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Abstract: To provide the forest industry with a better understanding of alternatives to simulate
future adaptation pathways under evolving climatic and socio-economic uncertainty, we review
the literature on how adaptation decisions are modelled in the context of plantation forests. This
review leads to the conclusion that the representation of adaptation behaviour and decision-making
remain very limited in most of the agent-based models in the forestry sector. Moreover, theoretical
frameworks used to understand the adaptation behaviour of forest owners are also lacking. In
this paper, we propose the application of protection motivation theory (PMT) as a framework to
understand the motivation of forest owners to reduce the negative impacts of climate change on their
forest plantations. Furthermore, the use of PMT allows factors affecting the maladaptive behaviour
of forest owners to be examined. A survey of New Zealand foresters showed that less than 10% of
smallholder forest owners adopted adaptation strategies. This result highlights the importance of
addressing the research question “what motivates forest owners to take risk reduction measures?”
Exploring this question is crucial to the future success of the New Zealand forestry sector and we
suggest that it can be addressed by using PMT. This paper proposes a conceptual framework for
an agent-based model as an alternative to simulating adaptation pathways for forest plantations in
New Zealand.

Keywords: agent-based model; maladaptation; plantation forests; protection motivation theory; risk;
social psychological behaviour

1. Introduction

Models of forestry and land use systems as a whole are essential to understanding
the magnitude and impacts of climate change [1]. At the same time, the need to integrate
models of adaptation is widely recognised to support adaptation to climate change [2].
In this paper, we provide a review of agent-based models for climate change adaptation
applied to the forestry sector while focusing on behavioural rules. Our review covers the
use of theoretical frameworks to understand the adaptation behaviour of forest managers
in plantation forests. There are few models in the forestry sector that emphasise climate
change and human behaviour towards the adaptation of human responses [3–5]. Hence,
this paper proposes an alternative quantitative framework based on social psychology
theory, which explicitly integrates risk and adaptation appraisals of forest owners into
agent-based models for future-proofing not only for climate change, but also natural
environmental hazards.
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The Need for Modelling Alternatives in the Forestry Sector

Adaptation is essential to reduce the impacts of climate change. Adaptation is a social
process and highly contextual [6–8], framed by uncertainties and constraints. In the context
of climate change, adaptation refers to adjustments in ecological, social, and economic
systems in response to actual or expected climatic stimuli and their effects or impacts [9]. It
takes place mostly in local contexts and entails assessing the current and emerging risks,
the social economic and environmental factors that underpin risk and the capacity for risk
management [10]. The design and implementation of adaptation strategies in the planted
forestry sector requires an understanding of how forest owners’ and societal reactions to
climate change interact with biophysical, social and economic processes [11].

The large majority of climate change research in forest ecosystems has focused on un-
derstanding impacts on ecological processes [12]. In New Zealand’s forestry sector, where
1.7 million ha of plantation forests contribute to an annual export value of $6.3 billion [13],
the focus has been on the direct and indirect financial impact of climate hazards on exotic
forests. However, the understanding of other climate-related risks and of adaptation op-
tions and pathways remains limited. Foresters and forest owners have to meet multiple and
often conflicting objectives, such as adapting the functioning of plantation forests under
climate change risk while simultaneously managing high yields in order to be profitable for
their investors. For example, the 2020 New Zealand Superannuation Fund Climate Change
report ranked timber investments first of the five investments with the greatest physical
climate-related risk to the fund’s real assets [14].

The need to understand decision-making in terms of climate-related risks in climate-
sensitive sectors such as forestry is widely recognized [15–18]. This includes the need for
models that can simulate future adaptations under evolving climatic and socio-economic un-
certainty by explicitly representing adaptation and non-rational behaviours that underpin
decision making [11,19]. Models also need to incorporate risk preferences and perceptions
as motivations for adaptation or maladaptation [1,20] in the context of commercial (planta-
tion) forestry management [1]. Process-based models, such as agent-based models, have the
potential to better explore the future adaptation processes of socio-ecological systems [1,3]
and are increasingly used to capture interactions between individual decision-making and
the environment [21].

Micro-level interactions between heterogenous agents are at the heart of this modelling
approach. Unlike many equation-based models, heterogeneity plays a key role in agent-
based models, in which each agent individually assesses its own situation and makes
decisions on the basis of a set of rules [22]. Such models simulate the individual actions
of diverse agents to predict the resulting system behaviour and outcomes over time [23].
Agent-based models determine how humans (agents) respond to a variety of stimuli and
scenarios of environmental and social conditions, including adapting to climate change and
responses to adaptation strategies [24]. Adaptation can be modelled because agents have
cognition that allows them to receive and exchange information, perceive and evaluate
risks, identify and weigh options, make decisions and take actions, and to modify and
update their profile according to the outcome of these actions [25]. Agent-based models can
also represent underlying socio-economic processes [26], including local contexts. This is an
advantage of agent-based models, since cultural and local institutions strongly determine
the kinds of adaptive strategies people utilise. The main strength of using agent-based
models is the explicit representation of human decision-making.

2. Modelling Climate Change Adaptation and Theoretical Representations

Decision making is the internal process that specifies how agents (in this case, forest
owners) behave. Human decisions and subsequent actions change the structure and func-
tion of forest systems. As such, integrating human decision-making and behaviour into
formal forest growth or management models under uncertainties (e.g., climate change)
requires crucial modelling assumptions about the actors and goals, behavioural options, de-
cision rules, and modelling decisions regarding human social interactions [27]. Behavioural
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theories are useful as: (1) they facilitate identifying a variety of factors and driving forces
that influence human decision-making and behaviour, such as adaptation, and (2) they
serve as a framework to model, explain, and predict the behaviour of the agent [28], which
can later be applied in policy. A range of modelling approaches based on decision theories
and behavioural types, some of which have been applied to forestry case studies, have
integrated a range of assumptions about actors and goals. These are summarised in Table 1.

The most widely used model in economic theory for decisions over risk is Expected
Utility Theory [1,29–33], which assumes that each agent’s decision-making is goal-oriented
and self-interested, with unlimited cognitive capabilities and rational actors (or utility
maximisers). Expected Utility Theory is widely used in agent-based models as it is straight-
forward to translate into mathematical equations [31]. Risk is further explored through
the application of Modern Portfolio theory [34], in which actors seek to minimise the
variance and covariance (i.e., risk) of selected assets subject to a lower bound on the total
expected return for all selected assets, which can be accommodated in Expected Utility
Theory. However, forest owners may be neither rational nor risk-neutral and land man-
agers may not make decisions strictly based on expected utility [35]. Rather, they can
be risk-averse, as they are constrained by capital investments and face uncertainty about
the future. Bounded rationality and Prospect Theory were conceptualised to address the
cognitive limitation and risk aversion of decision makers, respectively [35]. Prospect theory
describes how individuals overweigh low-probability/high-impact events and underweigh
high-probability/low-impact events. Potential gains and losses are perceived as relative to
reference points instead of utility [21]. In forestry, Prospect Theory has been increasingly
applied to explore the effect of the perception of risk and time preferences in forest owners’
decision-making [36], but has not been applied in agent-based models.

The ability to learn from past experience is an important component of adaptive
capacity. Several studies applied the learning theories to examine the influence of past
experiences to climate change adaptation in forestry [37–40]. For example, Vulturius
and Swartling [40] examined the role of learning in engagement with climate change
adaptation and found that forestry stakeholders struggle to form opinions based on what
they perceive. However, based on the recent review by Brown et al. [1], a surprisingly
large number of behavioural models do not include any form of learning and of those that
do, agents are restricted to learning from their own experiences. Nevertheless, learning
and related theories (such as social learning) that emphasise the adaptability of human
behaviour are promising because they can capture short-term responses to drastically
changing environments relevant to climate change adaptation [27].
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Table 1. Behavioural and decision theories for forest management.

Behavioural Type
Decision

Theory Description Assumption Applicability/Example Strength Weakness

Fo
rw

ar
d

lo
ok

in
g

Rational 1 decision
makers
(Homo economicus)

Expected Utility Theory is
a theory of choice under
risk and uncertainty where
the decision maker
chooses the option that
promises the highest
expected utility [29,41].

Actors have perfect and
complete knowledge and
unlimited computational
processing powers.
Decision making is goal
oriented with stable
preferences
The rational decision
makers maximise their
utility or profit
(Maximiser).

The socio-economic agent
model focuses on the
selling (supply) and
buying (demand) of
timber, which later
influences the forest
succession process [42].

Easy to link to forest
growth models based on
costs and benefits.
Includes: adaptation
costs, risk perception,
time-preferences and
income constraints [21].
Many applications.

Does not include other
psychological factors,
such as perceived ability
to perform, and
subjective norms and
attitudes [21].
No forest owners and
managers are perfectly
rational profit
maximisers.

Behavioural economics

Prospect theory.
The theory describes how
individuals generally
overweigh low-
probability/high-impact
events and underweigh
high-probability/low-
impact events [35,43].

Human agents are
influenced by
psychological biases
such as endowment
effect (i.e., agents derive
utility not from wealth,
but from gains and
losses defined to some
reference level), loss
aversion (i.e., a loss hurts
more than an equally
large gain produces joy).

Using the extension of
Smooth Prospect theory
(SPT), artificial market
agents were simulated
against traditional agents
(based on EUT) using
ABM. The results showed
that agents based on SPT
demonstrated behaviours
that were closer to real
market data in risky
environments [29].

Accounts for loss
aversion, bounded
rationality in evaluation,
risk perception,
adaptation costs,
time-preference, and
income constraints [21].

Does not include other
psychological factors,
such as perceived ability
to perform, and
subjective norms and
attitudes [21].
Suitable decision rules
highly
context-dependent [27].

Ba
ck

w
ar

d
lo

ok
in

g

Cognitive/Psychological
(Homo psychologicus)

Learning theory focuses
on the past, where an
agent or actor learns that
a certain action leads to a
reward that feels good or
satisfying, and is therefore
more likely to repeat this
behaviour [27].

Learning from
experience and results of
past actions. Learning
occurs when the
outcome of an agent’s
decision to change or
persist with its strategy
matches its expectation
of success.
Decisions are also
guided by rewards or
punishments.

Agent considers
experience of successful
year including the
historical information (e.g.,
fire event or pest outbreak)
with various levels of risk
acceptance [44].

It can describe the
adaptivity of agent
behaviour to a changing
environment (e.g.,
climate change) with
limited information.

High degree of
randomness in
behavioural changes and
local dynamics are often
stylized [27].
Dos not specify how
information is acquired
and how beliefs are
formed.
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Table 1. Cont.

Behavioural Type
Decision

Theory Description Assumption Applicability/Example Strength Weakness

Si
de

w
ar

d
lo

ok
in

g

Social influence
(Homo

sociologicus)

Social learning
theory (i.e., adaptive
management approach)
The attitudes and
decisions of one agent
connected to another agent
influence agents’ attitudes
or decisions.
Agent learns from its
interactions with
nonspecific agents. This
results in a change in
understanding that goes
beyond the individual,
situating them within
wider groups in
society [45].

Assumes that successful
intervention as a learned
process depends on the
appropriate
communication channels.
Social influence is
exerted when the agent
cannot reach his/her
own decision and thus
imitates the behaviour of
the majority [46].

Scenario-based landscape
planning (participatory
planning process on
climate change
adaptation).
The FLAME model has
the agent’s decision
constrained by the
opinions of other agents
with whom they have
communicated [47].

Specifies how the
information is acquired
and beliefs are formed
by individuals.
Explains the formation
of consensus, the
emergence of clustered
opinion distributions
and polarization.

High degree of
randomness in
behavioural changes and
local dynamics are often
stylized [27].

Social network
theory focuses on the role
of social relationships in
transmitting information,
channelling personal or
media influence, and
enabling attitudinal or
behavioural change.

Assumes that social
structure influences the
behaviour, opinions, or
beliefs of individual
actors or agents, which
in turn drives changes in
social structure.
Actors with similar
characteristics tend to
form new links between
each other while
breaking links with
agents that have
diverging characteristics.

Information received from
others (e.g., social
network), updates agents’
knowledge and updates
their options according to
their objectives.
An analytical hierarchy
process was applied to
operationalise the agents’
behaviour in the context of
the roundwood and wood
fuel markets [48].
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Table 1. Cont.

Behavioural Type
Decision

Theory Description Assumption Applicability/Example Strength Weakness

Combination
Social/
Cognitive/
Psychological

Theory of planned
behaviour
focuses on intention as the
main determinant or
predictor of
behaviour [49].

Assumes that the
stronger the intention to
engage in a behaviour,
the more likely its
performance.
Three factors affect the
intention: (1) attitude
toward the behaviour,
which refers to the
degree to which a person
has a favourable or
unfavourable assessment
of the behaviour in
question; (2) subjective
norms, which refers to
an individual’s
perception about how
significant others would
judge the behaviour
under consideration; and
(3) perceived
behavioural control,
which refers to the
perceived ease or
difficulty of performing
behaviour (reflecting
past experience).

Applied to understanding
forest owners’ timber
stand improvement
intention [50].
May be explored for
planned adaptation in
forest management
Applied to explore the
determinants of
behaviours (recycling)
through the development
of the agent-based model;
cognitive model of
agent-based model was
develop based on the
result of the structural
equation model [51].

Includes individual
attitudes and subjective
norms [21].

Does not include risk
attitudes and time
preferences [21].
The original theory does
not provide a
mathematical
formalization [31].
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Table 1. Cont.

Behavioural Type
Decision

Theory Description Assumption Applicability/Example Strength Weakness

Protection motivation
theory (PMT)
focuses on the conditions
under which fear appeals
may influence attitudes
and behaviour [52,53].

Assumes that fear and
anxiety act as driving
forces that motivate
trial-and-error behaviour
and decision-making
towards adaptive
practices.
It assumes that various
environmental (e.g., fear
appeals) and
intrapersonal sources of
information can initiate
two independent
appraisal processes: (1)
threat appraisal and (2)
coping appraisal.

Climate change adaptation
decisions in forestry. It
explains and understands
factors influencing climate
change adaptation (and
maladaptation) behaviour
as well as crisis events due
to environmental
stresses [54].
Provides understanding as
to the motivation for
health and safety in
forestry operations.

Combines risk perception
and perceived costs and
benefits of economic
theories with individual
coping perceptions [21,55].
Explains the subjective
adaptive capacity of
individuals (i.e.,
perceived self-efficacy).

Does not include a full
distribution of risks and
does not include risk
attitudes and time
preferences [21].

1 Rationality was defined as the maximization of available utility and all agents were assumed to be rational.
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The Theory of Planned Behaviour is one of the most widely applied non-rational
theories that explains human behaviours [28]. The theory describes how behavioural
beliefs and attitudes, normative beliefs, and subjective norms, together with control beliefs,
lead to an intention to perform a behaviour and influence the actual execution of that
behaviour [31,49]. In forestry, the Theory of Planned Behaviour has been increasingly
applied to explain forest management decisions and the intentions of forest owners, such
as timber improvement and adaptation measures, and attitudes [50,56–59]. However, it
has not yet been used as behavioural framework for agent-based models of adaptation to
climate change in the forestry sector.

The Protection Motivation Theory (PMT) is another psychological theory that explains
forest owners’ behaviour [54,60]. PMT was originally developed based on the expectancy
value theory to explain the effects of fear appeals on health attitudes and behaviours [52,53].
Later, Milne et al. [61] further developed PMT to include decision-making in response to
threats. Since then, PMT has been adapted to other contexts, such as environmental risks
and natural disasters, including hurricanes [55], flood risks [62,63], and wildfires [64], and
used to explain agricultural adaptation behaviour and decisions [65]. It has become a useful
framework to evaluate stakeholders’ perceived severity of climate change consequences,
the perceived probability of climate change risks, the perceived effectiveness of adaptive
behaviours to cope with climate change, and the perceived ability to perform adaptive
behaviours successfully [65–67]. Applications of PMT to model the farmers’ adaptation in
agent-based models are growing in the agriculture sector [68–70].

In general, these are some examples of behavioural theories that can be applied to
understand adaptation behaviours in the context of the forestry sector. Similar to the
conclusion of several behavioural theory reviews, there is not a single theory that considers
all relevant decision variables; instead, the choice of theory depends on the research
questions, contexts, and purpose of the model, including its assumptions [1,21,27,28].

3. Integrating Climate Change Adaptation Decisions and Behaviour: Agent-Based
Model Applications

In the forestry sector, there are only two examples of the application of agent-based
models in which explicit adaptation decisions have been incorporated [1]. Rammel and
Seidl [4] and Blanco et al. [3] both focused on adaptation to maintain yields, economic
benefits, and potential ecosystem characteristics. An overview of the differences in agents’
decision behaviour and structural functionalities is presented in Table 2. The two examples
employed utility functions within their agents’ decisions, along with heuristic decision
rules. Utility functions are not always in the form of monetary income; instead, these
could be in abstract forms of yield (such as the Cobb–Douglas utility function) or ecological
indicators [71]. In Rammer and Seidl [4], for example, the model accounts for the dynamic
response of forest owners to changes in environment. There are two adaptation decisions
in the form of silvicultural decisions (specifically, passive and active). Passive adaptation
decisions of agents are modelled by dynamically adjusting harvesting levels to changing
growing conditions (e.g., +3 ◦C warming over 150 years), whereas active adaptation is
modelled through a reduction in the rotation period. In their simulation, adaptation
attributes such as the timing (i.e., reactive vs. proactive) of forest management were
explored, and the authors concluded that the timing and pattern of adaptation had strong
effects on ecosystem trajectories.

The forest owners in the model developed by Blanco et al. [3] are autonomous, risk-
spreading, and proactive, with the goal of promoting resilience. Forest owners are typified
by their objectives (e.g., producers, recreationists, etc.). Each agent type is associated with
specific forest types and associated management practices. The agents’ decisions are based
on the level of service provision, societal demand, and overall supply levels and marginal
utility functions. Coping ability determines each agent’s autonomous adaptation and it
is calculated by assigning a yearly score to each management strategy, depending on the
scenario. The simulation results showed that the coping ability of forest owners varies due
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to contextual factors, such as felling events, the magnitude of unmet demand for forest
services, and competition for other land uses.

Table 2. Examples of incorporating adaptation decisions in agent-based models for the forestry sector.

Aspect
Model

Rammer and Seidl [4] Blanco et al. [3]

Agent: Forest managers/forest owners Forest owners

Interaction type:

Agent-emergent ecosystem dynamics.
Based on the ecosystem information provided by
the biophysical mode (i.e., iLand); silvicultural
assessment is made for each stand at each time
step (or year)

Agent—environment
LPJ-GUESS ecosystem model—to simulate forest
dynamics

Agent behaviour/
decisions:

Two-tiered architecture:

1. Operational management decision *:
annually/stand level
1.1 Planting (style: regular, random,

grouped)
1.2 Thinning (types of thinning i.e.,

intensities)
1.3 Harvesting (type)
1.4 Salvaging (based on legal constraints)

2. Strategic management decision: (e.g., harvest
stand in a given year) decadal
- Change rotation age
- Change target species
- Change thinning intensity
- Change silvicultural system

* Decisions are based on key indicators: stand age,
stocking level, species composition, and diameter
distributions

Based on management roles/objectives and
associated management preferences:

1. Producer (economically oriented)
2. Multi-objective (economic, environmental

and social objectives)
3. Recreationalist (recreational objectives)
4. Conservationist
5. Passive (no clear objectives)

Management preferences are based on:

- Forest types (species composition)
- Thinning programme

Competition—limited supply of land (using
benefit function, which assigned value to
production based on the societal demand level of
each service)
Forest rotation period

Adaptation/
decisions:

Silvicultural decisions:

1. Adjustment of operational management to
changing stand conditions (passive adaptation)
(e.g., timing and distribution)

2. Alteration of key parameter of prevailing
management strategy (active adaptation)
(design of suited of policies)

Adaptation measure assumed to be known
according to each management role (e.g., species
composition, number of thinnings, rotation
lengths)
Coping ability is assessed using coping index,
which reflects whether a management strategy is
at least as competitive under an uncertain future
global change scenario as under a reference
scenario.

Sub-models: Simple decision heuristics Gaussian probability distribution to represent
individual differences in dedication to land use

Scenario settings: Passive vs. active adaptation Combined representative concertation pathways
and shared socio-economic pathways

Programming: Combined Javascript and C++ Java Eclipse (http://crafty-abm.sourceforge.net/)
(accessed on 28 September 2020).

Both models’ agent behaviour representations are based on the expected utility frame-
works. The advantage of using Expected Utility Theory is that it is well integrated in forest
ecosystem models that simulate forest dynamics under climate change scenarios. However,
as argued above, pure optimization assumptions do not always reflect real-world adaptive
behaviours. Instead, this is considered a shortfall or an adaptation deficit [33], suggesting
that the representation of agent behaviour remains weak.

Indeed, there is a window of opportunity to further develop and improve the rep-
resentation of adaptation to climate change in the forestry sector based on more realistic

http://crafty-abm.sourceforge.net/
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behavioural theories of decision-making (Table 1). Moreover, there are suggested ways
to improve the modelling and simulation of climate change adaptation relevant for the
forestry sector, such as [11]:

• Embedding human and social behaviours and constraints within models, either
through integrating agent-based models with process-based models or through struc-
tured approaches to constrain model input changes that reflect time-varying scenario-
specific settings.

• Reflecting on the importance of extreme events in driving adaptation [72].
• Accounting for the full cost of adaptation, in terms of the type and the amount that

can occur, thus reflecting the financial constraints on adaptation [33]. Existing forests
are constrained by a high level of investment in existing crops and infrastructure, and
by the long time frame before economic return, reducing the flexibility to adapt.

• Working with stakeholders and decision makers to better understand the triggers and
goals of adaptation policies and measures.

• Behavioural models should consider the perception of the risks of the landowner/
manager, since most adaptations are made in response to the perceived risk of extreme
events or the experience of the changing variability in climatic parameters [73,74].

Taking these suggestions into consideration (such as strong social behaviours, account-
ing for the full costs of adaptation and the incorporation of risk perception, including the
limitations in Table 1), the following section further describes a conceptual framework
from the viewpoint of a combination of cognitive and social psychology to represent forest
owners’ adaptation behaviour.

4. Protection Motivation Theory (PMT): A Social–Psychological Framework

Most adaptations are made in response to the perceived risk of extreme events or
the experience of the changing variability in climatic parameters [16,63]. PMT is a useful
framework to address the above case because it explicitly addresses risk and adaptation.

PMT is comprised of two ‘appraisals’. The threat-or-risk appraisal focuses on the
source of the threat and factors that increase or decrease the probability or likelihood of
maladaptive responses (e.g., avoidance, denial, wishful thinking). The risk of the threat (or
exposure) is estimated by the likelihood of the threat occurring and its severity, should it
occur. It assumes that the probability of engaging in risk reduction behaviours is a positive
function of the amount of risk perceived.

The coping-or-adaptation appraisal focuses on the coping responses available to the
individual to deal with the threat and factors that increase or decrease the probability or
likelihood of adaptive responses. The extent to which individuals can cope with threats is
evaluated by assessing their capability of acting (self-efficacy) and the anticipated effective-
ness of the action at reducing the threat (response efficacy). Self-efficacy is defined as one’s
perception of how competent he or she is at organising and executing the actions needed
to manage a risky situation (whether a person feels able to implement a certain measure).
One example is the formulation of practical guidelines on how to deploy adaptation mea-
sures. According to Blennow et al. [75], self-efficacy, or adaptive capacity, is an individual
phenomenon that either promotes or hinders adaptive action. Response efficacy refers
to one’s belief that recommended behaviours will be effective at reducing or eliminating
risk. For example, risk communication emphasises the effectiveness of flood mitigation
measures. Response costs refers to the perceived costs associated with protection actions,
such as financial costs, time, effort, and emotional costs.

According to McEligot et al. [55], the initial steps of appraising threats resemble a
traditional risk assessment, based upon perceived hazard probability and consequences;
by contrast, the coping appraisal resembles a cost-benefit analysis, utilising the decision
maker’s perception of their self-efficacy (i.e., ability to affect the response), response efficacy
(i.e., the responses’ ability to mitigate the risk), and response cost. Protective measures
(or adaptation responses) are those actions that are suitable for reducing threats and are
adopted if larger risk perceptions are accompanied by (positive) coping appraisals. By
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contrast, non-protective (or maladaptive) responses are adopted if high risk perceptions
are accompanied by low coping appraisals.

Personal experience of the effects of climate change and social influence (such as
norms and networks) can also be integrated with PMT [76] to enhance the understanding
of adaptation to climate change. Thus, this integrated theoretical framework can help to
explain the risk behaviour and the motivation of forest owners and the cognitive perceptual
process that forest owners experience when faced with the decisions related to the protection
of forest plantations from climate-related risks. However, its application to climate change
adaptation in forestry within the context of agent-based models remains unexplored.

5. PMT Application to Adaptation of New Zealand’s Commercial Forestry

Plantation forestry is an important primary industry in New Zealand. A plantation
forest is defined as an intensively managed planted forest that, at maturity, is composed of
one or two species, has one age class, and has regular tree spacing [77]. About 1.7 million ha
of land (7% of New Zealand’s land area) is plantation forest, of which 90% is planted with
radiata pine (Pinus radiata) and 5% is planted with Douglas fir (Pseudotsuga menziesii) [78].

New Zealand forests are not exempted from the impacts of climate change. Negative
impacts on forest plantations are projected from climate models. Along with climate change
mitigation strategies (e.g., planting forests for carbon sequestration), adaptation measures
and options are necessary. Table 3 outlines potential adaptation options or protection
measures for forest operations involving radiata pine [79,80]. These options are adaptive
strategies of risk minimisation for short-, medium-, and long-term vulnerability to climate
change.

Table 3. Climate drivers, risks, and their adaptation options for forest operations of radiata pine.
Source: Dunningham et al. [79] and Meason and Mason [80].

Risks Climate Driver Impacts Adaptation
Reactive/Strategic Proactive/Transformational

Change in growth
productivity and
wood quality

Increasing temperature
Decreasing
rainfallStrong winds

Productivity can be
reduced from the
indirect impacts from
the increased risk of fire,
pest, disease, and weed
establishment and
enhanced growth

• Identify new sites
and relocation

• Develop more
flexible forest
management plans

• New silvicultural
regimes

• Genetic and breeding
programmes

• Develop new products
• Create options for

higher-value
products/markets

Pest and diseases
outbreak

Increasing temperature
Increasing rainfall

The climate changes can
make forests more
suitable for pests to
establish viable
populations

• Change to
silvicultural and
harvest regimes
(i.e., rotation)

• Genetic modification to
enhance resistance

• Relocation/
disestablishment of
forests

• Deployment of
alternative species

Fire Increasing temperature
Decreasing rainfall

The productivity of
understorey and the
increase in dryness can
increase fuel loads

• Improved
detection and
monitoring of fires

• More firebreaks

• Landscape-level fire
planning

• Altering distributions of
plantations and
plantation age classes

Erosion Increasing rainfall and
wind

Loss of established
forests
Loss of soil for
pot-harvested stands

• Harvest timing
• Timing of planting
• Use of cover crops

• Replanting options that
replace root binding

• Slope stabilisation
• Develop options for

cover crops
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Table 3. Cont.

Risks Climate Driver Impacts Adaptation
Reactive/Strategic Proactive/Transformational

Drought Decreasing rainfall
Increasing temperature

Impact can be
significant for newly
planted stands

• Genotype
resistance

• Breeding
programs

• Planting timing

• Land use change
• Deployment of

alternative species

Wind throw and
toppling

Increasing wind/storm
incidence

Loss of productivity
from stem-break
damaged (non-
utilisable) trees
Some production loss
from toppled trees,
depending on the ability
to quickly extract and
process fallen trees.

• Age class
structuring

• Timing of planting
• Methods of

planting
• Thinning regimes

• Deployment of
alternative species

• Site selection

There are many barriers to the implementation and adoption of adaptation strategies
by forest owners, including owners’ limited understanding of specific contextualised risks
and impacts and a lack of frameworks to communicate and articulate these impacts [81,82].
For large-scale exotic forest owners, the lack of actionable and specific risk-based research
and tools has been identified as a barrier to incorporating practical adaptation strategies into
their decision-making processes [83]. These explanations may underlie the low adoption of
adaptation strategies by smallholder forest owners. To test this possibility, we employed
the 2017 Survey of Rural Decision Makers [84], which asks whether respondents planted
new land in forestry, changed pasture species or pasture management, provided more
shelter for stock, changed livestock class or livestock management, changed crops or crop
management, replanted different timber species, changed rotation length by harvesting
sooner, changed rotation length by harvesting later, undertook new forestry management
practices such as thinning or fertiliser application, converted to an uneven-aged forest,
and/or changed seed sources. More the 90% of the respondents answered no to these
questions (Table 4). The same survey revealed that most respondents anticipated changes in
temperature, rainfall, and drought, leading us to ask what motivates forest owners to adapt.

To address the question of forest owners’ motivation to adapt, we developed, and
propose here, a conceptual framework for improving forest owners’ adaptation to climate
change using ABM. Our goal is to contribute to the understanding of how risk arising from
future uncertainty and risk reduction strategies can be integrated into decision-making for
future-proofing plantation forests in the New Zealand context. Our review of behavioural
theories for climate change adaptation in the forestry sector highlighted the strengths of
the PMT framework; therefore, we propose to use a PMT framework for the behavioural
representation of the agents’ (forest owners) adaptation decisions (Figure 1).

Table 4. The 2017 survey of rural decision makers’ item-and-response options covering small-to
medium forest owners (Source: Brown [84]).

Survey Items Response Frequency Percent

Temperature: expectation to change by 2050

Decrease slightly 8 1.6
No change 63 13.1
Increase slightly 316 65.4
Increase a lot 57 11.8
Unsure 39 8.1
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Table 4. Cont.

Survey Items Response Frequency Percent

Rainfall: expectation to change by 2050

Decrease a lot 9 1.8
Decrease slightly 75 15.5
No change 125 25.8
Increase slightly 156 32.3
Increase a lot 50 10.4
Unsure 68 14.1

Drought: prevalence to change by 2050

Decrease a lot 6 1.2
Decrease slightly 33 6.8
No change 118 24.4
Increase slightly 190 39.4
Increase a lot 77 15.9
Unsure 59 12.2

Adaptation strategy:

Planted new land in forestry Yes 14 9.4
No 134 90.5

Change/replant different timber species Yes 8 5.4
No 140 94.6

New forest management practices
(e.g., thinning)

Yes 5 3.4
No 143 96.6

Convert to an uneven-aged forest Yes 4 2.7
No 144 98.0

Change rotation length: Harvest sooner Yes 3 2.0
No 145 98.0

Change rotation length: Harvest later Yes 4 2.7
No 144 97.3

Flooding concern: based on past experience
Yes 168 34.8
No 303 62.7
Unsure 12 2.4

Flooding mitigation scheme: participation
Yes 54 11.2
No 405 83.8
Unsure 24 4.9

Figure 1 presents the general conceptual framework of the agent-based model, in
which two systems (social and biophysical) interact. Both the social and the biophysical
systems are influenced by external factors, such as climate and market changes [85]. Their
interactions result in emergent properties, such as the overall resilience and adaptation of
planted forests under climate and market changes over time.

Within the social system, PMT is adopted to determine the forest owner (agent)’s
protection motivation or intention to apply any adaptation measure (as listed in Table 3).
The agent’s protection motivation or intention to adapt (Ia) is a function of risk appraisal
(RA) and adaptation appraisal (CA) (as described in Section 4) for an adaptation measures
(m) at time (t), which can be calculated as follows [21,53]:

Ia = α ∗ RAt + β ∗ CAt,m (1)

where
RAt = γ ∗ PSt + δ ∗ PPt (2)

CAt,m =ε ∗ SEtm + θ ∗ REtm − ζ ∗ RCtm (3)

where PS is perceived severity, PP is perceived probability, SE is self-efficacy, RE is response
efficacy, and RC is response cost. The weights of the different variables (α, β, γ, δ, ε, θ, ζ)
depend on the contexts of the adaptation decisions and can be estimated with a statistical
analysis of the survey data [21].
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Figure 1. Proposed conceptual framework integrating the PMT framework for improving agents’
adaptation behaviour.

Based on the PMT, the agent will only implement a certain adaptation measure when
the risk appraisal and coping appraisal are high. There are two ways to estimate this [21]:
(1) using probabilities [70], in which the greater the intention to adapt, the larger the
probability is that the forest owner will invest in the adaptation measure; and (2) using
thresholds [68], according to which the forest owner only invests if their intention to adapt
is above a certain threshold. In another model, developed by Grothmann and Patt [63]
and Lindell and Perry [76], both threats and coping appraisals are influenced by personal
characteristics and experiences, as well as social networks [53], as shown in Figure 1. Based
on the specified equations, we can determine the socio-psychological variables or factors
affecting their intention to adapt, as well as the potential for maladaptive behaviour.

Our intention is to continue to parameterize and calibrate the proposed empirical
agent-based model [86]. This work included a survey of forest owners to obtain input
data and the selection of a process-based model to simulate forest yield and growth
(e.g., CABALA [87] or 3-PG model [88,89]) under various climate scenarios for plantation
forests in New Zealand [85], which will be a sub-model for biophysical systems (Figure 1).
We proposed to translate this conceptual model (Figure 1) to an empirical agent-based
model using NetLogo platform [90], which is freely available and easy to use, to test the
proposed behavioural framework.

The integration of PMT as a behavioural representation of agents in an agent-based
model for adaptation modelling has been applied in the agricultural sector, particularly
for drought events [68–70]. Like most agent-based model applications, there are often
not enough data to carry out such a validation. To address this limitation, we have
applied, and will continue to apply mixed approaches, such as seeking stakeholders’
agreement with regards to model outputs, conducting expert validation, and modelling



Land 2022, 11, 364 15 of 18

output corroboration [91–93]. It is also important to perform a sensitivity analysis as part
of the validation process [42].

6. Future Research

Modelling approaches, such as agent-based models, are useful for understanding
the impacts of climate change on forestry, but the use of these types of model remains
limited in climate change adaptation applications. However, to develop and successfully
implement adaptive climate change policies, knowledge of how individual forest owners
learn about and perceive climate change impacts, risks, and options for adaptation is
required. Unfortunately, most agent-based models are based on Expected Utility Theory,
which assumes full rationality and fails to account for risk. While other theories have been
posited in the wider literature on behavioural change, we advocate using a PMT framework
for understanding adaptation in the context of climate change adaptation in plantation
forestry. This framework also offers an advantage in that it identifies perceptions of risk
and the preferences of different types of forest owner; it can also explain their subjective
adaptive capacity (i.e., perceived self-efficacy). In addition, the framework can be used
to investigate maladaptive behaviour and explore whether the elements of the coping
appraisal (i.e., response costs of adaptive measures, response efficacy and self-efficacy) will
increase the likelihood of forest owners adopting risk reduction measures.

Building on its strengths, a decision algorithm of forest owner adaptation behaviour
based on a PMT framework can also be integrated with process-based forest models
(e.g., CABALA, 3-PG). In this way, future adaptation pathways under evolving climatic
and socio-economic uncertainty can be simulated with decision-making based on more
realistic behaviour.
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