongzhou districts,
accounting for 27.88% and 20.35%, respectively. In the 2014 to 2019 time period, this type
was mainly distributed in the Chaoyang and Changping districts, accounting for 45.05%
and 16.34%, respectively.

Figure 7 shows that the proportion of the antagonistic type first remained stable and
then significantly increased. The antagonistic heating advance type was mainly distributed
in the Chaoyang and Changping districts during the 2004 to 2009 period, accounting for
20.97% and 16.92%, respectively. From 2009 to 2014, it was mainly distributed in the
Chaoyang and Haidian districts, accounting for 31.12% and 21.24%, respectively. From
2014 to 2019, it was mainly distributed in the Haidian, Fengtai, and Chaoyang districts,
accounting for 18.83%, 16.45%, and 16.08%, respectively. The antagonistic heating hysteresis
type was mainly distributed in the Haidian, Chaoyang, and Fengtai districts in the 2004 to
2009 period, accounting for 20.36%, 20.18%, and 17.57%, respectively; in the Fengtai District
in the 2009 to 2014 time period, accounting for 18.08%; and in the Chaoyang, Haidian, and
Daxing districts, accounting for 22.18%, 18.40%, and 15.85%, respectively.

The proportion of the running-in type first increased and then decreased. The running-
in heating advance type was mainly distributed in the Changping and Haidian districts
in the 2004 to 2009 period, accounting for 20.12% and 19.23%, respectively. It was mainly
distributed in the Chaoyang and Haidian districts from 2009 to 2014, accounting for 24.79%
and 20.95%, respectively. From 2014 to 2019, this type was concentrated in the Chaoyang
and Haidian districts, accounting for 21.27% and 15.17%, respectively. The running-in
heating hysteresis type was concentrated in the Haidian and Chaoyang districts from 2004
to 2009, accounting for 18.82% and 16.32%, respectively. From 2009 to 2014, it was mainly
distributed in the Fengtai District, accounting for 15.02%. From 2014 to 2019, it was mainly
distributed in the Haidian District, accounting for 17.60%.
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Table 7. Proportions of coordination types between NTL and LST within the sixth ring road of Beijing.

Types
Coordinated Enhancement Type Antagonistic Heating

Advance Type Running-In Heating Advance Type

04–09 09–14 14–19 04–09 09–14 14–19 04–09 09–14 14–19

Changping 10.19 23.11 12.7 16.92 11.61 6.57 20.12 12.04 12.02
Chaoyang 31.14 25.94 6.35 20.97 31.12 16.08 12.39 24.79 21.27

Daxing 1.48 0.47 4.23 8.99 5.21 9.68 11.41 6.51 11.14
Dongcheng 0.00 8.96 2.65 0.00 3.23 3.87 0.13 2.66 1.36
Fangshan 1.67 6.13 12.17 7.84 1.92 4.34 8.21 1.48 9.05
Fengtai 0.84 9.44 6.88 5.55 6.82 16.45 7.28 7.40 10.60
Haidian 1.76 7.55 4.23 12.16 21.24 18.83 19.23 20.95 15.17

Mentougou 0.28 0.00 1.06 1.58 0.42 0.10 2.00 4.21 0.20
Shijingshan 0.37 1.89 1.06 2.73 3.59 2.04 4.80 4.24 2.55

Shunyi 24.19 8.49 11.64 11.28 6.22 5.20 4.31 5.95 5.87
Tongzhou 28.08 4.25 33.86 11.89 4.61 11.08 9.86 7.14 10.29
Xicheng 0.00 3.77 3.17 0.09 4.01 5.76 0.26 2.63 0.48

Types

Running-in Heating
Hysteresis Type

Antagonistic Heating
Hysteresis Type Coordination Decline Type

04–09 09–14 14–19 04–09 09–14 14–19 04–09 09–14 14–19

Changping 9.77 12.84 12.47 5.97 7.97 12.68 4.07 5.7 16.34
Chaoyang 16.32 8.78 16.08 20.18 14.57 22.18 29.46 27.88 45.05

Daxing 14.16 14.74 12.68 11.04 14.61 15.85 10.11 12.24 3.47
Dongcheng 0.82 1.06 0.47 3.02 1.66 0.35 5.93 0.26 0.00
Fangshan 7.72 11.34 3.98 3.54 9.09 5.19 3.87 3.24 1.74
Fengtai 10.62 15.02 9.06 17.57 18.08 9.86 19.66 11.14 4.09
Haidian 18.82 19.2 17.60 20.36 14.47 18.40 15.84 4.60 10.21

Mentougou 2.39 0.24 7.23 0.75 0.15 0.35 0.25 0.52 0.00
Shijingshan 4.03 3.95 9.22 5.00 2.83 5.28 2.46 3.50 2.35

Shunyi 4.58 3.47 6.29 3.10 5.23 5.19 0.91 10.36 9.19
Tongzhou 9.06 7.25 4.56 4.47 9.19 4.67 3.52 20.35 7.56
Xicheng 1.71 2.11 0.36 5.00 2.15 0.00 3.92 0.21 0.00
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3.2. Influence Mechanism of NTL on LST

This section focused on the interrelationship between NTL and LST from 2004–2019
within the sixth ring of Beijing using standard deviation ellipses and bivariate spatial
autocorrelation. The standard deviation ellipse can reflect the degree of concentration and
dominant direction of the spatial pattern of variables, and bivariate spatial autocorrelation
can effectively reflect the association and dependence characteristics of the spatial distri-
bution of two types of variables. These two techniques can be used to explore the spatial
response law between NTL and LST.

3.2.1. Correlation between NTL and LST

In this study, we used the SPSS software to calculate the correlation coefficients
between the NTL and LST data and analyzed the changes in spatial characteristics of
the two-dimensional scatter of the NTL and LST data using SDE (Table 8 and Figure 8).
The results showed that from 2004 to 2019, the NTL and LST of the research area were
significantly and positively correlated. The directionality of the SDE was notable and less
discrete, which indicates that an increase in NTL leads to an increase in the LST. This
correlation was due to the broad replacement of natural to impermeable surfaces caused by
urban development; urban buildings impeded ventilation and heat dissipation. Under the
combined effect of various factors, the LST had increased.

Table 8. Relevant NTL and LST parameters within the sixth ring road of Beijing from 2004 to 2019.

Year Correlation Coefficient 1
Standard Deviation Elliptic Parameter

Center of Inertia
(NTL, LST) Azimuth (◦) Oblateness

2004 0.425 ** (0.199, 0.478) 50.531 0.370
2009 0.211 ** (0.265, 0.498) 75.837 0.357
2014 0.354 ** (0.231, 0.443) 48.094 0.311
2019 0.427 ** (0.264, 0.453) 59.444 0.403

1 ** denotes that the correlation was significant at the level of 0.01 (detection < 0.01).
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Table 8 shows the positive effect of NTL on the LST of the study area. From 2004 to
2009, the urban development of Beijing accelerated owing to the Olympic Games. The
center of the SDE simultaneously moved along the x-axis (NTL) and y-axis (LST) toward
the high-value area, which indicates a significant positive effect of the increase in the NTL
on the LST. From 2009 to 2014, the center of the SDE simultaneously moved along the
x-axis (NTL) and y-axis (LST) toward the low-value area because of ecological protection
policies, indicating that the reduction in the LST has a negative effect on the NTL. From
2014 to 2019, the center of the SDE simultaneously moved along the x-axis (NTL) and y-axis
(LST) toward the high-value area under the opposing effects of urban development and
ecological protection policies, which indicates that the effect of urban development on the
LST strengthened and gradually became positive.

3.2.2. Spatial Correlation between NTL and LST

OpenGeoDa software was used to calculate the bivariate Moran’s I of the NTL and
LST of the research area (Table 9 and Figure 9). The results indicate a significant positive
spatial correlation between the NTL and LST within the sixth ring road of Beijing, that is, an
increase in the NTL in local areas leads to an increase in the LST in surrounding areas. This
correlation is due to the heat exchange between different regions because of the difference
in the LST. The local NTL increase drives the increase in the LST in that area. The heat in
that area then transfers to the surrounding areas, which eventually leads to an increase
in the LST in the surrounding areas. The bivariate Moran’s I value of the NTL and LST
gradually increased from 2004 to 2019, that is, the positive effect of the NTL on the LST in
surrounding areas strengthened. This is due to the expansion of the town area and gradual
and continuous concentration of the spatial distribution, resulting in the enhancement of
the UHI effect and a significant warming of the surrounding environment.

Table 9. Bivariate Moran‘s I statistics of the LST and NTL within the sixth ring road of Beijing from
2004 to 2019.

Year Bivariate Autocorrelation 2

2004 0.403 (100.9594) ***
2009 0.192 (50.6277) ***
2014 0.321 (82.8475) ***
2019 0.354 (92.3110) ***

2 *** denotes that the correlation was significant at the level of 0.001 (detection < 0.001).

The “hot spot” (HH)-type refers to high NTL units adjacent to high LST units. The
effect of the Olympic Games in 2009 led to an insignificant correlation between the NTL
and LST in the central urban area, leading to a significant reduction in the HH area from
2004 to 2019, followed by a continuous increase. The HH-type was mostly clustered in
the central areas of the study area (e.g., Xicheng, Dongcheng, southern Haidian, western
Chaoyang, and eastern Fengtai districts), which are characterized by a flat topography,
developed transportation, dense population, rapid urban construction, and a strong UHI
effect. Low NTL units are surrounded by high LST units.

The “cold spot” (LL)-type means that low NTL units are adjacent to low LST units.
From 2004 to 2019, the LL area of the research area first decreased, then increased, and then
decreased; it was mainly concentrated in the urban fringe areas (e.g., Mentougou, northern
Haidian, northern Changping, and western Shunyi districts), which are characterized by
high topography, mountainous and forested areas, large lakes, less population, slow urban
construction, and a weak UHI effect.
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The “heterogeneous point” (LH)-type refers to low NTL units surrounded by high
LST units. From 2004 to 2019, the LH area first remained stable and then decreased. It
was mostly clustered in the areas around the HH agglomeration (i.e., northern Fangshan,
western Daxing, and southern Chaoyang districts), which are mostly large areas with bare
land, cultivated land, and industry. Although the NTL is relatively low, the effects of solar
radiation or anthropogenic heat emissions lead to a relatively high LST.

The “heterogeneous point” (HL)-type refers to high LST units surrounded by low
NTL units. From 2004 to 2019, the HL area first increased and then decreased, and was
mainly observed in areas around the LL agglomeration (i.e., northern Haidian, northern
Chaoyang, and southern Chaoyang districts), which are near mountains, forests, lakes, and
fragmented town areas. Despite the high NTL, the “cold island effect” of the surrounding
natural surface leads to a relatively low LST.

4. Discussion
4.1. Correlation between NTL and LST

This study clarifies the spatiotemporal evolution and interrelationship of NTL and LST
within the sixth ring road of Beijing. NTL data exceed beyond the limitations of previous
index data and make the research results more accurate because they can reflect the spatial
development differences and speed within a city [72,73]. The results demonstrate that
the spatial distribution of NTL and LST within the sixth ring road of Beijing from 2004
to 2019 was closely related. High temperatures mainly occurred in the central part of the
study area with high NTL values, and low temperatures were mainly found at rivers, lakes,
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mountains, and less-developed areas. These areas had low NTL values and are located at
the edge of the city.

From 2004 to 2019, the distance between the weighted centers of the NTL and LST
and the angle between the moving directions of the weighted centers of the research
area first significantly increased and then decreased, with an overall small increase. The
overall coupling first significantly decreased and then continuously increased. The moving
directions of the weighted centers of the NTL and LST were the same in the early stage,
opposite in the late stage, and the same overall.

The area of each coordination type of the NTL and LST significantly varied. From
2004 to 2019, the areas of coordinated enhancement, coordination decline, and antagonistic
heating hysteresis continued to decrease; the areas of antagonistic heating advance and
running-in heating advance continued to increase, and the area of running-in heating
hysteresis first increased and then decreased. From the perspective of coordination types,
it was mainly heating hysteresis within the sixth ring road of Beijing from 2004 to 2009,
accounting for 45.38% of the study area; from 2009 to 2014, it was mainly the running-in,
accounting for 50.58% of the study area; from 2014 to 2019, it was mainly the heating
advance, accounting for 64.35% of the study area. Most studies of urbanization dynamics
and their impact on surface heat islands in the case of Beijing have suggested that with
rapid urban expansion, the NTL values first increases rapidly, and then the growth rate
slows down [74]. This finding also explains the prominent increase in LST observed during
this stage. This shows that the main types of coordination between NTL and LST within
the sixth ring road of Beijing deteriorated over time, with LST increases lagging behind
NTL from 2004 to 2009 (heating hysteresis type) and LST increased ahead of NTL from
2014 to 2019 (heating advance type). This suggests that urban development became less
efficient and LST increases became more significant.

From 2004 to 2019, the NTL and LST of the research area were significantly positively
correlated, and the correlation coefficient first decreased significantly and then continued
to increase. This result reflects the findings of a previous study on urbanization and the
urban heat island effect in Beijing from 1995 to 2009, in which strong evidence that this
phenomenon exists in the city is provided [75]. It is suggested again that there is a close
relationship between temperature distribution and regional urbanization level. The SDE
had a notable directivity and small discreteness, which indicates that an increase in NTL
leads to a more rapid increase in LST. Some scholars point out that the impervious surface
within the sixth ring road of Beijing expanded significantly from 1997 to 2017 [76]. The
replacement of natural surfaces by impermeable surfaces and the obstruction of ventilation
and heat dissipation by urban buildings are contributing to the increase in LST [77].

From 2004 to 2009, a period of more prominent urban development, the HH-type area
decreased and the HL-type area increased. Across the rest of the study period, the LST
increased more significantly than NTL. At the spatial scale, four types of spatial correla-
tion patterns of NTL and LST could be distinguished. The HH aggregation was mostly
concentrated in the central areas of the research area with a flat topography, developed
transportation, dense population, fast urban construction, strong UHI effect, and a notable
trend of expansion and aggregation. The LL aggregation mostly occurred in urban fringe
areas with a higher terrain, mountains, forests, or large lakes in which the population was
smaller, urban construction was slower, the UHI effect was weaker, and the distribution
was relatively stable. The LH aggregation was mostly distributed around the HH aggrega-
tions, mainly found in large areas with bare land, cropland, and industry. Although the
NTL was relatively low in these areas, LST was relatively high due to solar radiation or
anthropogenic heat emission. The HL aggregation area was relatively small and mostly
distributed around LL aggregations, mainly near mountain forests, lakes, and fractured
urban areas. Although the NTL was relatively high, the LST was relatively low due to the
“cold island effects” of surrounding natural surfaces. These findings suggest that urban
development becomes less efficient and LST increases more significantly over time, which
will greatly affect the urban ecological environment and residents’ health.
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4.2. Recommendations for Sustainable Development

The results of this study provide a reference for advancing sustainable urban devel-
opment. The results show that the efficiency of urban development decreases and LST
increases more significantly over time. Therefore, corresponding planning strategies should
be developed for cities according to their urbanization stage [78]. For cities at the high
level of urbanization stage, due to limited available land, urban landscape configuration
should be prioritized. However, simply changing the landscape composition, such as
increasing urban green space and limiting impervious surface expansion, is not an effective
way to mitigate increases in urban surface temperature. More attention should be paid to
various cost-effective means [79], such as road cooling [80–82], urban green roofs [83,84],
and the cooling of building materials [85,86]. For cities at the low level of urbanization
stage, green spaces should be preserved, which would help improve urban thermal comfort
and mitigate surface temperature increases in built-up areas of the city.

At the same time, when planning for different LST areas, specific analysis should
be conducted so that corresponding strategies can be determined [87]. For example, in
areas where industries are concentrated, optimizing neighborhood space and reducing
waste emissions can facilitate decreases in LST; in areas with dense buildings and few
green spaces, vertical greening and vegetation density should be increased [88,89], and
dilapidated buildings should be demolished to increase air circulation. Stricter greening
policies should be implemented in new expansion areas, which, combined with the optimal
park cooling range and scale, can help mitigate the urban heat island effect [90].

Finally, in terms of urban planning and management, the main challenge is the imple-
mentation of regulations related to sustainable development goals. In response to urban
sprawl and the problems caused by extreme weather events, the Beijing Master Plan states
that population density should be reduced and total building area should be strictly con-
trolled. In most cases, however, detailed large-scale urban plans are not coordinated with
higher-order plans and do not strictly adhere to their strategic goal of protecting green
spaces. Instead, the protection of green space is often compromised to satisfy the interests of
private stakeholders. The important issue also lies in the lack of measures and instruments
for the implementation of green infrastructure principles [91]. Therefore, governments need
to enact strict green policy interventions and effective urban planning to control rapidly
rising urban temperatures [92].

4.3. Limitations

This study has shortcomings due to the complexity of surface temperature changes and
the limited availability of basic research data. First, this study analyzed the spatiotemporal
evolution and relationship between NTL and LST for just four years: 2004, 2009, 2014, and
2019. Therefore, further studies are needed to address this aspect by applying the most
recent multi-temporal remote sensing data in the future. In addition, because the surface
temperature is affected by various factors, such as latitude and longitude, and global
climate changes [93], the effects of various factors were not analyzed comprehensively
when the relationship between NTL and LST was explored. Finally, the spatial resolution
of the remote sensing data must be improved by using higher-resolution remote sensing
data in the future.

5. Conclusions

(1) From the perspective of spatiotemporal evolution, the spatial distribution of NTL and
LST within the sixth ring road of Beijing from 2004 to 2019 was closely related. High
temperatures mainly occurred in urban development zones with high NTL values,
and low temperatures mainly occurred in less-developed areas with low NTL values.
From 2004 to 2019, the overall coupling of NTL and LST first significantly weakened
and then continuously strengthened. The moving directions of the weighted centers
of the NTL and LST were the same in the early stage, then opposite in the late stage;
however, overall, they were the same.
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(2) From the perspective of coordination types, it was mainly heating hysteresis within
the sixth ring road of Beijing from 2004 to 2009, accounting for 45.38% of the study
area; from 2009 to 2014, it was mainly the running-in, accounting for 50.58% of the
study area; from 2014 to 2019, it was mainly the heating advance, accounting for
64.35% of the study area. This shows that the main types of coordination between
NTL and LST within the sixth ring road of Beijing deteriorated over time, with LST
increased lagged behind NTL from 2004 to 2009 (heating hysteresis type) and LST
increased ahead of NTL from 2014 to 2019 (heating advance type). This suggests that
urban development became less efficient and LST increases became more significant.

(3) In terms of correlation, from 2004–2019, the correlation coefficients of NTL and LST
and the bivariate Moran’s I within the sixth ring road of Beijing are positive and
significant. This shows that there is a significant positive correlation and spatial
positive correlation between them. From 2004 to 2009, the temperature increase
caused by urbanization was suppressed due to the 2008 Beijing Olympics and related
ecological protection policies, resulting in a significant decrease in the correlation
coefficient between NTL and LST. From 2009 to 2019, some short-term measures taken
by Beijing during the Olympic Games were no longer effective, and the opposition
between urban development and related policies made the policies increasingly less
effective. The efficient ecological policies in the early period were unable to suppress
the LST increase triggered by rapid urbanization in the later period, leading to the
correlation coefficient between NTL and LST continued to increase, and the correlation
coefficient value in 2019 was higher than that in 2004. The increase in the LST was more
significant, which will greatly affect the urban ecological environment and residents’
health, making the previous government investment to suppress the temperature
increase all in vain.

Therefore, when governments formulate plans for cities at different stages of urban-
ization, they should enact corresponding strict green policies that can be adhered to in the
long term to control the rapidly rising temperatures. This study can provide theoretical
and practical support for the development of thermal environment optimization schemes
and LST mitigation strategies in Beijing and other cities.

Author Contributions: Conceptualization, Z.L. and F.W.; methodology, F.W.; software, Z.L.; valida-
tion, S.W. and H.M.; formal analysis, Z.L.; data curation, Z.L., H.M. and Z.X.; writing—original draft
preparation, Z.L.; writing—review and editing F.W., H.M. and Z.X.; funding acquisition, S.W. All
authors have read and agreed to the published version of the manuscript.

Funding: This research study was supported by Basic Research Program of Shanxi Province (grant
no. 20210302123403), Philosophy and Social Sciences Planning Project of Shanxi Province (grant
no. 2020YJ052), Shanxi Provincial People’s Government Major Decision Consulting Project (grant
no. ZB20211703), the National Natural Science Foundation of China (grant no. 41971233, 41771178,
42030409), the Fundamental Research Funds for the Central Universities (grant no. N2111003), Basic
Scientific Research Project (Key Project) of the Education Department of Liaoning Province (grant no.
LJKZ0964), Natural Science Foundation of Guizhou Province (grant no. [2019]1150), and the Second
Tibetan Plateau Scientific Expedition and Research Program (STEP) (grant no. 2019QZKK1004).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: We greatly thank the reviewers and editors for their constructive suggestions and
comments. The authors would like to acknowledge all colleagues and friends who have voluntarily
reviewed the translation of the survey and the manuscript of this study.

Conflicts of Interest: The authors declare no conflict of interest.



Land 2022, 11, 548 21 of 24

References
1. Kuang, W.; Chi, W.; Lu, D.; Dou, Y. A Comparative Analysis of Megacity Expansions in China and the U.S.: Patterns, Rates and

Driving Forces. Landsc. Urban Plan. 2014, 132, 121–135. [CrossRef]
2. Luo, X.; Yang, J.; Sun, W.; He, B. Suitability of Human Settlements in Mountainous Areas from the Perspective of Ventilation: A

Case Study of the Main Urban Area of Chongqing. J. Clean. Prod. 2021, 310, 127467. [CrossRef]
3. Lai, L.W.; Cheng, W.L. Air Quality Influenced by Urban Heat Island Coupled with Synoptic Weather Patterns. Sci. Total Environ.

2009, 407, 2724–2733. [CrossRef] [PubMed]
4. Zhao, C.; Jensen, J.L.R.; Weng, Q.; Currit, N.; Weaver, R. Use of Local Climate Zones to Investigate Surface Urban Heat Islands in

Texas. GIScience Remote Sens. 2020, 57, 1083–1101. [CrossRef]
5. Liu, Y.; Li, Q.; Yang, L.; Mu, K.; Liu, J. Urban Heat Island Effects of Various Urban Morphologies under Regional Climate

Conditions. Sci. Total Environ. 2020, 743, 140589. [CrossRef]
6. Zhao, Z.; Sharifi, A.; Dong, X.; Shen, L.; He, B.-J. Spatial Variability and Temporal Heterogeneity of Surface Urban Heat Island

Patterns and the Suitability of Local Climate Zones for Land Surface Temperature Characterization. Remote Sens. 2021, 13, 4338.
[CrossRef]

7. Yang, X.; Peng, L.L.H.; Jiang, Z.; Chen, Y.; Yao, L.; He, Y.; Xu, T. Impact of Urban Heat Island on Energy Demand in Buildings:
Local Climate Zones in Nanjing. Appl. Energy 2020, 260, 114279. [CrossRef]

8. Ren, J.; Yang, J.; Zhang, Y.; Xiao, X.; Xia, J.C.; Li, X.; Wang, S. Exploring Thermal Comfort of Urban Buildings Based on Local
Climate Zones. J. Clean. Prod. 2022, 340, 130744. [CrossRef]

9. Chen, Y.; Yang, J.; Yang, R.; Xiao, X.; Xia, J. Contribution of Urban Functional Zones to the Spatial Distribution of Urban Thermal
Environment. Build. Environ. 2022, 216, 109000. [CrossRef]

10. Liu, M.; Zhang, D.; Pietzarka, U.; Roloff, A. Assessing the Adaptability of Urban Tree Species to Climate Change Impacts: A Case
Study in Shanghai. Urban For. Urban Green. 2021, 62, 127186. [CrossRef]

11. Nasrollahi, N.; Ghosouri, A.; Khodakarami, J.; Taleghani, M. Heat-Mitigation Strategies to Improve Pedestrian Thermal Comfort
in Urban Environments: A Review. Sustainability 2020, 12, 10000. [CrossRef]

12. Yang, J.; Wang, Y.; Xiu, C.; Xiao, X.; Jin, C. Optimizing Local Climate Zones to Mitigate Urban Heat Island Effect in Human
Settlements. J. Clean. Prod. 2020, 275, 123767. [CrossRef]

13. Biardeau, L.T.; Davis, L.W.; Gertler, P.; Wolfram, C. Heat Exposure and Global Air Conditioning. Nat Sustain. 2020, 3, 25–28.
[CrossRef]

14. Yu, H.; Yang, J.; Li, T.; Jin, Y.; Sun, D. Morphological and Functional Polycentric Structure Assessment of Megacity: An Integrated
Approach with Spatial Distribution and Interaction. Sustain. Cities Soc. 2022, 80, 103800. [CrossRef]

15. Imhoff, M.L.; Zhang, P.; Wolfe, R.E.; Bounoua, L. Remote Sensing of the Urban Heat Island Effect across Biomes in the Continental
USA. Remote Sens. Environ. 2010, 114, 504–513. [CrossRef]

16. Estoque, R.C.; Murayama, Y.; Myint, S.W. Effects of Landscape Composition and Pattern on Land Surface Temperature: An Urban
Heat Island Study in the Megacities of Southeast Asia. Sci. Total Environ. 2017, 577, 349–359. [CrossRef]

17. Yao, R.; Wang, L.; Huang, X.; Niu, Z.; Liu, F.; Wang, Q. Temporal Trends of Surface Urban Heat Islands and Associated
Determinants in Major Chinese Cities. Sci. Total Environ. 2017, 609, 742–754. [CrossRef]

18. Yang, J.; Yang, Y.; Sun, D.; Jin, C.; Xiao, X. Influence of Urban Morphological Characteristics on Thermal Environment. Sustain.
Cities Soc. 2021, 72, 103045. [CrossRef]

19. Sultana, S.; Satyanarayana, A.N.V. Assessment of Urbanisation and Urban Heat Island Intensities Using Landsat Imageries
during 2000–2018 over a Sub-Tropical Indian City. Sustain. Cities Soc. 2020, 52, 101846. [CrossRef]

20. El Kenawy, A.M.; Hereher, M.; Robaa, S.M.; McCabe, M.F.; Lopez-Moreno, J.I.; Domínguez-Castro, F.; Gaber, I.M.; Al-Awadhi,
T.; Al-Buloshi, A.; Al Nasiri, N.; et al. Nocturnal Surface Urban Heat Island over Greater Cairo: Spatial Morphology, Temporal
Trends and Links to Land-Atmosphere Influences. Remote Sens. 2020, 12, 3889. [CrossRef]

21. Mohammad, P.; Goswami, A.; Bonafoni, S. The Impact of the Land Cover Dynamics on Surface Urban Heat Island Variations in
Semi-Arid Cities: A Case Study in Ahmedabad City, India, Using Multi-Sensor/Source Data. Sensors 2019, 19, 3701. [CrossRef]
[PubMed]

22. Haashemi, S.; Weng, Q.; Darvishi, A.; Alavipanah, S. Seasonal Variations of the Surface Urban Heat Island in a Semi-Arid City.
Remote Sens. 2016, 8, 352. [CrossRef]

23. Yang, J.; Wang, Y.; Xiao, X.; Jin, C.; Xia, J.; Li, X. Spatial Differentiation of Urban Wind and Thermal Environment in Different Grid
Sizes. Urban Clim. 2019, 28, 100458. [CrossRef]

24. Liu, W.; Meng, Q.; Allam, M.; Zhang, L.; Hu, D.; Menenti, M. Driving Factors of Land Surface Temperature in Urban Agglomera-
tions: A Case Study in the Pearl River Delta, China. Remote Sens. 2021, 13, 2858. [CrossRef]

25. Chen, X.-L.; Zhao, H.-M.; Li, P.-X.; Yin, Z.-Y. Remote Sensing Image-Based Analysis of the Relationship between Urban Heat
Island and Land Use/Cover Changes. Remote Sens. Environ. 2006, 104, 133–146. [CrossRef]

26. Tariq, A.; Shu, H.; Siddiqui, S.; Imran, M.; Farhan, M. Monitoring Land Use And Land Cover Changes Using Geospatial
Techniques, A Case Study Of Fateh Jang, Attock, Pakistan. GES 2021, 14, 41–52. [CrossRef]

27. Tariq, A.; Shu, H. CA-Markov Chain Analysis of Seasonal Land Surface Temperature and Land Use Land Cover Change Using
Optical Multi-Temporal Satellite Data of Faisalabad, Pakistan. Remote Sens. 2020, 12, 3402. [CrossRef]

http://doi.org/10.1016/j.landurbplan.2014.08.015
http://doi.org/10.1016/j.jclepro.2021.127467
http://doi.org/10.1016/j.scitotenv.2008.12.002
http://www.ncbi.nlm.nih.gov/pubmed/19200584
http://doi.org/10.1080/15481603.2020.1843869
http://doi.org/10.1016/j.scitotenv.2020.140589
http://doi.org/10.3390/rs13214338
http://doi.org/10.1016/j.apenergy.2019.114279
http://doi.org/10.1016/j.jclepro.2022.130744
http://doi.org/10.1016/j.buildenv.2022.109000
http://doi.org/10.1016/j.ufug.2021.127186
http://doi.org/10.3390/su122310000
http://doi.org/10.1016/j.jclepro.2020.123767
http://doi.org/10.1038/s41893-019-0441-9
http://doi.org/10.1016/j.scs.2022.103800
http://doi.org/10.1016/j.rse.2009.10.008
http://doi.org/10.1016/j.scitotenv.2016.10.195
http://doi.org/10.1016/j.scitotenv.2017.07.217
http://doi.org/10.1016/j.scs.2021.103045
http://doi.org/10.1016/j.scs.2019.101846
http://doi.org/10.3390/rs12233889
http://doi.org/10.3390/s19173701
http://www.ncbi.nlm.nih.gov/pubmed/31454943
http://doi.org/10.3390/rs8040352
http://doi.org/10.1016/j.uclim.2019.100458
http://doi.org/10.3390/rs13152858
http://doi.org/10.1016/j.rse.2005.11.016
http://doi.org/10.24057/2071-9388-2020-117
http://doi.org/10.3390/rs12203402


Land 2022, 11, 548 22 of 24

28. Yao, L.; Li, T.; Xu, M.; Xu, Y. How the Landscape Features of Urban Green Space Impact Seasonal Land Surface Temperatures at a
City-Block-Scale: An Urban Heat Island Study in Beijing, China. Urban For. Urban Green. 2020, 52, 126704. [CrossRef]

29. Singh, P.; Kikon, N.; Verma, P. Impact of Land Use Change and Urbanization on Urban Heat Island in Lucknow City, Central
India. A Remote Sensing Based Estimate. Sustain. Cities Soc. 2017, 32, 100–114. [CrossRef]

30. Majeed, M.; Tariq, A.; Anwar, M.M.; Khan, A.M.; Arshad, F.; Mumtaz, F.; Farhan, M.; Zhang, L.; Zafar, A.; Aziz, M.; et al.
Monitoring of Land Use–Land Cover Change and Potential Causal Factors of Climate Change in Jhelum District, Punjab, Pakistan,
through GIS and Multi-Temporal Satellite Data. Land 2021, 10, 1026. [CrossRef]

31. Dai, Z.; Guldmann, J.-M.; Hu, Y. Spatial Regression Models of Park and Land-Use Impacts on the Urban Heat Island in Central
Beijing. Sci. Total Environ. 2018, 626, 1136–1147. [CrossRef] [PubMed]

32. Morabito, M.; Crisci, A.; Guerri, G.; Messeri, A.; Congedo, L.; Munafò, M. Surface Urban Heat Islands in Italian Metropolitan
Cities: Tree Cover and Impervious Surface Influences. Sci. Total Environ. 2021, 751, 142334. [CrossRef] [PubMed]

33. Meng, Q.; Zhang, L.; Sun, Z.; Meng, F.; Wang, L.; Sun, Y. Characterizing Spatial and Temporal Trends of Surface Urban Heat
Island Effect in an Urban Main Built-up Area: A 12-Year Case Study in Beijing, China. Remote Sens. Environ. 2018, 204, 826–837.
[CrossRef]

34. Yuan, F.; Bauer, M.E. Comparison of Impervious Surface Area and Normalized Difference Vegetation Index as Indicators of
Surface Urban Heat Island Effects in Landsat Imagery. Remote Sens. Environ. 2007, 106, 375–386. [CrossRef]

35. Li, Y.; Sun, Y.; Li, J.; Gao, C. Socioeconomic Drivers of Urban Heat Island Effect: Empirical Evidence from Major Chinese Cities.
Sustain. Cities Soc. 2020, 63, 102425. [CrossRef]

36. Peng, J.; Jia, J.; Liu, Y.; Li, H.; Wu, J. Seasonal Contrast of the Dominant Factors for Spatial Distribution of Land Surface
Temperature in Urban Areas. Remote Sens. Environ. 2018, 215, 255–267. [CrossRef]

37. Dewan, A.; Kiselev, G.; Botje, D.; Mahmud, G.I.; Bhuian, M.H.; Hassan, Q.K. Surface Urban Heat Island Intensity in Five Major
Cities of Bangladesh: Patterns, Drivers and Trends. Sustain. Cities Soc. 2021, 71, 102926. [CrossRef]

38. Portela, C.I.; Massi, K.G.; Rodrigues, T.; Alcântara, E. Impact of Urban and Industrial Features on Land Surface Temperature:
Evidences from Satellite Thermal Indices. Sustain. Cities Soc. 2020, 56, 102100. [CrossRef]

39. Zhou, W.; Huang, G.; Cadenasso, M.L. Does Spatial Configuration Matter? Understanding the Effects of Land Cover Pattern on
Land Surface Temperature in Urban Landscapes. Landsc. Urban Plan. 2011, 102, 54–63. [CrossRef]

40. Maimaitiyiming, M.; Ghulam, A.; Tiyip, T.; Pla, F.; Latorre-Carmona, P.; Halik, Ü.; Sawut, M.; Caetano, M. Effects of Green Space
Spatial Pattern on Land Surface Temperature: Implications for Sustainable Urban Planning and Climate Change Adaptation.
ISPRS J. Photogramm. Remote Sens. 2014, 89, 59–66. [CrossRef]

41. Tariq, A.; Riaz, I.; Ahmad, Z.; Yang, B.; Amin, M.; Kausar, R.; Andleeb, S.; Farooqi, M.A.; Rafiq, M. Land Surface Temperature
Relation with Normalized Satellite Indices for the Estimation of Spatio-Temporal Trends in Temperature among Various Land
Use Land Cover Classes of an Arid Potohar Region Using Landsat Data. Env. Earth Sci 2020, 79, 40. [CrossRef]

42. Du, Z.W.; Li, X. Growth or shrinkage: New phenomena of regional development in the rapidly-urbanising Pearl River Delta. Acta
Geogr. Sin. 2017, 72, 1800–1811. [CrossRef]

43. Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R. Mapping City Lights with Nighttime Data from the DMSP
Operational Linescan System. Eng Remote Sens 1997, 63, 727–734. [CrossRef]

44. Sutton, P.C. A Scale-Adjusted Measure of “Urban Sprawl” Using Nighttime Satellite Imagery. Remote Sens. Environ. 2003, 86,
353–369. [CrossRef]

45. Sutton, P.; Roberts, D.; Elvidge, C.; Melj, H. A Comparison of Nighttime Satellite Imagery and Population Density for the
Continental United States. Photogramm. Eng. Remote Sens. 1997, 63, 1303–1313. [CrossRef]

46. Sutton, P.C.; Costanza, R. Global Estimates of Market and Non-Market Values Derived from Nighttime Satellite Imagery, Land
Cover, and Ecosystem Service Valuation. Ecol. Econ. 2002, 41, 509–527. [CrossRef]

47. He, C.; Ma, Q.; Liu, Z.; Zhang, Q. Modeling the Spatiotemporal Dynamics of Electric Power Consumption in Mainland China
Using Saturation-Corrected DMSP/OLS Nighttime Stable Light Data. Int. J. Digit. Earth 2014, 7, 993–1014. [CrossRef]

48. Doll, C.H.; Muller, J.P.; Elvidge, C.D. Night-Time Imagery as a Tool for Global Mapping of Socioeconomic Parameters and
Greenhouse Gas Emissions. Ambio A J. Hum. Environ. 2000, 29, 157–162. [CrossRef]

49. Li, J.; Wang, F.; Fu, Y.; Guo, B.; Zhao, Y.; Yu, H. A Novel SUHI Referenced Estimation Method for Multicenters Urban Ag-
glomeration Using DMSP/OLS Nighttime Light Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1416–1425.
[CrossRef]

50. Stathakis, D.; Baltas, P. Seasonal Population Estimates Based on Night-Time Lights. Comput. Environ. Urban Syst. 2018, 68,
133–141. [CrossRef]

51. Ma, T.; Zhou, Y.K.; Zhou, C.H. Night-Time Light Derived Estimation of Spatio-Temporal Characteristics of Urbanization Dynamics
Using DMSP/OLS Satellite Data. Remote Sens. Environ. 2015, 158, 453–464. [CrossRef]

52. Sun, Y.; Wang, S.; Zhang, X.; Chan, T.O.; Wu, W. Estimating Local-Scale Domestic Electricity Energy Consumption Using
Demographic, Nighttime Light Imagery and Twitter Data. Energy 2021, 120–351. [CrossRef]

53. Huang, X.; Wang, Y. Investigating the Effects of 3D Urban Morphology on the Surface Urban Heat Island Effect in Urban
Functional Zones by Using High-Resolution Remote Sensing Data: A Case Study of Wuhan, Central China. ISPRS J. Photogramm.
Remote Sens. 2019, 152, 119–131. [CrossRef]

http://doi.org/10.1016/j.ufug.2020.126704
http://doi.org/10.1016/j.scs.2017.02.018
http://doi.org/10.3390/land10101026
http://doi.org/10.1016/j.scitotenv.2018.01.165
http://www.ncbi.nlm.nih.gov/pubmed/29898520
http://doi.org/10.1016/j.scitotenv.2020.142334
http://www.ncbi.nlm.nih.gov/pubmed/33182007
http://doi.org/10.1016/j.rse.2017.09.019
http://doi.org/10.1016/j.rse.2006.09.003
http://doi.org/10.1016/j.scs.2020.102425
http://doi.org/10.1016/j.rse.2018.06.010
http://doi.org/10.1016/j.scs.2021.102926
http://doi.org/10.1016/j.scs.2020.102100
http://doi.org/10.1016/j.landurbplan.2011.03.009
http://doi.org/10.1016/j.isprsjprs.2013.12.010
http://doi.org/10.1007/s12665-019-8766-2
http://doi.org/10.11821/dlxb201710006
http://doi.org/10.1016/S0924-2716(97)00008-7
http://doi.org/10.1016/S0034-4257(03)00078-6
http://doi.org/10.1007/s001900050141
http://doi.org/10.1016/S0921-8009(02)00097-6
http://doi.org/10.1080/17538947.2013.822026
http://doi.org/10.1579/0044-7447-29.3.157
http://doi.org/10.1109/JSTARS.2020.2981285
http://doi.org/10.1016/j.compenvurbsys.2017.12.001
http://doi.org/10.1016/j.rse.2014.11.022
http://doi.org/10.1016/j.energy.2021.120351
http://doi.org/10.1016/j.isprsjprs.2019.04.010


Land 2022, 11, 548 23 of 24

54. Li, W.; Han, C.; Li, W.; Zhou, W.; Han, L. Multi-Scale Effects of Urban Agglomeration on Thermal Environment: A Case of the
Yangtze River Delta Megaregion, China. Sci. Total Environ. 2020, 713, 136556. [CrossRef] [PubMed]

55. Zhou, D.; Bonafoni, S.; Zhang, L.; Wang, R. Remote Sensing of the Urban Heat Island Effect in a Highly Populated Urban
Agglomeration Area in East China. Sci. Total Environ. 2018, 628–629, 415–429. [CrossRef] [PubMed]

56. Yang, C.; Zhan, Q.; Gao, S.; Liu, H. How Do the Multi-Temporal Centroid Trajectories of Urban Heat Island Correspond to
Impervious Surface Changes: A Case Study in Wuhan, China. Int. J. Environ. Res. Public Health 2019, 16, 3865. [CrossRef]

57. Yang, Z.W.; Chen, Y.B.; Qian, Q.L.; Wu, Z.F.; Zheng, Z.H.; Huang, Q.Y. The Coupling Relationship between Construction Land
Expansion and High-Temperature Area Expansion in China’s Three Major Urban Agglomerations. Int. J. Remote Sens. 2019, 40,
6680–6699. [CrossRef]

58. Liu, N.; Liu, C.; Xia, Y.; Da, B. Examining the Coordination between Urbanization and Eco-Environment Using Coupling and
Spatial Analyses: A Case Study in China. Ecol. Indic. 2018, 93, 1163–1175. [CrossRef]

59. Lefever, D.W. Measuring Geographic Concentration by Means of the Standard Deviational Ellipse. Am. J. Sociol. 1926, 32, 88–94.
[CrossRef]

60. Zhao, Y.; Luo, Z.J.; Li, Y.T.; Guo, J.Y.; Lai, X.H.; Song, J. Study of the spatial-temporal variation of landscape ecological risk in the
upper reaches of the Ganjiang River Basin based on the“production-living-ecological space”. Acta Ecol. Sin. 2019, 39, 4676–4686.
[CrossRef]

61. He, B.-J.; Wang, J.; Zhu, J.; Qi, J. Beating the Urban Heat: Situation, Background, Impacts and the Way Forward in China. Renew.
Sustain. Energy Rev. 2022, 161, 112350. [CrossRef]

62. Piantek, M.; Miguel, J.; Kruger, A.; NaviO, C.; Bernien, M.; Ball, D.K.; Hermann, K.; Kuch, W. Temperature, Surface, and
Coverage-Induced Conformational Changes of Azobenzene Derivatives on Cu(001). J. Phys. Chem. C 2009, 113, 20307–20315.
[CrossRef]

63. Xiong, Y.; Zhang, F. Effect of Human Settlements on Urban Thermal Environment and Factor Analysis Based on Multi-Source
Data: A Case Study of Changsha City. J. Geogr. Sci. 2021, 31, 819–838. [CrossRef]

64. Shen, Z.J.; Zeng, J. Spatial relationship of urban development to land surface temperature in three cities of southern Fujian. Acta
Geogr. Sin. 2021, 76, 566–583. [CrossRef]

65. Yao, L.; Xu, Y.; Zhang, B. Effect of Urban Function and Landscape Structure on the Urban Heat Island Phenomenon in Beijing,
China. Landsc. Ecol. Eng. 2019, 15, 379–390. [CrossRef]

66. Yu, Z.; Yao, Y.; Yang, G.; Wang, X.; Vejre, H. Spatiotemporal Patterns and Characteristics of Remotely Sensed Region Heat Islands
during the Rapid Urbanization (1995–2015) of Southern China. Sci. Total Environ. 2019, 674, 242–254. [CrossRef]

67. Min, M.; Lin, C.; Duan, X.; Jin, Z.; Zhang, L. Spatial Distribution and Driving Force Analysis of Urban Heat Island Effect Based on
Raster Data: A Case Study of the Nanjing Metropolitan Area, China. Sustain. Cities Soc. 2019, 50, 101637. [CrossRef]

68. Liu, G.; Zhang, Q.; Li, G.; Doronzo, D.M. Response of Land Cover Types to Land Surface Temperature Derived from Landsat-5
TM in Nanjing Metropolitan Region, China. Env. Earth Sci. 2016, 75, 1386. [CrossRef]

69. Yue, W.; Qiu, S.; Xu, H.; Xu, L.; Zhang, L. Polycentric Urban Development and Urban Thermal Environment: A Case of Hangzhou,
China. Landsc. Urban Plan. 2019, 189, 58–70. [CrossRef]

70. Chen, S.; Hu, D.; Wong, M.S.; Ren, H.; Cao, S.; Yu, C.; Ho, H.C. Characterizing Spatiotemporal Dynamics of Anthropogenic Heat
Fluxes: A 20-Year Case Study in Beijing–Tianjin–Hebei Region in China. Environ. Pollut. 2019, 249, 923–931. [CrossRef]

71. Zhao, Z.Q. Global Statistics of Spatial Distribution: A Literature Review. Prog. Geogr. 2009, 28, 1–8. [CrossRef]
72. Yang, Y.; Ma, M.; Zhu, X.; Ge, W. Research on Spatial Characteristics of Metropolis Development Using Nighttime Light Data:

NTL Based Spatial Characteristics of Beijing. PLoS ONE 2020, 15, e0242663. [CrossRef] [PubMed]
73. Sun, Y.; Wang, S.; Wang, Y. Estimating Local-Scale Urban Heat Island Intensity Using Nighttime Light Satellite Imageries. Sustain.

Cities Soc. 2020, 57, 102125. [CrossRef]
74. Chen, W.; Zhang, Y.; Pengwang, C.; Gao, W. Evaluation of Urbanization Dynamics and Its Impacts on Surface Heat Islands: A

Case Study of Beijing, China. Remote Sens. 2017, 9, 453. [CrossRef]
75. Chen, W.; Zhang, Y.; Gao, W.; Zhou, D. The Investigation of Urbanization and Urban Heat Island in Beijing Based on Remote

Sensing. Procedia—Soc. Behav. Sci. 2016, 216, 141–150. [CrossRef]
76. Dong, X.; Meng, Z.; Wang, Y.; Zhang, Y.; Sun, H.; Wang, Q. Monitoring Spatiotemporal Changes of Impervious Surfaces in Beijing

City Using Random Forest Algorithm and Textural Features. Remote Sens. 2021, 13, 153. [CrossRef]
77. Xie, P.; Yang, J.; Sun, W.; Xiao, X.; Cecilia Xia, J. Urban Scale Ventilation Analysis Based on Neighborhood Normalized Current

Model. Sustain. Cities Soc. 2022, 80, 103746. [CrossRef]
78. Ye, H.; Li, Z.; Zhang, N.; Leng, X.; Meng, D.; Zheng, J.; Li, Y. Variations in the Effects of Landscape Patterns on the Urban Thermal

Environment during Rapid Urbanization (1990–2020) in Megacities. Remote Sens. 2021, 13, 3415. [CrossRef]
79. Chen, L.; Wang, X.; Cai, X.; Yang, C.; Lu, X. Combined Effects of Artificial Surface and Urban Blue-Green Space on Land Surface

Temperature in 28 Major Cities in China. Remote Sens. 2022, 14, 448. [CrossRef]
80. Kyriakodis, G.-E.; Santamouris, M. Using Reflective Pavements to Mitigate Urban Heat Island in Warm Climates—Results from a

Large Scale Urban Mitigation Project. Urban Clim. 2018, 24, 326–339. [CrossRef]
81. Middel, A.; Turner, V.K.; Schneider, F.A.; Zhang, Y.; Stiller, M. Solar Reflective Pavements—A Policy Panacea to Heat Mitigation?

Environ. Res. Lett. 2020, 15, 064016. [CrossRef]

http://doi.org/10.1016/j.scitotenv.2020.136556
http://www.ncbi.nlm.nih.gov/pubmed/31962243
http://doi.org/10.1016/j.scitotenv.2018.02.074
http://www.ncbi.nlm.nih.gov/pubmed/29448025
http://doi.org/10.3390/ijerph16203865
http://doi.org/10.1080/01431161.2019.1590877
http://doi.org/10.1016/j.ecolind.2018.06.013
http://doi.org/10.1086/214027
http://doi.org/10.5846/stxb201804040766
http://doi.org/10.1016/j.rser.2022.112350
http://doi.org/10.1021/jp907641f
http://doi.org/10.1007/s11442-021-1873-5
http://doi.org/10.11821/dlxb202103006
http://doi.org/10.1007/s11355-019-00388-5
http://doi.org/10.1016/j.scitotenv.2019.04.088
http://doi.org/10.1016/j.scs.2019.101637
http://doi.org/10.1007/s12665-016-6202-4
http://doi.org/10.1016/j.landurbplan.2019.04.008
http://doi.org/10.1016/j.envpol.2019.03.113
http://doi.org/10.11820/dlkxjz.2009.01.001
http://doi.org/10.1371/journal.pone.0242663
http://www.ncbi.nlm.nih.gov/pubmed/33253228
http://doi.org/10.1016/j.scs.2020.102125
http://doi.org/10.3390/rs9050453
http://doi.org/10.1016/j.sbspro.2015.12.019
http://doi.org/10.3390/rs13010153
http://doi.org/10.1016/j.scs.2022.103746
http://doi.org/10.3390/rs13173415
http://doi.org/10.3390/rs14030448
http://doi.org/10.1016/j.uclim.2017.02.002
http://doi.org/10.1088/1748-9326/ab87d4


Land 2022, 11, 548 24 of 24

82. Kousis, I.; Fabiani, C.; Gobbi, L.; Pisello, A.L. Phosphorescent-Based Pavements for Counteracting Urban Overheating—A Proof
of Concept. Sol. Energy 2020, 202, 540–552. [CrossRef]

83. Susca, T.; Gaffin, S.R.; Dell’Osso, G.R. Positive Effects of Vegetation: Urban Heat Island and Green Roofs. Environ. Pollut. 2011,
159, 2119–2126. [CrossRef] [PubMed]

84. Dong, J.; Lin, M.; Zuo, J.; Lin, T.; Liu, J.; Sun, C.; Luo, J. Quantitative Study on the Cooling Effect of Green Roofs in a High-Density
Urban Area—A Case Study of Xiamen, China. J. Clean. Prod. 2020, 255, 120152. [CrossRef]

85. Doulos, L.; Santamouris, M.; Livada, I. Passive Cooling of Outdoor Urban Spaces. The Role of Materials. Sol. Energy 2004, 77,
231–249. [CrossRef]

86. Lei, J.; Kumarasamy, K.; Zingre, K.T.; Yang, J.; Wan, M.P.; Yang, E.-H. Cool Colored Coating and Phase Change Materials as
Complementary Cooling Strategies for Building Cooling Load Reduction in Tropics. Appl. Energy 2017, 190, 57–63. [CrossRef]

87. Yang, L.; Yu, K.; Ai, J.; Liu, Y.; Yang, W.; Liu, J. Dominant Factors and Spatial Heterogeneity of Land Surface Temperatures in
Urban Areas: A Case Study in Fuzhou, China. Remote Sens. 2022, 14, 1266. [CrossRef]

88. Azhdari, A.; Soltani, A.; Alidadi, M. Urban Morphology and Landscape Structure Effect on Land Surface Temperature: Evidence
from Shiraz, a Semi-Arid City. Sustain. Cities Soc. 2018, 41, 853–864. [CrossRef]

89. Chen, M.; Dai, F.; Yang, B.; Zhu, S. Effects of Neighborhood Green Space on PM2.5 Mitigation: Evidence from Five Megacities in
China. Build. Environ. 2019, 156, 33–45. [CrossRef]

90. Yao, X.; Yu, K.; Zeng, X.; Lin, Y.; Ye, B.; Shen, X.; Liu, J. How Can Urban Parks Be Planned to Mitigate Urban Heat Island Effect in
“Furnace Cities” ? An Accumulation Perspective. J. Clean. Prod. 2022, 330, 129852. [CrossRef]
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