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Abstract: Among landscapes, rural landscapes are important because they simultaneously present
functional and cultural aspects. Rural landscapes are often created to modify the Earth’s surface
according to different human needs and, among these modifying activities, terracing has significant
anthropogenic effect. A multitemporal approach that covers a significant time interval is crucial for
monitoring the integrity and cultural value of historical rural landscapes. The present research aims
to study the fragmentation dynamics detectable in an active agricultural terraced system of historical
and cultural relevance over a considerable time interval, by conducting a morphological spatial
pattern analysis (MSPA). We analysed a period of about 60 years, from 1955 to 2014, considering five
intermediate years (1976, 1989, 1998, 2008, and 2012) and investigated the dynamics that occurred. We
detected a trend of abandonment of agricultural terraces, with a reduction in area from 813.25 ha (in
1955) to 118.79 ha (in 2014). The MSPA results showed a decrease in core areas, the most stable pattern,
and an increase in the relative importance of other less stable classes. Moreover, we highlighted
two different fragmentation dynamics, i.e., one between 1955 and 1976 and the other between 1998
and 2008.

Keywords: change detection analysis; cultural landscapes; terraced agricultural landscapes; land
use/land cover (LU/LC) mapping; morphological spatial pattern analysis (MSPA); landscape
fragmentation; landscape dynamics

1. Introduction

By its own definition, landscape should be considered to be a constantly changing
entity that results from ongoing interactions between natural components and human activ-
ities [1–3]. Among the European landscapes, rural landscapes are the most important and
representative; they are characterised by the simultaneous presence of functional aspects
that are mostly connected to land use/land cover (LU/LC) and cultural aspects that are
linked to modifications and adaptations by humans to shape the landscape to fit with their
needs [4–6]. These landscapes are often created to modify the Earth’s surface according
to different human needs. Among these modifying activities, terracing has significant
anthropogenic effects, such as making the mountain slopes suitable for cultivation and
affecting vegetation growth, soil nutrients, and soil hydrology [7–9]. Terracing practices
also improve ecosystem services [10,11] such as biodiversity conservation [12,13], hydroge-
ological risk prevention [14,15], recreation [16,17], and carbon sequestration [18,19], and
therefore, historical agricultural terraced landscapes are considered to be an important
part of rural cultural heritage. According to the United Nations Educational, Scientific and
Cultural Organization (UNESCO) classifications, terraced landscapes can be considered
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to be “cultural landscapes” in that they represent the “combined works of nature and of
man” [20]. They are the product of social construction, changing continuously over time,
and can be ascribed to the category of “organically evolved landscapes”, because they result
“from an initial social, economic, administrative ( . . . ) imperative and have developed their
present form by association with and in response to their natural environment. Such land-
scapes reflect that process of evolution in their form and component features” [20]. Integrity
and the permanence of agricultural use are important criteria to consider to assess the
cultural value of a terraced system and to outline appropriate strategies for its conservation
and management. The integrity of historical cultural landscapes poses specific questions to
be addressed. In particular, in the case of terraced agricultural landscapes, their integrity
could be assessed by investigating the structure of the main landscape components and the
structure of the landscape itself and analysing the changes over time at the local level [21],
in other words, by analysing and interpreting their evolution over a sufficient time-lapse
duration and with a higher level of thematic and geometrical resolutions. Most terraced
landscapes are organized employing dry-stone retaining walls, which appear as the tangible
signs of an intangible art, and also deserve to be protected for their cultural value. In fact,
with reference to eight European countries, Italy among them, the “Art of dry-stone walling,
knowledge and techniques” was inscribed, in 2018, on the UNESCO Representative List
of the Intangible Cultural Heritage of Humanity (https://ich.unesco.org/en/RL/art-of-
dry-stone-walling-knowledge-and-techniques-01393—last access 10 January 2022), thus,
explicitly recognising that dry-stone walls, particularly when they contribute to reshape
steep slopes into terraces, “play a vital role in preventing landslides, floods and avalanches,
and in combating erosion and desertification of the land, enhancing biodiversity” [4,22–24].
In Italy, agricultural terraces are an important and centuries-old landscape feature [21].
Dating from the middle of the 20th century, they have undergone progressive disuse,
agricultural redundancy, and abandonment [25–31], especially on steep sites which are not
easy to access and where agriculture could not be easily mechanized. Here, landslide risk
prevention would greatly benefit from maintaining the terraces’ dry-stone walls [32–36]. In
turn, this could be granted by making agricultural land use more profitable for farmers, by
increasing efficiency and by paying for the cultural ecosystem services (CESs) that the ter-
raced systems provide, even if there is still a gap in connection between cultural landscapes
and provided CEEs [37]. To both these ends, landscape fragmentation appears to be an
important limitation and deserves to be thoroughly investigated to detect the driving forces
which have determined it and to find appropriate management strategies [38]. In historical
rural landscapes, a multitemporal approach covering a significant time interval is crucial
for monitoring their integrity and cultural value [39]. As remarked by various scholars, in
the case of the terraced landscape, coupling LU/LC with a pattern change analysis could
help to detect the changes that have occurred over time in the spatial configuration of the
whole system and its relevant features [10,29,40–47]. In particular, in this context, a land-
scape fragmentation analysis appears to be closely related to agricultural productivity and
biodiversity conservation [48–51]. For this reason, the present research aims to study, over
a significant time-interval duration, the fragmentation dynamics, understood as the split-
ting of an LU/LC type into smaller and less connected agricultural terraced patches [52],
detectable in an active agricultural terraced system of historical and cultural relevance. We
adopted a morphological spatial pattern analysis (MSPA) [53–55] that, to the best of our
knowledge, is the first attempt to apply this method to study fragmentation dynamics in
a man-made agricultural terraced landscape. These types of landscapes have undergone
a progressive loss of their role linked to agricultural productivity, but their cultural and
environmental value has been increasing and is better recognised by people. In this context
and with specific reference to the framework of sustainable planning and management
actions, the MSPA highlights stable classes to be protected and maintained as well as less
stable classes. For the latter, there is a need to put in practice appropriate planning and
design measures for their improvement. The area of Costa Viola in the province of Reggio
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Calabria (Southern Italy) was chosen as a case study which was investigated by focusing
on the change dynamics that occurred over a significant time interval (1955–2014).

2. Materials and Methods

To achieve our goal, we adopted a multitemporal approach over a time interval of
about 60 years, from 1955 to 2014. To better explore the dynamics that occurred during the
selected period, we collected information concerning five intermediate years: 1976, 1989,
1998, 2008, and 2012, and obtained a picture of the studied terraced landscape for each of
them. The multitemporal method (Figure 1) can be synthesised into the following four
steps: (i) base maps implementation; (ii) LU/LC digitalisation; (iii) fragmentation analysis;
(iv) statistical analysis.
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2.1. Study Area

Costa Viola is one of the main terraced areas of Italy and is listed in the National Reg-
ister of Italian Historical Landscapes [21]. It is a strip of coastal land facing the Tyrrhenian
Sea in the very south of the Italian Peninsula, in the region of Calabria, which lies along
the strait which separates it from Messina and Sicily. Costa Viola, i.e., the Violet Coast,
is so-called because of the particular colour the sea assumes at sunset. Its territory falls
into five municipalities: Villa San Giovanni, Scylla, Bagnara Calabra, Seminara, and Palmi.
This land has known civilization since ancient times. It is famous for the myth of Scylla
and Charybdis, the legendary sea monsters, respectively, inhabiting the Calabrian and the
Sicilian shores, narrated by Homer in the Odyssey. The study area (Figure 2) extends about
24.1 km2, being a strip 20 km long and 1–2 km large. It is characterised by steep slopes,
mostly over 30◦ (54.74% of the whole area), cliffs, and deep valleys modelled over time by
the erosive action of the so-called fiumare (the typical torrents characterising the Calabria
region and the northeastern part of Sicily).
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Figure 2. Geolocalization of the study area, the Costa Viola landscape.

The present agricultural terraced system finds its original matrix in the work of
landscape re-organization following the catastrophic earthquakes of 1783–1784 [56]. The
narrow terraces are supported by earth retaining dry-stone walls integrated with complex
drainage, irrigation, and circulation systems (channels, dry-stone stairs, and paths). Since
the early 19th century, this terraced system in Costa Viola has made agriculture possible
even on land with slopes over 70◦, mainly for viticultural use and with a minor presence
of olive and citrus growths. For decades, here, terraced viticulture has represented an
almost heroic way of agricultural production, made possible in small and family-run
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farms and also by a favourable social and economic context. Over the 20th century, things
have progressively and dramatically changed; since the 1930s, terraced viticulture, which
requires very intense labour inputs, has undergone a general and rapid decline. Despite the
loss of agricultural significance, the cultural importance of the terraced landscape of Costa
Viola has, instead, progressively grown. Now, the need to manage this valuable landscape
by coupling the original agricultural function (which needs to find new economic purposes)
with the valorisation of its cultural attractiveness is widely recognised.

2.2. The Multitemporal Method

For the fragmentation-based framework of the analysed terraced landscape, first, the
precise location of the terraced agricultural areas had to be determined. We identified
the positions using aerial characteristic signs such as the presence of dry-stone walls.
Moreover, to perform our analysis, we needed to know their shape, extent, and LU/LC in
each investigated year. These data were obtained using a photointerpretation and manual
digitalisation process. A georeferenced basemap for each of the seven investigated years
was obtained as the first step of this process. Due to data availability and the temporal
dimension of the analysed period, different sources were used (Table 1)

Table 1. Main characteristics of the image sources used to obtain georeferenced base maps for each
investigated year.

Source Year Frame Data GSD
Italian Military Geographic

Institute (IGMI)
1955
1976 B/W aerial photos 0.5 m

National geoportals of the Italian
Ministry of the Environment,

Land, and Sea

1989 B/W digital aerial orthophotos
as WMS service

1 m
1998 RGB digital aerial orthophotos

as WMS service
Agency for Agricultural Payments
of the Calabria Region (ARCEA)

2008
2012 RGB digital orthophotos 0.5 m

DigitalGlobe WorldView-2 satellite 2014 RGB digital orthomosaic

For the 1955 and 1976 images, a georeferencing process involving the use of ground
control points (GCPs) directly collected in situ was followed to obtain orthophotos from
the available aerial photos. More details about this process can be found in Modica et al.,
2017 [29].

Once the base maps of the investigated years were obtained, a manual digitalisa-
tion was performed in a GIS environment following the regressive photointerpretation
method [57]. Considering the high detail needed, digitalisation was conducted at a display
scale between 1:900 and 1:1250, considering 0.20 ha as the minimum mapping unit. The
CORINE land cover was adopted as the legend because of its hierarchical structure. Indeed,
this legend is constructed according to precise hierarchies, starting from five items for the
first hierarchical level and adding underlying levels as more information is provided [58].
The greater the number of details highlighted, the higher the hierarchical level will be [59].
This structure allowed us to add a specific hierarchical level dedicated to the terraced
areas to discriminate them from the others. This process resulted in a vector layer with the
LU/LC data, one for each investigated year, which were used to build the LU/LC maps.
More details can be found in our previous studies on the same study area [29,44].

The obtained LU/LC maps were used to analyse the spatial patterns of the terraced
agricultural areas highlighting their fragmentation dynamics. In this context, landscape
metrics have been used to quantify and describe several spatial characteristics of landscape
components [60,61]. Two simple vector-based landscape metrics were chosen to measure
fragmentation dynamics in this study: the number of patches (NP), i.e., the number of
terraced polygons showing active agricultural use during the photointerpretation process,
and the mean patch size (MPS), i.e., the ratio between the total area occupied by agricultural
terraces and the NP [47]. In our approach, a patch was not related to a single farm property,
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but it was a contiguous pattern of active agricultural terraces resulting from photointerpre-
tation and digitalisation, without a link to the farm/property aspect. Moreover, to have
a deeper view of the spatial structure and composition of the terraced agricultural areas
(i.e., active terraces), we performed the MSPA [53–55] using the free open-source software
Guidos (Graphical User Interface for the Description of image Objects and their Shape)
Toolbox (GTB) version 2.9 [62]. The MSPA enabled the description of terraced systems by
analysing the morphology of their main spatial constituents: core, islet, perforation, edge,
loop, bridge, branch, core-opening, and border-opening (Table 2). Core indicates the most
stable areas and represents the class to be preserved more than the others. In this view,
for a deeper approach within core area dynamics, this morphological class was split into
3 subclasses: (i) small core (sCore), with an extent less than 1 ha; (ii) medium core (mCore),
with an extent between 1 and 10 ha; (iii) large core (lCore), with an extent greater than 10 ha.
The MSPA in GTB consists of binary raster-based analysis, considering just two data classes:
“foreground”, the areas of which we want to know the spatial dynamics (i.e., active terraced
systems) and “background”, all other areas. To obtain an active terraces/non-active terraces
raster-based map, to be used as input for the MSPA, all vector-based LU/LC maps obtained
during the previous phase were rasterised with a spatial resolution of 5 m. Adopting this
resolution, the minimum map unit considered during the digitalisation process (0.2 ha)
was sufficiently larger than the pixel size (about 80 times). Moreover, this resolution was a
good compromise between spatial accuracy and needed processing time. The rasterisation
process assigned the value 2 to all active agricultural terraced LU/LC (foreground) and
1 to all other LU/LC classes (background).

Table 2. Main morphological spatial classes analysed and their short description [53,62].

Morphological Spatial
Pattern Class Description

Core Interior area, far from the non-core area, without its perimeter

Islet Disjointed areas, too small to contain core

Perforation The internal perimeter of opened core areas

Edge The external perimeter of core areas

Loop Small areas connecting to the same core area

Bridge Small areas connecting different core areas

Branch Small areas connected only at one and to other classes

Core-opening Perforation inside core areas

Border-opening Opening along the edges

Based on input data and given the objectives of this work, two spatial parameters
were set to perform the MSPA in GTB: the foreground connectivity and the edge width.
Foreground connectivity defines the connection of the centre pixel of a 3 × 3 moving
window. Two possibilities are available: (i) 4-connectivity, considering the four pixels up,
bottom, left, and right to the centre pixel and (ii) 8-connectivity, considering all pixels
surrounding the centre pixel [62]. In this work, 8-connectivity was chosen. Edge width
defines the width of the non-core area classes. A high edge width leads to a decrease in
core areas and an increase in border areas [62]. Considering the high detail of the input
data, a value of 1 was chosen for this parameter.

2.3. Statistical Analysis

The time series of class-level morphological spatial pattern metrics were tested for
significance using a linear regression model for the period 1955–2014. Therefore, edge,
bridge, and branch MSP classes were grouped into a single class named “connection”.
Then, a linear model was fitted for relevant core, islet, edge, and connection classes metrics.
A significant slope (β) parameter was considered to be a measure of the direction of
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the trend and the magnitude of the adjusted coefficient of determination (adjR2) as a
morphological spatial pattern metrics trend [63]. The time series of landscape metrics
were examined to characterise the landscape’s agricultural terraced patch dynamics and
to provide information on the organization and stability of landscape composition and
configuration. The base 10 logarithm values of MPS and NP, for the period 1955–2014,
were plotted against and fitted by a power-law function for detecting breaks in the fit and
were assumed to be related to disjunctions or departures from linearity of the observed
agricultural terraced patch dynamics [64]. The statistical analysis was conducted in the R
(4.1.0) software environment [65].

3. Results

The LU/LC maps were used to identify the total area occupied by active agricultural
terraced LU/LC classes and their spatial configurations for each of the investigated years
(Figure 3). In 1955, the total area occupied by active terraces, the main target of this
study, was 813.25 ha, and a year-on-year decline occurred, thus, reaching 118.79 ha in 2014
(Table 3). More detail about other LU/LC classes can be found in Modica et al., 2017 [29].
An opposite tendency was highlighted for the NP metric that showed an increasing trend
from 98 patches (in 1955) to 122 patches (in 2014), with a maximum of 157 patches (in 2008).
This increase is linked with a decrease in the MPS from 8.30 ha (in 1955) to 0.97 ha (in 2014).
Table 3 reports the total area occupied by agricultural terraces, the NP, and the MPS for
each investigated year.
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Table 3. The extent of active agricultural terraced areas, number of patches (NP), and mean patch
size (MPS) for each analysed year.

Year Area (ha) Number of Patches (n) Mean Patch Size (ha)

1955 813.25 98 8.30

1976 409.47 148 2.77

1989 302.59 125 2.42

1998 190.44 114 1.67

2008 142.29 157 0.91

2012 130.30 147 0.89

2014 118.79 122 0.97

Concerning the MSPA, Figure 4 shows the spatial distribution of all analysed classes,
while Figure 5 shows a synoptic framework of all classes in each of the investigated years.
Due to different extensions of active agricultural terraces, representing foreground in the
input data, the results are presented in terms of the occupied surface by each MSP class,
expressed in hectares (Table 4 and Figure A1), and in terms of the relative importance of each
class in the composition of the foreground, expressed in percentage (Table 5 and Figure A2).

Considering the core area class, it decreased from 630.54 ha (in 1955), representing
76.74% of the total foreground area, to 60.68 ha (in 2014) representing 51.71% of foreground
area. The lowest percentage was recorded in 2008, with 49.03% of the total foreground
classes area occupied, corresponding to 68.93 ha. Considering the three core subclasses, the
sCore area increased from 12.20 ha (in 1955) to 14.59 ha (in 2014), and its relative percentage
increased from 1.93% to 24.04% of the total area occupied by the core class. The mCore area
decreased from 158.24 ha (in 1955) to 46.09 ha (in 2014), but its relative percentage increased
from 25.10% to 75.96%. Finally, the lCore, which occupied a surface of 460.10 ha (in 1955),
representing 72.97% of the core class area, disappeared in 2014. As a consequence of this
trend, the edge class area constantly decreased from 152.04 ha (in 1955) to 39.77 ha (in 2014).
Considering its percentages, an opposite trend was shown, increasing from 18.50% (in 1955)
to 33.89% (in 2014), with a maximum of 35.16% (in 2008). Moreover, islet class (i.e., areas
too small to contain core) increased from 0.46 ha (in 1955) to 1.14 ha (in 2014), representing
0.06% and 0.97%, respectively. The maximum surface occupied by this class was 1.87 ha
(in 2008), while the maximum percentage was 1.43% (in 2012). Even loop, bridge, and
branch classes (i.e., connection classes) showed a decrease in terms of the surface but an
increase in terms of relative percentage. Loop slightly decreased from 2.09 ha (in 1955) to
1.15 ha (in 2014), but its relative percentage increased from 0.25 to 0.98 in the same years.
Bridges decreased from 8.78 ha (in 1955) to 3.87 ha (in 2014), but the relative importance of
this class increased from 1.07% to 3.29% at the two extreme years of the analysed period.
Branches decreased from 14.39 ha (in 1955), corresponding to 1.75%, to 10.34 ha (in 2014),
corresponding to 8.81%. The maximum area occupied by this class was 17.20 ha (in 1976),
while the maximum percentage occupied was 9.51% (in 2008).

The time-series trend analysis of class-level morphological spatial pattern metrics
showed a significant decreasing trend for core, edge, and connection class metrics. In
contrast, the islet increasing trend was not significant (Figure 6). As expected, the rela-
tion between the landscape metrics did not display a power-law function, as the study
area was an artificial environment. Nevertheless, two major breaks from the trend were
detected (Figure 7).
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Table 4. The total surface occupied by morphological spatial pattern classes analysed for each of the
years investigated.

Morphological Spatial
Pattern Class

1955 1976 1989 1998 2008 2012 2014

[ha]

Core* 630.54 273.64 195.09 105.19 68.93 64.59 60.68

*sCore 12.20 20.69 23.06 23.59 20.13 16.93 14.59

*mCore 158.24 136.19 113.85 56.81 48.80 47.66 46.09

*lCore 460.10 116.76 58.18 24.78 0 0 0

Islet 0.46 1.53 1.02 0.21 1.87 1.85 1.14

Perforation 1.64 0 0 0 0 0 0

Edge 152.04 106.38 82.85 58.86 49.42 44.47 39.77

Loop 2.09 2.51 2.08 1.19 1.46 1.43 1.15

Bridge 8.78 7.52 5.59 4.37 5.03 4.54 3.87

Branch 14.39 17.20 14.75 11.11 13.37 11.46 10.34

Core-opening 3.54 0 0 0 0 0 0

Border-opening 8.24 4.64 1.44 1.22 0.50 0.39 0.40

Table 5. The relative importance of each morphological spatial pattern class expressed as a percentage
of the total foreground area analysed for each of the years investigated.

Morphological Spatial
Pattern Class

1955 1976 1989 1998 2008 2012 2014

(%)

Core* 76.74 66.19 64.43 57.75 49.03 50.18 51.71

*sCore 1.93 7.56 11.82 22.43 29.20 26.21 24.04

*mCore 25.10 49.77 58.36 54.01 70.80 73.79 75.96
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Table 5. Cont.

Morphological Spatial
Pattern Class

1955 1976 1989 1998 2008 2012 2014

(%)

*lCore 72.97 42.67 29.82 23.56 0 0 0

Islet 0.06 0.37 0.34 0.11 1.33 1.43 0.97

Perforation 0.20 0 0 0 0 0 0

Edge 18.50 25.73 27.36 32.31 35.16 35.44 33.89

Loop 0.25 0.61 0.69 0.65 1.04 1.11 0.98

Bridge 1.07 1.82 1.85 2.40 3.57 3.53 3.29

Branch 1.75 4.16 4.87 6.10 9.51 8.90 8.81

Core-opening 0.43 0 0 0 0 0 0

Border-opening 1.01 1.12 0.48 0.67 0.36 0.30 0.34
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4. Discussion

By analysing the results of the digitalisation process, a decreasing trend of active
agricultural terraced areas could be noticed. These areas registered a total loss of 694.46
ha during the analysed time interval, representing a percentage decrease of −85.39%.
This dynamic is in line with the findings of other studies conducted in the same study
area [29,43,44,46,66]. Moreover, as highlighted in several other studies, this decrease was
strictly linked, on the one hand, with the more general abandonment of agricultural ac-
tivities [67–70], especially in mountain areas [28,71], and on the other hand, with the
abandonment of terraced agricultural systems [7,72–76]. It is important to highlight how, in
these kinds of landscapes, fragmentation at the parcel/farm level, although resulting from
specific dynamics, may reveal as strictly connected with fragmentation at the landscape
level. We analysed a cultural landscape whose main constituents are agricultural terraces
managed by single farmers. Should farmers, for different reasons, reduce or abandon the
agricultural use of the land they own, this would inevitably reflect a lack of maintenance,
and then progressive obsolescence and abandonment. This would reduce the function-
ality of the specific terraced parcels and also of the other adjacent parcels, progressively
affecting, to a large extent, the functionality and the appearance of the wider and more
complex terraced landscape system. In this process, the social construction and the social
perception of landscape go together. If abandonment affects small areas distributed across
the landscape, the integrity and continuity of its elements could be preserved without
changing the perception of the whole landscape. If changes, instead, affect larger areas or
are concentrated in restricted parts of the analysed territory, the perception of the landscape,
being diminished in its distinctive character, could be greatly altered. The loss of cultural
attractiveness, in turn, eliminates the advantage of the terraced landscape as a major feature,
and the focus is on other important farm-based activities (tourism, cultural/educational
initiatives, etc.) that can provide farmers with integrative incomes and offer additional
motivations for keeping the agricultural use.

The MSPA results show fragmentation dynamics on the terraced agricultural systems.
Core areas decrease and islets increase. Two main fragmentation dynamics have been
highlighted thanks to the analysis of the intermediate years of the considered time interval.
In fact, the first fragmentation dynamic occurs between 1955 and 1976 with an increase
in islet areas from 0.46 ha to 1.53 ha. This class represents a less stable pattern. After the
increase due to fragmentation, a decreasing trend is shown from 1976 to 1998, losing 1.32 ha
and assessing the total amount of surface occupied by islet areas to be 0.21 ha. Then, a
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second fragmentation dynamic occurs between 1998 and 2008. This trend is highlighted
by an increase in the total islet class area from 0.21 ha to 1.87 ha. After this year, again,
a disappearing trend of this class can be noticed, decreasing from 1.87 ha to 1.14 ha. In
addition, the edge class area decreases but its relative percentage increases. This means that
during the analysed time interval, core areas became smaller, thus, less stable and subject to
further future phenomena of fragmentation. If the fragmentation dynamic occurs in a core
area, the result could be either a smaller core area or a pattern of smaller classes (bridges,
branches, islets, etc.). If the fragmentation dynamic occurs at the expense of smaller classes,
there is a real risk of permanent loss of those elements (Figure 4). The analysis of core area
subclasses gives further evidence of this trend. In fact, the lCore class disappeared between
1998 and 2008 and the importance of the mCore and sCore classes increased during the
entire time interval. This trend was in line with the findings of Heider et al. [45] who
highlighted that small parcels were persistently cultivated in a Spanish terraced landscape.
In other words, these small parcels can be interpreted as remnants of the original terraced
landscape, gradually abandoned during the last century.

As a consequence of this fragmentation trend, loop, bridge, and branch (i.e., different
kinds of connections between MSP classes) importance given by their relative percentages
increase with a maximum peak that corresponds with the second fragmentation period
highlighted (1998–2008). In this view, these connection classes can be considered to be
the remains of bigger core areas that link different smaller ones. Finally, the values of
perforation and core-opening classes that represent discontinuities inside core areas can be
read as a sign of fragmentation dynamics that occurred before 1955, of which we do not
have more details because it is outside of our considered time-span period and because of
the lack of an available dataset.

The two above highlighted fragmentation dynamics are also shown by the analysis
of the two considered landscape metrics. In fact, the NP values highlighted an initial
increase in agricultural terraced patches between 1955 and 1976, then, a gradual decrease
and another increase between 1988 and 2008, followed by another decreasing trend. These
values are also accompanied by a reduction in MPS value, meaning that fragmentation
affects the composition of the terraced agricultural landscape, moving from a situation
characterised by a few agricultural terraced patches of larger size to another with many
more patches but of much smaller size. Moreover, the analysis of agricultural terraced
patch dynamics in the period 1955–2014 indicated a disjunction between both 1955–1976,
and 1998–2008, and thus, confirmed that landscape fragmentation occurred in these time
intervals. During these two time intervals, as reported by the Italian National Institute of
Statistics (ISTAT, https://demo.istat.it—last access 10 January 2022), a significant decrease
in the number of inhabitants of the five municipalities composing the study area can
be noticed.

A comparison of the MSPA results, landscape metrics, and LU/LC mapping, clearly
showed how fragmentation dynamics were strictly connected with the abandonment of the
agricultural terraces. This finding was in line with the results of other scholars that have
highlighted a connection between fragmentation and land abandonment [51,77].

5. Conclusions

This work aimed to describe the dynamics of a terraced landscape of historical and
cultural relevance following a multitemporal fragmentation-based analysis approach. The
main strength of this approach is the multitemporal dimension of the analysis. In fact, we
considered the two extreme years of the time period investigated and five intermediate
years. This approach allowed us to highlight two different fragmentation trends that
otherwise could not have been identified. Furthermore, we showed the reliability of an
MSPA (usually adopted to describe processes in the natural environment) adopted to a
man-made landscape, to describe the dynamics that occurred, giving a detailed framework
of the spatial composition of agricultural terraces by analysing the morphology of their
components. This analysis can be a reliable tool for decision-makers to calibrate timely and

https://demo.istat.it
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tailored planning measures to protect specific core areas, and to improve other classes, in
other words, to implement proper contrasting actions of the ongoing fragmentation and
ensure the integrity and continuity of the constituting elements of a cultural landscape.

The main limitation of the multitemporal fragmentation-based analysis approach
adopted is the need for up-to-date aerial base map images coupled with the time-consuming
activities of photointerpretation and manual digitalisation of LU/LC to detect active agri-
cultural terraces. Further research activities should involve the use of different remote
sensing sources such as very high-resolution (VHR) satellite data with daily revisiting times
to obtain constantly updated images. Satellite data could be integrated with unmanned
aerial vehicles (UAVs) equipped with photogrammetric sensors to obtain detailed images,
or with lidar sensors to easily detect terraced systems. Moreover, terrestrial laser scanner
(TLS) and airborne laser scanner (ALS) data could be used for accurate investigations of the
maintenance conditions of dry-stone walls. Finally, to avoid the time-consuming tasks of
photointerpretation and manual digitalisation, a machine learning/deep learning approach
could be implemented to achieve a semiautomatic classification of LU/LC.

A deeper knowledge of fragmentation dynamics and linked abandonment trends is a
helpful tool in the decision-making process. It can be used to improve the knowledge of
terraced agricultural landscape by identifying areas to be subjected to special protection
and conservation measures and those to be subjected to improvement policies. In addition,
it is a helpful tool on the basis of “integrity” criteria, particularly, in the examined area that
UNESCO has listed in the convention for the safeguarding of intangible heritage in 2018.

The results of this study could be used to support the activities of decision-makers in
contrasting the fragmentation dynamics, thus, preserving the role and the functionalities of
the terraced agricultural landscape. In this view, in the last five years, the work of a few
“heroic farmers” has been, in part, countering the abandonment dynamics outlined above
by rescuing small terraced areas from abandonment and resuming cultivation practices.
These areas should be the object of specific planning measures to improve their stability
over time by offering structural conditions (infrastructures, financial support, and technical
innovation) which can encourage those agriculture uses and farm-based complementary
activities valorising the historical terraced landscape.
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