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Abstract: In the context of uneven development studies of China, urban built-up area changes
are the index of the impact of power, as the local government is the only party that is able to
acquire agricultural land and convert it to construction urban land. Existing studies generally use
statistical data to describe the built-up area changes and struggle to meet the requirement of an
updated and inexpensive monitoring of uneven development, especially for western cities with
tight budgets. Open access NPP-VIIRS (Suomi National Polar-orbiting Partnership Visible Infrared
Imaging Radiometer Suite), NDVI (Normalized Difference Vegetation Index), and nighttime LST
(Land Surface Temperature) data ranging from 2015 to 2019 were analyzed with a stratified SVM
(Support Vector Machine) method in this study to track urban built-up area changes in Chengdu, one
of the biggest cities in Western China. The SDE (Standard Deviation Ellipse) and Moran’s I were
then applied to evaluate the spatial variations of the built-up area changes. It was revealed that the
spatial evolution of built-up area change in Chengdu over the period 2015–2019 demonstrated a
“northwest-southeast” spatial expansion pattern, and the change distance in the center of gravity in
2018 and 2019 was greater than that from 2015 to 2017, which reflected the faster uneven development
in 2018 and 2019 in Chengdu. The results were verified with finer resolution Landsat-8 OLI images;
the high OA (all larger than 92%) and KAPPA (all larger than 0.6) values showed the accuracy of the
method. The methodology proposed in this study offers a practical way for cities with tight budgets
to monitor uneven development, and this study suggests a further adaption using higher-resolution
remote sensing images and field experiments.

Keywords: uneven developments; urban urban built-up area; Chengdu; NPP-VIIRS

1. Introduction

Uneven development is understood as a basic geographical hallmark of the capitalist
mode of production: capital produces unevenness on purpose to generate cycles of accu-
mulation [1,2]. The practices to produce and exploit space to the maximum extent cause a
remarkable scale of uneven development, especially in some developing countries, such
as China [3]. According to the theory of ‘production of space’, uneven development in
one place is both a process and result of the uneven geographical base and developmental
context, which are shaped by capital, power, and class [4]. Monitoring the factors that
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structure the developmental context becomes important to understand and prevent uneven
development [5].

Based on China’s urban development context, Yeung et al. (2019) suggested using
the built-up (constructed urban land) area as the index of power. This is because the local
government is the only buyer of agricultural land and the only seller of construction land
in one Chinese city, and is often the main driving force for extending and expanding the
constructed urban land [6]. Yeung et al. (2019) also applied the indexes system to analyze
the uneven development in Jiangsu Province, for which the information of the built-up
area is provided in statistical data. However, the statistics data applied in Jiangsu, a rich
coastal province, could hardly be obtained and renewed on time in western cities with
tight budgets in China [6]. A new method for the updated and inexpensive monitoring of
built-up areas is, therefore, needed.

Recently, remote sensing information, such as nighttime stable light (NTL) data, has
become widely acknowledged as a new resource to objectively reflect the changes in urban
development and the related issues. However, there are two main deficiencies that degrade
the accuracy of urban land extracted from NTL data. First, heavy cloud in bad weather
constrains the precision of the NTL data [7], which needs to be processed in advance.
Second, the overflow effects in the urban core areas limit the accuracy identity of the urban
built-up area [8], which needs to be adjusted by other data sources. In response to the
gaps above, this paper designed a method to extract the built-up area of Chengdu, a big
city in Western China with open access NTL data. In detail, the Suomi National Polar-
orbiting Partnership Visible Infrared Imaging Radiometer Suite (NPP-VIIRS) NTL data,
the Moderate-Resolution Imaging Spectroradiometer (MODIS) Normalized Difference
Vegetation Index (NDVI) data, and the MODIS nighttime Land Surface Temperature (LST)
data were utilized, and a stratified support vector machine (SVM) algorithm was applied to
gain a better evaluation of the built-up area. Additionally, the refined results of the built-up
area were analyzed with Standard Deviation Ellipse (SDE) to track the dynamic change in
the built-up area. Finally, the global and local Moran’s I analysis was employed to explore
the geographic correlation within Chengdu from 2015 to 2019.

2. Literature Reveiew

As a promising remote sensing data source for urban studies, NTL data are an indirect
manifestation of human activities and have been widely used in the study of built-up
area change, environmental problems, socioeconomic development, and many other socio-
economic issues. For example, the NTL data can be widely employed in many city-level
or country-level socio-economic affairs, including monitoring urban industrial energy
consumption [9] , detecting the economic development in major cities in the Democratic
People’s Republic of Korea (DPRK) [10], and estimating the population trends in prefecture-
level cities in China from 1992 to 2018 [11]. In terms of urbanization, the NTL data can not
only evaluate the built-up area change in the major urban agglomerations in China [8], such
as the Yangtze River Delta Urban Agglomeration [12] and the Guangdong-Hong Kong-
Macao Greater Bay Area [13], but can also precisely measure the urban shrinkage at the
county-level city in China [14]. In summary, there are two main kinds of NTL data sources
that contain NTL data for different years globally, namely, the Defense Meteorological Satel-
lite Program’s Operational Line Scan System (DMSP/OLS) NTL data and the NPP-VIIRS
NTL data. Since the DMSP/OLS NTL data are available online earlier than NPP-VIIRS NTL
data, some studies have already employed DMSP/OLS NTL data to study the built-up
area change. For example, Ma et al. (2015) [15] delineated that NTL brightness correlated
with rural-urban gradients in the process of built-up area change using DMSP/OLS NTL
data. The dynamics of built-up area change in China were described with DMSP/OLS
NTL data [16]. Together with remote sensing images, DMSP/OLS NTL data also helped
examine built-up area change in Chengdu [17].

However, the saturation issue due to the digital number value of DMSP/OLS NTL
data ranging from 0 to 63, limit the performance of DMSP/OSL NTL data in urban built-up
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areas [18]. Although some remote sensing image or NDVI data were applied to reduce the
mistakes of DMSP/OLI NTL data [19], it is still reported that the impact from the variations
in the atmospheric condition may severely impact the effectiveness of the application of
DMSP/OLS in the study of built-up area change [20].

As a new generation of night-time satellite products, NPP-VIIRS NTL data enabled
the daily, monthly, and annual data collection ranging from 2012 to the present. After the
NPP-VIIRS NTL data were made available online, a few researchers conducted compar-
ative studies between these two NTL data sources [21–23]; their results proved that the
performance of NPP-VIIRS NTL data was outweighed by the DMSP/OLS data in terms
of better calibration, a wider dynamic range and the ability to identify thermal sources.
For example, the NPP-VIIRS NTL data are highly effective in calibration and validation,
which could detect night-time lights spanning from 75° N to 65° S with radiation from
3 nW·cm−2·sr−1 to 0.02 W·cm−2·sr−1 [24]. Therefore, the application of NPP-VIIRS NTL
data to study and analyze urban development has drawn much more attention recently.

In addition to the common heavy clouds issue, the overflow effects issue also con-
strains the accuracy of NPP-VIIRS NTL data in urban areas [8]. Therefore, increasing
research has employed other remote sensing data sources as auxiliary data to improve the
performance of NPP-VIIRS NTL data in urban scenarios. For example, the NDVI data and
the nighttime LST data from the MODIS platform, which can effectively distinguish the
urban and rural areas, are often employed to improve the accuracy of NPP-VIIRS NTL
data in the urban study area [8,16,25], and their results clearly demonstrate the effects of
these two auxiliary data sources. Therefore, in this research, we also employed the NDVI
data and the nighttime LST data to improve the accuracy of the NPP-VIIRS NTL data
in Chengdu.

In terms of urban-related studies, there are three main methods to extract urban built-
up areas based on NTL data, namely, the thresholding, the index, and the supervised
classification method, as one of the most popular supervised classification methods, strati-
fied SVM, can achieve better performance than the thresholding and the index method [24].
In addition, according to related research [16,26,27], the extraction results of the stratified
SVM method demonstrated more accuracy and reliability than other methods. Further-
more, as one of the non-parametric machine learning methods [28], SVM can not only
solve the nonlinear and high dimensional data classification problem [25], but can also
achieve better performance based on a few training samples [26]. Considering the regional
diversity, the urban development level varies in different regions, the stratified SVM can
classify unknown pixels at different levels within a specific region precisely by employing
a regional-specific stratified method [27]. Therefore, considering the complex situation
between the boundary of the urban and non-urban areas, the stratified SVM method was
employed to extract the urban built-up area based on NPP-VIIRS NTL data, NDVI data,
and nighttime LST data, following related research [26,27].

In addition, there is not enough research to address the city-level socioeconomic affairs
and businesses in Western China, e.g., whether these western cities have expanded due
to the economic growth in recent years in China, or whether these western cities have
shrunk due to people moving to the eastern cities in China. However, it is crucial for
decision-makers to understand the temporal-spatial pattern of western cities in China in a
timely and precise manner.

Therefore, this paper extracted the urban built-up area of Chengdu over the period
2015-2019 from the NPP-VIIRS NTL data, the NDVI data, and the nighttime LST data using
the stratified SVM method, coupled with the SDE, to analyze the dynamic characteristics of
the temporal-spatial variations [29,30]. In addition, the global and local Moran’s I indexes
of the economic variation were calculated based on statistical data in the Statistical Year
Book from 2015 to 2019 [31].
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3. Methodology
3.1. Study Area

In this research, the study area chosen was the city of Chengdu (see Figure 1). Chengdu
is located in southwestern China; its geographic coordinates are 30◦05′–31◦26′ north latitude
and 102◦54′–104◦53′ east longitude.

Figure 1. Location of Chengdu.

It includes 11 urban districts (Jinjiang, Wuhou, Chenghua, Jinniu, Qingyang, Xindu,
Longquanyi, Qingbaijiang, Pidu, Wenjiang and Shuangliu), and 9 towns (Pengzhou, Du-
jiangyan, Chongzhou, Qionglai, Jianyang, Dayi, Pujiang, Xinjin and Jintang). Chengdu is
the capital city of Sichuan province and plays a vital and indispensable role in Western
China in terms of politics, economy, and culture. Having a better understanding of the
expansion patterns of Chengdu is conducive to a rational allocation of resources, and a
better design for scientific blueprints of common development. According to the 2020
National Census of China, Chengdu’s population was over 20 million people, covering
the landmass of 14,335 km2, which is one of the largest urban areas in the whole of China.
The Gross Domestic Product (GDP) of Chengdu in 2019 was more than CNY 1534 billion,
an increase of 8% compared to the previous last year, ranking in the top 10 in the whole
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country. As the gateway to Western China and as the major and most important area of
Development Planning of Chengdu and Chongqing Urban Agglomeration released by the
central government, it is the responsibility of Chengdu to give full play to the functions
of strategic support and exemplary radiation in order to coordinate the socioeconomic
development regionally and also of West China. According to the Chengdu City Master
Plan from 2016 to 2035, the leading role Chengdu should take is to become an open-oriented
economic highland along the Belt and Road Initiative and hub city internationally. This led
to dense investment in the south and east parts of Chengdu. A new method is needed for
the long-term and close monitoring of uneven development.

3.2. Data Sources

In this paper, the NPP-VIIRS NTL data, with version Annual VNL V2 [7], were
downloaded from the Earth Observation Group website (https://eogdata.mines.edu/
products/vnl/ (accessed on 30 September 2021)), which was launched by the National
Aeronautics and Space Administration (NASA), the National Oceanic and Atmospheric
Administration (NOAA) and the U.S. Air Force in 2011; their Suomi-National Polar-orbiting
Partnership consists of 22 imaging and radiometric bands and covers wavelengths ranging
from 0.41 to 12.5 microns, providing the sensor data records, including clouds and sea
surface temperature. Their NPP-VIIRS not only performed very well in calibration and
validation, but could also detect the NTL data spanning from 75° N to 65° S with the
radiation from 3 nW·cm−2·sr−1 to 0.02 W·cm−2 ·sr−1 [17]. In addition, the DNB (Day/Night
Band) is a component of the VIIRS Instrument onboard Suomi NPP, which makes it possible
for satellite observation at night in the visible spectrum. Therefore, we extracted their NPP-
VIIRS NTL data of Chengdu from 2015 to 2019, which were in 15 arc-second geographic
grids, equal to 500 m spatial resolution.

In addition, the nighttime LST data were collected from the NASA website (https:
//ladsweb.modaps.eosdis.nasa.gov/ (accessed on 30 September 2021)); the 1000 m spatial
resolution 8-day composite nighttime LST data of MODIS (MOD11A2-level3) were em-
ployed to distinguish the urban area from other non-urban areas. Following the Maximum
Value Composite (MVC) method [16,26,27], the annual nighttime LST images were pro-
duced in Chengdu from 2015 to 2019. Furthermore, the MODIS 16-day composite NDVI
data were also obtained from the NASA website, which was at a 250 m spatial resolution.
The MVC method was also employed to obtain an annual NDVI image. We resampled
the NPP-VIIRS NTL data, the nighttime LST data, and NDVI data to unify 1000 m spatial
resolution for further calculation.

Other auxiliary data include the yearly MODIS Land Cover Type product (MCD12Q1),
the Landsat-8 Operational Land Imager (OLI) data, and the socio-economic census data
and administrative boundary data. The MCD12Q1 data were collected from the NASA
website (https://ladsweb.modaps.eosdis.nasa.gov/ (accessed on 30 September 2021)),
which had a 500m spatial resolution [32]; in addition, the accuracy of the MODIS Land
Cover Type dataset product was evaluated in China [33]. The high-quality and fine-
resolution Landsat images from Landsat-8 OLI data were employed to evaluate the urban
built-up area extraction results, which were downloaded from the Geospatial Data Cloud
website (https://www.gscloud.cn/ (accessed on 30 September 2021)), within the Chengdu
area (path/row:129-130/38-39). The socioeconomic census data we employed to analyze
the variation were downloaded from the Statistical Database of Economic and Social
Development by the National Knowledge infrastructure of China (https://data.cnki.net/
(accessed on 30 September 2021)). The administrative boundaries were downloaded from
the National Geomatics Center of China in GIS files format (http://www.ngcc.cn/ngcc/
(accessed on 30 September 2021)).

The three main data sources, namely, the NPP-VIIRS NTL data, the MODIS NDVI
data, and the MODIS nighttime LST data, are listed in Figure 2. Considering the overflow
effect of the NPP-VIIRS NTL data, the MODIS NDVI data and the MODIS nighttime LST
data can help the NPP-VIIRS NTL data to distinguish the urban and non-urban areas more

https://eogdata.mines.edu/products/vnl/
https://eogdata.mines.edu/products/vnl/
https://ladsweb.modaps.eosdis.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
https://www.gscloud.cn/
https://data.cnki.net/
http://www.ngcc.cn/ngcc/
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accurately. Therefore, a combination of these three different types of data sources can
enable a better understanding of the temporal-spatial characteristics of the urban built-up
area change.

Figure 2. The data of three main data sources in Chengdu from 2015 to 2019.
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3.3. Data Processing
3.3.1. Workflow

The main process in this research can be divided into three main steps, as it is illustrated
in Figure 3 . First, we extracted the urban built-up area based on the stratified SVM method
and then evaluated the accuracy of extraction results based on the Landsat-8 OLI data and
MODIS Land Cover data. Second, the SDE analysis method was employed to analyze
the built-up area change pattern of Chengdu from 2015 to 2019. Third, Moran’s index
analysis was employed to discuss the geographic correlation of urban built-up areas over
the five years.

Figure 3. The flowchart of the proposed research.

3.3.2. Pre-Processing

We resampled the NPP-VIIRS NTL data at 1000 m spatial resolution after down-
loading the annual data; then, the administrative regionalization mask was employed to
extract the nighttime lights images of Chengdu from 2015 to 2019. The annual NDVI and
LST data were obtained based on the MVC method following similar research [19]. All
three main data were projected to uniform Albers projection with 1000 m resolution.

3.3.3. Stratified SVM-Based Urban Built-Up Areas Extraction

In terms of the urban extraction method [26,27], the main process of the proposed
stratified SVM includes three main steps. First, we chose preliminary urban and non-urban
training samples based on the values of the NTL, the NDVI, and the nighttime LST data;
the urban seeds must both have a larger NTL and nighttime LST value than the average
value and have a smaller NDVI value than the average value in the Chengdu area, and the
non-urban seeds were selected in the opposite way. Second, based on the training seeds
selected in the first step, we applied the stratified SVM classifier to other unknown pixels
in an iterative method. Third, during the loop processing, the pixels identified as urban
samples were placed into the next loop as new urban seeds, and the loop procedure was
stopped until there were more newly assigned urban seeds.

3.3.4. Verification with Landsat-8 OLI Images and Statistics Data

Since an increasing amount of research employs finer resolution images to evaluate
urban extraction results, Landsat-8 OLS data with a higher spatial resolution of 30 m were
employed to illustrate the performance of the proposed urban extraction method. Since the
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quality of Landsat-8 OLS data is often influenced by heavy clouds of bad weather, MODIS
land cover data was employed to adjust the extraction results of cloud cover pixels. We
first extracted the urban built-up area of Chengdu based on fine-resolution Landsat-8 data,
then resampled the results to the same coarse resolution of 1000 m and compared these
urban extraction results to evaluate the performance of the proposed method.

In detail, we used ENVI software to conduct a supervised classification method,
namely, the Maximum Likelihood Estimation method, to extract the urban built-up area
of Chengdu based on the Landsat-8 OLI data. Although the Landsat-8 OLI data have a
finer resolution, the quality of the images may be affected by heavy clouds, especially the
heavy clouds of subtropical monsoon humid climate in Chengdu. Therefore, we had to
replace the value of some cloud-affected pixels with MODIS land cover data, which already
classify the urban built-up area based on multiple remote sensing data sources.

3.3.5. SDE for the Direction of Built-Up Area Changes

According to related research [34–36], the SDE, which was proposed by Lefever, can
reveal the spatial distribution characteristics of geographic elements [37]; the SDE can
reflect the geographical spatial characteristics of urban economic elements, as well as their
spatial and temporal distributions based on the center of gravity, the spatial distribution
range and the direction and shape [38]. These geographic and urban economic elements
include the urban build-up area, the vegetation coverage, and the other urban land-use
types. In terms of the urban built-up area, the center of gravity of SDE can reflect the
relative position of the built-up area change, and the azimuth of the SDE can represent the
main direction of the urban development trend, while the long and short axis lengths can
indicate the distribution of urban economic elements. In this research, the SDE was applied
based on the urban built-up areas extracted by the proposed stratified SVM method; the
details are described in the functions below.

To apply SDE, we first calculated the gravity center shown

(Xw, Yw) = (
∑n

i=1wixi

∑n
i=1wi

,
∑n

i=1 wiyi

∑n
i=1 wi

) (1)

Then we calculated the SDE

SDEx =

√
∑n

i=1(xi − x)2

n
(2)

SDEy =

√
∑n

i=1(yi − y)2

n
(3)

Finally, we calculated the

tanθ =
(∑n

i=1 x̃i
2 −∑n

i=1 ỹi
2) +

√
(∑n

i=1 x̃i
2 −∑n

i=1 ỹi
2)2 + 4(∑n

i=1 x̃i ỹi)2

2∑n
i=1 x̃i ỹi

(4)

Standard deviation of x-axis:

σx =
√

2

√
∑n

i=1(x̃i cos θ − ỹi sin θ)2

n
(5)

Standard deviation of y-axis:

σy =
√

2

√
∑n

i=1(x̃i sin θ − ỹi cos θ)2

n
(6)
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In the Formulas 1-6, Y(xi, yi) is the coordinate of each government in 20 areas in
Chengdu; (X, Y) is the gravity center; n refers to the number of areas in Chengdu; wi
represents the weight of ith area; x̃i and ỹi is the deviation between coordinate and gravity
center of the ith area.

3.3.6. Spatial Autocorrelation Analysis with Moran’s I

As one of the spatial statistical analysis methods, spatial autocorrelation analysis
can measure the correlation between a certain location and a neighboring location based
on the same geographic features or geographic attribute values [34,36,38]. The global
Moran’s I index, which was introduced by Moran [31], can be employed to evaluate the
spatial dependence of statistical geography in the neighboring location [34]. In addition,
local Moran’s I index can also be employed to reveal the characteristics of local spatial
autocorrelation [34,36]. In terms of location spatial autocorrelation analysis, related research
has commonly employed both Moran’s scatter plots and spatially linked local indicators
(LISA) [36], while the Moran’s scatter plots can represent the spatial connection between
research locations, and the LISA can indicate both the significance of the spatial connection
and the difference between the research locations and neighboring locations. Therefore,
global Moran’s I index, local Moran’s scatter plot and the LISA was adopted in this research
to measure the spatial correlation of urban development in Chengdu from 2015 to 2019.
The distribution of the values differs from –1 to 1; values ranging from 0 to 1 indicate that
there is a positive correlation between geographical entities. There is a negative correlation
between –1 and 0, and there is no correlation if it equals 0.

I =
n

∑n
i=1 ∑n

j=1wi,j
∗

∑n
i=1 ∑n

j=1wi,j(xi − x̃)(xj − x̃)

∑n
i=1(xi − x̃)2 (7)

In the Formula (7), n means the number of the areas in Chengdu, xi and xj represent
the expansion of urban built-up area in certain years from 2015 to 2019 in i area and j area, x̃
is the mean value of the expansion of urban built-up area, wi,j is the spatial weight between
i and j.

Furthermore, the social and economic census data could be employed to evaluate the
extraction results of urban built-up areas. The GDP and population information were also
used to illustrate the performance of the proposed method in Chengdu over the period
2015–2019. The correlation between the extracted urban built-up area and the GDP and the
population was demonstrated to verify the extraction results of urban built-up areas.

4. Results
4.1. Urban Built-Up Area Changes in Chengdu (2015–2019)

Since the Landsat-8 OLI images have a 30 m spatial resolution, which is better than
that of the NPP-VIIRS NTL data, the MODIS NDVI data, and the MODIS nighttime LST
data, we employed the urban built-up area extract from Landsat-8 and MODIS Land Cover
data as the reference data to evaluate the accuracy of the proposed urban extraction method.
The overall accuracy (OA) and KAPPA values were employed to measure the performance
of the proposed stratified SVM methods. Details of the evaluation results are listed in
Table 1 below.

Table 1. The extraction accuracy.

Years OA KAPPA

2015 92.23% 0.6048
2016 93.17% 0.6561
2017 92.83% 0.6445
2018 92.69% 0.6519
2019 92.74% 0.6588



Land 2022, 11, 489 10 of 21

In Table 1, first, all the OA values are larger than 92% from 2015 to 2019, which
illustrates the accuracy of the proposed method. Second, all the KAPPA values are more
than 0.6, which can indicate the high correlation between the urban built-up area extracted
by the proposed stratified SVM method and the urban built-up area extracted by Landsat-8
OLI and MODIS Land Cover data.

The confusion matrix of the urban built-up areas was extracted using the stratified
SVM method from 2015 to 2019, as shown in Table 2. The urban built-up areas extracted
from Landsat-8 OLI data and MODIS land cover data were used as the reference data
and reprojected to 1000 m spatial resolution. A total of 14,259 sampling pixels were
collected as validation data. The overall accuracy was larger than 92% from 2015 to 2019.
After comparison with existing related research [16,25–27], the accuracy of the results could
be accepted at the city level in Western China.

Table 2. The confusion matrix in Chengdu from 2015 to 2019.

References Urban

2015 Urban areas Non-urban areas Row total User’s accuracy (%)

Extracted urban
Urban areas 1022 576 1598 63.95
Non-urban areas 532 12,129 12,661 95.80
Column total 1554 12,705 14,259

Producer’s accuracy (%) 65.77 95.47 OA = 92.23

2016 Urban areas Non-urban areas Row total User’s accuracy (%)

Extracted urban
Urban areas 1107 517 1624 68.17
Non-urban areas 457 12,178 12,635 96.38
Column total 1564 12,695 14,259

Producer’s accuracy (%) 70.78 95.93 OA = 93.17

2017 Urban areas Non-urban areas Row total User’s accuracy (%)

Extracted urban
Urban areas 1112 541 1653 67.27
Non-urban areas 481 12,125 12,606 96.18
Column total 1593 12,666 14,259

Producer’s accuracy (%) 69.81 95.73 OA = 92.83

2018 Urban areas Non-urban areas Row total User’s accuracy (%)

Extracted urban
Urban areas 1178 558 1736 67.86
Non-urban areas 485 12,038 12,523 98.28
Column total 1663 12,596 14,259

Producer’s accuracy (%) 70.84 95.57 OA = 92.69

2019 Urban areas Non-urban areas Row total User’s accuracy (%)

Extracted

urban

Urban areas 1209 547 1756 68.85
Non-urban areas 488 12,015 12,503 96.10
Column total 1697 12,562 14,259

Producer’s accuracy (%) 71.24 95.65 OA = 92.74

In Table 2, the urban built-up area in Chengdu extracted using the stratified SVM
method gradually increased from 1598 pixels in 2015 to 1756 pixels in 2019, which is
consistent with the results in [16,25], which indicate that the urban built-up areas of
Chengdu increased from 1992 to 2012.

Furthermore, the details of urban extraction results from 2015 to 2019 are listed in
Figure 4 below.
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Figure 4. Urban built-up area change of Chengdu.
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As illustrated in Figure 4, the green pixels increased gradually from 2015 to 2019, which
clearly reflects the stable urban built-up area increases over the five years; to better represent
the development of the urban built-up area, we combine the change of the extracted urban
built-up area of the five years into a single graph, as shown in Figure 5 below.

Figure 5. Change of extracted urban built-up areas in Chengdu.

As demonstrated in Figure 5, four different colors indicate the change of extracted
urban built-up areas in Chengdu from 2015 to 2019. The pink color pixels, the blue color
pixel, the green color pixels, and the red color pixels represent the urban built-up area
increase during 2015–2016, 2016–2017, 2017–2018, and 2018–2019, respectively. This can
also demonstrate the growth of the urban built-up area in Chengdu during these five years.

4.2. Direction of Urban Built-Up Area Changes in Chengdu (2015–2019)

According to the urban built-up area extraction results, the distribution of these
urban built-up areas is extremely unbalanced, for instance, most urban built-up areas are
concentrated in Jinjiang, Qingyang, Jinniu, Wuhou, and Chenghua districts; meanwhile,
other districts have relatively fewer urban built-up area. This unbalanced distribution of
extracted urban built-up areas illustrates the uneven development of different districts in
Chengdu over the five years.

In terms of specific urban built-up areas in 20 different districts in Chengdu, the ex-
tracted urban built-up areas are listed in Figure 6 below. All the extracted urban built-up
areas of different districts in Chengdu increased stably from 2015 to 2019. However, some
districts increased slowly, while other districts increased quickly, for instance, the urban
built-up area in Xindu, Shuangliu and Pidu districts grew faster than other districts in
Chengdu over the five years. These unbalanced growth of the urban built-up area in
different districts can also clearly demonstrate the uneven development between different
districts in Chengdu over the five years.
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Figure 6. Extracted urban built-up area in different districts in Chengdu.

To further analyze the pattern of urban built-up areas in Chengdu over the period
2015–2019, the SDE method was employed to explore the spatial distribution and evolution
pattern of urban growth in Chengdu from 2015 to 2019. The details of the SDE method are
listed in Table 3, Figures 7 and 8, respectively, as below.

Table 3. Standard Deviation Ellipse data of the urban built-up area in Chengdu.

Years Center Coordinates Length of Long
Axis (km)

Length of Short
Axis (km)

Area of the
Ellipse (km2)

2015 (103.57 E, 30.42 N) 44.75 36.99 5200
2016 (103.58 E, 30.42 N) 45.09 37.19 5268
2017 (103.58 E, 30.42 N) 45.97 37.75 5450
2018 (103.58 E, 30.41 N) 46.22 38.11 5533
2019 (103.58 E, 30.41 N) 47.24 38.03 5643

The results of SDE analysis indicate that the spatial evolution of built-up area change
in Chengdu over the period 2015–2019 demonstrated a “northwest-southeast” spatial
expansion pattern. Over the five years, the change in the length of the long axis was greater
than that of the length of the short axis, which indicated that the stronger urban extension
trends followed the north to south direction. The length of the long axis, the length of
the short axis, and the area of the SDE ellipse gradually increased from 2015 to 2019,
which correlates with the stable growth of the extracted urban built-up areas in Chengdu.
The increase in SDE ellipse was relatively slower from 2015 to 2016 than that from 2017 to
2019, which also corresponds with the socioeconomic census data.

Considering the gravity change in the urban built-up area in Chengdu from 2015 to
2019, as illustrated in Figure 8, all the centers of gravity of urban built-up areas were located
in Qingyang district over the five years. In detail, the evolution of the center of gravity
mainly followed the north to south direction, and only the center of gravity deviated to the
southwest to some extent in 2018, which also reflects the socioeconomic census data over
the five years in Chengdu. In addition, the change distance of the center of gravity in 2018
and 2019 was greater than that from 2015 to 2017, which reflected the faster urbanization in
2018 and 2019 in Chengdu.
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Figure 7. Standard Deviation Ellipse data of the urban built-up area in Chengdu.

Figure 8. Center of gravity of urban built-up area in Chengdu.
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4.3. Relations between the Spatial Variations in Chengdu

In order to further explore the built-up area change pattern in Chengdu, the spatial
autocorrelation analysis method was also employed to study the spatial autocorrelation
pattern from 2015 to 2019. In detail, global Moran’s I index, the local Moran’s scatter plot
and the spatial local indication of spatial association (LISA) cluster map were employed
to unveil the spatial autocorrelation pattern of the urban extension from 2015 to 2019.
In addition, the calculated results are demonstrated in Table 4 and Figure 9 as follows.
As presented in Table 4, all the p values were significantly lower than 0.001, which not only
proves that global Moran’s I index passed the significance test, but also shows that the
urban evolution in Chengdu from 2015 to 2019 was clustered. In addition, global Moran’s
I indexes were all positive and larger than 0.5, which clearly illustrates a high spatial
correlation. Although both the global Moran’s I index value and the z value decreased
from 2015 to 2017, both of them increased and were larger than those in 2015, which
can demonstrate that the overall spatial correlation became stronger with urban spatial
extension, even with fluctuations in some years. Local Moran’s scatter plot and the LISA
cluster map were adopted to further investigate the local spatial correlation in 20 different
districts in Chengdu from 2015 to 2019; the details are listed in Figure 9.

Table 4. Global Moran’s I index.

Years Global Moran’s I
Index z Value p Value

2015 0.530 4.001 <0.001
2016 0.529 3.997 <0.001
2017 0.523 3.947 <0.001
2018 0.538 4.078 <0.001
2019 0.544 4.113 <0.001

The local Moran’s scatter plot changed from 2015 to 2019, which reflects the change
in local spatial correlations in Chengdu. From 2015 to 2017, the slope of the local Moran’s
scatter plot line decreased as the Moran’s I value decreased from 0.530 to 0.523, which
shows that the spatial correlation reduced with the built-up area change in these years.
However, the slope of the local Moran’s scatter plot line increased from 2018 to 2019
and was larger than that in 2015, which demonstrates that the spatial correlation became
stronger with the urban extension from 2018 to 2019. In addition, the LISA cluster map was
the same from 2015 to 2019, which showed a stable cluster pattern among different districts
in Chengdu over the five years. The “High-High” clusters, which include six districts,
namely, Jinjiang, Qingyang, Jinniu, Wuhou, Chenghua and Shuangliu districts, are located
in the central and south parts of Chengdu. These districts all have relatively larger urban
built-up areas, a greater population and a higher GDP than other districts in Chengdu.
Meanwhile, the “Low-Low” cluster, which includes two districts, namely, Qionglai and
Dayi districts, is located in the west parts of Chengdu; these two districts are relatively
slower in urbanization, with smaller urban built-up areas, a lower population, and a lower
GDP than other districts in Chengdu.
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Figure 9. Local Moran’s scatter plot and LISA cluster map.
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5. Discussion
5.1. Significance of The Study

The NPP-VIIRS NTL data, which has higher quality than DMSP/OLS NTL data, is
used in this research to measure the urban built-up area change in Chengdu from 2015 to
2019, the extracted results obtained by the stratified SVM method are consistent with the
urban built-up area extraction results in [16], which demonstrate the urban land increase
from 889 km2 with an average annual increase percentage of 19.83% from 1992 to 2012.
Furthermore, these extraction results are also in accordance with the global annual urban
dynamics obtained from the DMSP/OLS from 1992 to 2013 [39]; their results indicate
the fast urbanization process in developing countries in Asia [40], South America [41],
and Africa [42] contribute most growth of urban built-up areas in the world. This can
illustrate the values of the NTL data to continually monitor the spatial-temporal urban
dynamics globally during a long period. These evaluation results indicate the freely
accessed NTL data can be employed as a promising auxiliary approach to the expensive
and time-consuming surveys and field experiments in urban studies, especially for the
underdeveloped western cities with tight budgets in China. Moreover, the socioeconomic
validation results illustrate the high correlation between the urban built-up areas, the GDP,
and the urban population.

In addition to the built-up area change in Chengdu from 2015 to 2019, the spatial-
temporal urban evaluation pattern and the geographic correlation were also investigated in
this research. The results of the SDE analysis indicate that the spatial evolution of built-up
area change in Chengdu over the period 2015–2019 demonstrated a “northwest-southeast”
spatial expansion pattern. Over the five years, the change in the length of the long axis was
greater than that of the length of the short axis, which indicates the stronger built-up area
change trend that follows the north to south direction. In addition, the center of gravity
also mainly followed the north to south directions, with the exception that the center of
gravity deviated to the southwest to some extent in 2018. These SDE analysis results are in
accordance with the results in [17], which indicate that the built-up area change direction
in Chengdu was mainly toward the northwest, west, and southwest from 1978 to 2010.

Furthermore, the results of Global and Local Moran’s I index analysis in Chengdu
from 2015 to 2019 indicate the significant “High-High” and “Low-Low” cluster, which
demonstrates that the strong districts with higher GDP tightly correlate with strong districts,
while poor districts with lower GDP collaborate closely with poor districts in Chengdu,
which can demonstrate the impact of power on uneven development in Chengdu from
2015 to 2019.

5.2. Relationship of the Result and Other Indexes of Uneven Development

To illustrate the relationship between the urban built-up areas and the statistics data.
We further separated the growth of different districts and counties, as shown in Figure 10,
in which the larger size of the blue pie chart, the faster the growth.

In Figure 10, we can conclude that there was strong economic development momen-
tum in the eastern and western parts where the size of the blue pie chart is the largest.
Conversely, slow economic development was witnessed in the northern and southern parts.
The central part, which is also the urban district, experienced stable economic development.
Considering the trend of the city center to move southward and eastward, the south and
east parts actually consumed more rural land to generate similar GDP growth.

According to related research [16,25,27], socioeconomic census data were also em-
ployed to evaluate the accuracy of the extracted urban built-up area over the period
2015–2019 in Chengdu. In detail, the correlation between the extracted urban built-up area
and the GDP and the urban population is demonstrated in Figure 11. The relationships
between the extracted urban built-up areas, the GDP, and the Population in Chengdu from
2015 to 2019 are discussed; the results demonstrate that the extracted urban built-up areas
were highly correlated with the GDP throughout the five years, which clearly shows the
accuracy of the proposed urban extraction method. Similarly, the correlation between
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urban built-up areas and the urban population was calculated in Chengdu from 2015 to
2019; the results illustrate that the extracted urban built-up areas had a strong correlation
with the urban population, which also clearly indicates the performance of the proposed
research method.

Figure 10. The quantitative analysis of GDP growth rate from 2015 to 2019.

Figure 11. The correlation between built-up area and GDP/urban population.

In terms of [43], uneven development is not only reflected by urban built-up areas,
but also represented in other fields, such as investment and urban population. Therefore,
this research tries to visualize the changing pattern of GDP and urban population, and com-
pares it with the evolution pattern of urban built-up areas. The evaluation results illustrate
the same evolution pattern between built-up areas, the GDP, and the urban population. This
can also prove the uneven development in Chengdu during these five years. Furthermore,
how to design a scientific spatial-temporal monitoring system with multiple parameters of
uneven development is vital for future studies.

5.3. Limitations and Future Research

There are some limitations in this research that must be addressed in future research.
For example, the urban extraction in this research was mainly based on the NPP-VIIRS
NTL data, the NDVI data and the nighttime LST data; their spatial resolution may not
have been high enough for the complex urban scenario. Recently, some research has
already tried to extract urban built-up areas based on the high-resolution Landsat data [44].



Land 2022, 11, 489 19 of 21

Therefore, future research should be based on remote sensing information with higher
spatial resolution. Furthermore, since the quality of remote sensing images is highly
vulnerable due to the clouds and weather conditions, the weather in Chengdu, like a
typical city in Western China, may constrain the performance of remote sensing methods;
therefore, more field experiments for urban coverage and urban land use in urban built-up
areas are also required in future related studies to improve the accuracy of the urban
built-up area change.

6. Conclusions

Complex human behaviors dramatically affect the urban environment and urban
land exploitation; therefore, a timely and accurate understanding of the spatial-temporal
expansion pattern of cities is crucial for better urban living and sustainable urban develop-
ment. The spatial-temporal urban development characteristics of Chengdu over the period
2015–2019 were explored in this paper. The extension of urban built-up area, the spatial
evolution of built-up area change and the geographic spatial correlation within Chengdu
were investigated. The results demonstrated in this research could supply useful references
and guidance for urban land use and urban management in western cities.

This research tried to measure the built-up area change pattern, especially the spatial
evaluation pattern of urban built-up area change and the geographic spatial correlation
pattern, in Chengdu from 2015 to 2019. A stratified SVM method for the urban built-up
area extraction method was presented. Remote sensing information, mainly including the
NTL data, the NDVI data, and the nighttime LST data, was employed to extract the urban
built-up area. Based on the SDE and Moran’s index analysis, the built-up area change
pattern, the spatial evaluation pattern and the spatial correlation pattern were discussed.

The timely and accurate measurement of the spatial-temporal pattern of urban evolu-
tion is vital for urban construction and planning, especially for underdeveloped western
cities in China. The scientific measurement and understanding of the built-up area change
pattern are crucial for efficient land usage decisions and urban management planning.
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