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Abstract: The usual approaches to describing and understanding ecological processes in a landscape
use patch-mosaic models based on traditional landscape metrics. However, they do not consider
that many of these processes cannot be observed without considering the multiple interactions
between different land-use patches in the landscape. The objective of this research was to provide
a synthetic overview of graph metrics that characterize landscapes based on patch-mosaic models
and to analyze the ecological meaning of the metrics to propose a relevant selection explaining
biodiversity patterns and ecological processes. First, we conducted a literature review of graph
metrics applied in ecology. Second, a case study was used to explore the behavior of a group of
selected graph metrics in actual differentiated landscapes located in a long-term socioecological
research site in Brittany, France. Thirteen landscape-scale metrics and 10 local-scale metrics with
ecological significance were analyzed. Metrics were grouped for landscape-scale and local-scale
analysis. Many of the metrics were able to identify differences between the landscapes studied. Lastly,
we discuss how graph metrics offer a new perspective for landscape analysis, describe the main
characteristics related to their calculation and the type of information provided, and discuss their
potential applications in different ecological contexts.

Keywords: landscape graph metrics; landscape heterogeneity; spatial graph; landscape characterization

1. Introduction

Landscape ecology appraises the interactions between spatial patterns and ecological
processes, analyzing causes and consequences of spatial heterogeneity in ecosystems across
a range of scales [1]. To understand the role of landscape heterogeneity in biodiversity,
the habitat-matrix framework based on the theory of island biogeography [2] and the
patch-mosaic model have been developed [3–7]. The first regards natural or seminatural
habitat patches containing all resources necessary for organisms as being embedded in
a homogeneous and hostile matrix usually composed of agricultural land cover [8]. The
second considers the interactions between habitat patches as being dependent on mosaic
properties such as resistance to the movement/dispersal of organisms [9]. One of the
most important ideas to emerge from these approaches is that relationships at a local scale
can produce effects at large spatial scales and vice versa, affecting the dynamics of the
whole ecosystem [10–15]. Nevertheless, classical metrics do not directly account for these
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dynamics. More recently, Fahrig et al. suggested describing landscape heterogeneity on the
basis of the composition (amount and diversity) and configuration (spatial arrangement) of
landscape features [4].

To elucidate the impact of landscape heterogeneity on ecological process, many patch-
based metrics have been developed to measure and synthesize the attributes and geo-
metric characteristics (form, spatial relationship, and connectivity) of different patches
associated with both single landscape elements and whole landscapes. Despite being
extensively applied to relate landscape heterogeneity to ecological patterns, these metrics
show limited integration of mosaic properties/functions (e.g., resistance to movement of
organisms) [7,16].

Landscape ecologists have turned to graph theory driven by a desire for a more
functional approach to landscape quantification. In this framework, the landscape is
represented by a set of nodes (habitat patches) connected by links or edges formed by
potential ecological fluxes (e.g., dispersal or movement); together, these nodes result in
a landscape graph [7,17]. Graph theory provides a formal foundation for studying the
effects of landscape graph structure on ecological patterns. It also represents a powerful
and effective way to analyze landscape connectivity [5,18–20]. Nevertheless, empirical
ecological studies applying this framework are still scarce.

Graph theory has mostly been used in areas such as chemistry, physics [21,22], social
sciences [23,24], and computer science [25]. Since its introduction to landscape ecology by
Urban and Keitt in 2001 [26], it has been increasingly used to measure multiple aspects
of connectivity in the context of conservation biology, land-use planning, and biogeogra-
phy [12,20,27]. Consequently, a wide variety of metrics have been developed to characterize
landscape graphs. These metrics involve either local descriptions related to structures,
movements, and fluxes at the level of nodes and edges or global descriptions at the level
of the entire graph (for reviews, see [20,28]. Consequently, the selection of appropriate
measures that can explain the phenomenon being studied poses a challenge to landscape
ecologists [20].

Most landscape ecological studies using graph theory treat landscapes from a habitat-
matrix perspective [10,20,26], are dedicated to one species or groups of species, and use
dispersal strategies as the link between nodes [6,29,30]. However, because some species
or groups of species are associated with (1) particular land-cover types (i.e., specialist
species), (2) use different land-cover types to complete their life cycles (complementa-
tion/supplementation processes), and (3) can move between habitat patches (e.g., through
neighboring or mass effects; [31,32], it is necessary to jettison the habitat-matrix perspective
and consider the whole landscape mosaic. In addition, among the growing number of stud-
ies analyzing landscape connectivity with graphs of biodiversity [33], most are dedicated
to animals (e.g., [5,6] whose nodes are habitat patches and whose links are migration or
movement routes [10]. Studies investigating the effects of landscape connectivity on plants
are scarce (see [34] for a review). Depending on their dispersal strategies, plants can spread
and make connections between habitat patches, creating a landscape network [11].

The aim of this study is to provide a synthetic overview of existing metrics that
characterize landscape graphs obtained from patch-mosaic models. We analyze their
ecological meaning to propose a selection of metrics relevant to the landscape ecologist
interested in explaining biodiversity patterns and ecological processes. Lastly, we illustrate
their application in three contrasting agricultural landscapes in the LTSER Zone Atelier
Armorique, Brittany, northwestern France.

2. Materials and Methods
2.1. Landscape Graph Definition

When applied to landscape ecology, graphs conceptualize an entity (i.e., landscape G)
as a set of points or “nodes” given as follows [35]:

V(G) = {v1, v2, v3, . . . , vn}. (1)
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The edges (E) or “links” represent neighborhood relations between the nodes [7,36]
and are represented as

E(G) = {uava, ubvb, . . . , unvn}, (2)

where each pair e = (u, v) denotes a connection between two nodes in V(G) [35,37]. The two
vertices u and v are adjacent in G, and the edge e is incident to the vertices u and v [37]. The
node u is also called a neighbor of v in G and vice versa [37]. We used NV and NE to denote
the number of nodes and the number of edges of a graph. We used the concepts of nodes
and vertices indistinctly, in the same way as the concepts of edges and links.

2.2. Bibliographic Review and Graph Selection

We conducted a search for landscape graph metrics used in the field of ecology. In the
Web of Science and Google Scholar sites, we searched combinations of the following key-
words: “graph”, “graph theory”, “landscape”, “spatial temporal analysis”, and “landscape
dynamic”. We completed the search using the terms for the identified graph metrics as
keywords (e.g., “closeness”, “graph density”, etc.). We only selected metrics that could be
indicators of ecological processes or functions (i.e., with ecological significance).

We propose a new classification of such metrics according to different axes. For the
scale of application, we differentiated between metrics defining the whole landscape struc-
ture (hereafter, landscape scale) and those analyzing the patch scale (hereafter, local scale).
At the landscape scale, we classified metrics depending on whether they were informative
about the heterogeneity, connectivity, clustering, or assortativity of the landscape. At the
local scale, metrics were classified depending on whether they were informative about
node importance, compositional heterogeneity, or configurational heterogeneity.

For each metric, we provide a comprehensive description, calculation, and interpreta-
tion of its values. We also propose hypotheses about the ecological significance of the metric
and how it is related to primary productivity and biodiversity, and we list publications
using or describing it.

2.3. Graph Metrics Application in an Agricultural Forest Mosaic

To explore the behavior of the different metrics in actual differentiated landscapes, we
employed the abovementioned graph metrics to analyze landscapes in the Zone Atelier
Armorique, a long-term socioecological research (LTSER) site, which is located in the
northern part of Ille-et-Vilaine, Brittany, France (48◦ 36′ N, 1◦ 32′ W) (Figure 1). The study
area is a hedgerow network (also called bocage) landscape characterized by mixed dairy
farming and cereal production. We selected three contrasting landscapes (A, B, and C
in Figure 1; ~900 ha each), 5–10 km apart and distributed along a gradient of hedgerow
network density and farming practice intensity from the south to the north [38,39]. Graph
analyses were performed with existing land-use maps of the three landscapes, considering
eight land-use types: woodland, hedgerows, grassland, spring crops (mainly maize and
pea), winter cereals (mainly winter wheat, barley, triticale, and oat), other crops (mainly
apple orchards), water, and urban areas (roads and villages, including gardens).

We used the CONEFOR extension in ArcGIS 10.5 [40,41] to produce a list of all the
edges between patches less than 15 m apart. We arbitrarily decided on 15 m because of the
large range of possible values for edge effects and plant dispersal capacity reported in the
literature [34,42,43]. We then created landscape graphs on the basis of the edge list, using
the igraph package in R software and Qgis [44–46]. We explore and discuss the different
metrics according to the local context and framed within the ecological context. Lastly, we
illustrate the applications of relevant metrics (i) at the landscape scale, using landscapes
A, B, and C, and (ii) at the local scale, using three representative nodes of landscape B
(Figure 1a).
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Figure 1. The Zone Atelier Armorique. (a) The locations of the three study landscapes of low (A),
medium (B), and high (C) agricultural intensity. An example of landscape A shown as (b) a red–green–
blue (RGB) image, (c) a discrete land-use map, and (d) a graph of interactions between patches. Note
that nodes in (d) are represented by the same color categories as in (c). The three images correspond
to the same year (2010).

3. Results
3.1. Review of Graph Metrics
3.1.1. Graph Metrics at the Landscape Scale

The bibliographic review resulted in 13 metrics at the whole-landscape scale. For
each metric selected, Table 1 shows its calculation, interpretation, ecological meaning,
and references. We then discuss the findings according to the reported main attribute
(heterogeneity, connectivity, clustering, and assortativity).
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Table 1. Graph metrics selected to describe heterogeneity, connectivity, clustering, and assortativity
at the landscape scale.

Group Metric
(Abbreviation) Calculation Interpretation Ecological Meaning References

Landscape/graph
heterogeneity

Number of nodes
(N nodes) Nv

How many patches does
the landscape have The higher the value,

the higher the
heterogeneity of the

landscape

[47–49]Total perimeter
(Total per)

Nv
∑

v∈V(G)
perv

Sum of the perimeters of
all patches

Landscape/graph
connectivity

Graph density
(Density)

Ne

(Nv∗ Nv
2 −

Nv
2 )

Ratio of the number of
edges to the number of

possible edges

The higher the value,
the greater the connec-

tivity/interactions
between patches

[50–52]Number of edges
(N edges) Ne =

Nv
∑

v∈V(G)
d(v)

How many connections
does this landscape have

[4,37,50,51,53–55]

Maximum degree
(Max degree) Maxv∈V(G) d(v) Number of links of the

most connected patch
Mean node degree

(Mean degree)

Nv
∑

v∈V(G)
d(v)

Nv

Average number of
connections per patch

Median node degree
(Median degree) d(v)med

The “middle” value of the
degree of nodes

Graph diameter
(Diameter) Maxu∈V(G) ∈ (u)

Longest geodesic distance
(length of the shortest
path) between nodes

The lower the value,
the greater the connec-

tivity/interactions
between patches

[53,56,57]Mean node distance
(Mean distance)

∑ dist(u,v)
N◦ paths ∀ v, u ∈ V(G)

Average geodesic distance
between patches

Cluster metrics

Number of
communities based

on propagating
labels (N CLP)

See text (details in [58]).

Number of identified
groups based on different
methods Measures how
clustered the graph is

The higher the value,
the higher the

heterogeneity of the
landscape

[30,58–62]

Number of
communities based

on greedy
optimization of

modularity
(N CGO)

Max
[

Q = ∑
i

(
sii − a2

i
)]

Number of
communities based

on the leading
eigenvector of the
community matrix

(N CLEV)

Max [Q]
See text (details in [62])

Assortativity
coefficient

Degree of
assortativity

(Ass deg)
r = ∑xy xy(hxy−ax by)

σaσb

The assortativity
coefficient is positive if

similar vertices (based on
some external property)

tend to connect
between them.

The lower the value,
the lower the
robustness of

landscape flow
(of organism)

[22,30,63,64]

Heterogeneity

The number of nodes represents the number of patches in the landscape, while total
perimeter is the sum of the perimeters of all patches in the landscape. Both metrics are
generally highly correlated. In landscape ecological studies, the landscape area is usually
fixed; thus, a higher number of patches or a greater total perimeter result in smaller patches
in the landscape. Because some species require particular and/or multiple habitats and
resources [42], a higher number of patches (nodes) may benefit specialist species (i.e., habitat
specialization; ref. [65] and those requiring multiple resources provided by different habitat
types (i.e., through complementation/supplementation; ref. [31], leading to increased
levels of species diversity [47,48]. An increase in total perimeter and, consequently, a
reduction in mean patch size could provide easier access to adjacent patches for many
species (i.e., landscape complementation), promote the migration of organisms with short-
distance dispersal such as plants (i.e., cross-habitat spillover; ref. [32], and increase species
diversity. In the case of patch size as a productivity indicator for agricultural landscapes,
larger patches are often associated with crops; thus, higher productivity is expected in
landscapes with both a lower number of nodes and a smaller total perimeter.
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Connectivity

In an undirected graph (where the distance between A and B is equal to the distance
between B and A), graph density represents the proportion of current edges (Ne) of all
possible edges in the graph ( Nv(Nv−1)

2 ) [52]. This metric is widely used in several areas, such
as social network analysis, cybercrime detection, neuroscience, and ecology [12,23,25,66–68].
It ranges from 0, if edges are not present, to 1, if all possible edges are present [52]. A
denser graph results in more patch interactions (assuming that two adjacent patches will
interact), which probably facilitate flux (e.g., insect movements, seed plant dispersal, etc.)
between patches. As suggested above, increased patch interactions (as a result of increasing
edges in the graph) could result in higher species diversity due to spillover and landscape
complementation [50,51].

The number of edges or the degree of a node v (d(v)) is the number of edges incident
to v [37,53], i.e., the number of neighboring patches of a node (or patch) v. Maximum
degree is the maximum value of the degrees of nodes V(G), i.e., the patch with more
neighbors. Mean node degree is the average value of the degrees of nodes V(G), and
median node degree is the middle value of the degrees of nodes V(G) in an ordered list
of nodes. A patch with a higher node degree interacts with more patches, resulting in
increased species diversity due to edge effects and spillover. Moreover, a higher number
of interactions between patches, i.e., mean and median node degree, is an indicator of
configurational heterogeneity [4]. Thus, it is expected to increase local diversity (node and
edge scale) and decrease landscape diversity [50,51,54]. In the same way, the number of
edges indicates the number of interactions between patches; it has been used as an indicator
of the connectivity in landscapes [55].

Graph diameter is the length of the longest geodesic (i.e., shortest path). If a graph
G has several u− v paths, the distance from u to v (dist(u, v)) is the u− v path with the
shortest length, while the eccentricity of node (∈ (u)) is Maxv∈V(G)dist(u, v) [53]. Thus,
we can compute the diameter of a graph by calculating the eccentricity of each node,
Maxu∈V(G) ∈ (u) [53]. It can also be interpreted as the total inter-patch distance an
organism would have to traverse to span the two farthest patches [20]. Similarly, mean
node distance is the average path length in a graph, obtained by calculating the shortest
paths between all pairs of vertices [53]. Both metrics are measures of topological distance
between patches. Smaller values of these metrics indicate a more compact and easily
traversable landscape [56,57], leading to higher flux and interaction between patches.

Clustering

In graph theory, a community is a group of nodes densely connected to one another
and sparsely connected to other parts of the graph. It can also be defined as a group of nodes
similar to one another and dissimilar from the rest of the graph [58–60]. Densely connected
nodes may reflect patches closely linked by mutual dispersal events (i.e., bidirectional
flux) [30]. Thus, a higher number of (graph) communities in the landscape should lead
to greater landscape diversity and benefit to biodiversity. Many community detection
techniques have been developed to date and implemented in several areas [62,69,70]. In
this study, we selected three methods with ecological meaning for community detection:
one based on “propagating labels”, another based on “greedy optimization of modularity”,
and the last based on “the leading eigenvector of the community matrix”.

To obtain the number of communities on the basis of propagating labels, each node
is initialized with a unique label; then, at every iteration of the algorithm, each node
adopts the label that a maximum number of its neighbors have, with ties broken uniformly
and randomly [58]. We used land-use (LU) categories as labels; thus, as the LU labels
propagated through the network, densely connected groups of nodes formed a consensus
on their LUs. At the end of the algorithm, nodes with the same LU were grouped together
as communities [58]. This algorithm has been used principally in medicine, biogeography,
and social networks [24,71–73].
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An algorithm for community detection based on greedy optimization of modularity
was proposed by Clauset et al. [59]. The basis of this algorithm is the concept of modularity
(Q). To understand it, consider a particular division of a graph into k communities and a
k× k symmetric matrix s whose element sij is the fraction of all edges in the graph that links
nodes in community i to nodes in community j [61]. The trace of this matrix Tr e = ∑

i
sii

gives the fraction of edges in the graph that connect nodes in the same community, while
the row or column sums ai = ∑

j
sij represent the fraction of edges that connect nodes in

community i, whose value will be aiaj if there are random connections between vertices [61].

Q = ∑
i
(sii − a2

i ). (3)

Thus, it measures the fraction of edges in the graph that connect nodes of the same
community minus the expected value of the same quantity in a graph with the same com-
munity divisions but random connections between nodes [61]. Values typically fall in the
range of about 0.3 to 0.7, with higher values indicating strong community structure, i.e.,
there are many edges within communities and only a few between them, with 0 indicating
random connections between nodes [59,61]. The algorithm starts with each vertex being
the sole member of a community of one; then, communities whose amalgamation produces
the largest increase in Q are repeatedly joined together until there is just one commu-
nity [59]. This procedure is probably one of the most frequently used, with examples from
neuroscience, biogeography, social networks, etc. [72,74,75].

The algorithms that find communities on the basis of the leading eigenvector of the
community matrix also maximize modularity, but they explain it with a matrix-based ap-
proach [62]. Below, we show the modularity coefficient for optimization in algebraic terms.

Q =
1

2Ne
∑
ij

[
Aij − Pij

]
δ
(

gi − gj
)
, (4)

where Ne is the number of edges in the network, Aij is the current number of edges
between a particular pair of nodes i and j, δ

(
gi − gj

)
= 1 if group i is the same as j and 0

otherwise [62], and Pij =
KiKj
2Ne

, where Ki and Kj are the node degrees of i and j in the real
graph; thus, the null model follows the same node degree distribution as the real graph [62].
This method has been used in biogeography and social graphs [24,72].

Assortativity

A network is said to show assortative mixing if nodes of high degree in the network
tend to be connected to other nodes of high degree [64]. Thus, a negative value means that
patches with many connections tend to connect to others of low degree, i.e., patches that are
close to several other patches are not close to each other. This measure provides information
about a network’s structure and robustness [30,63]. Negative values mean that flow relies
on a few nodes of high degree, making the landscape less robust [30]. That is, if these
nodes disappear, much of the flow (i.e., organisms movement, seed dispersal, etc.) would
also disappear, with negative consequences for population dynamics (i.e., no immigration,
which leads to extinction) and, thus, decreased species diversity in the landscape. New-
man [22,64] proposed a standard Pearson correlation coefficient to quantify the amount of
assortative mixing.

r =
∑xy xy

(
hxy − axby

)
σaσb

, (5)

where ax and by are the fraction of edges that start and end at vertices with values x and y,
respectively, σa and σb are the standard deviations of the distributions ax and by, and hxy is
the fraction of all edges in the network that join together vertices with values x and y for the
scalar variable of interest, i.e., node degree. This metric is in the range [−1 ≤ r ≤ 1], with
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zero for no assortative mixing, positive values for assortative mixing, and negative values
for disassortative mixing. It has been widely used to analyze many biological, neural,
physics, and social graphs [21,22,30,76,77].

3.1.2. Graph Metrics at the Local Scale

We propose 10 graph metrics at the local scale, classified into three groups according
to their main attributes (node importance, compositional heterogeneity, or configurational
heterogeneity; Table 2). Similar to the previous section, for each metric, its calculation,
interpretation, and ecological meaning are given, and references are cited.

Table 2. Graph metrics describing landscape at the local scale, considering node importance and
compositional and configurational heterogeneity.

Group Metrics (abb.) Calculation Interpretation Ecological Meaning References

Node importance

Node degree (Degree)
µ[d(v)] = µ

[
∑

u∈V(G)
euv

]

Measures the mean of
node importance in

relation to landscape
connectivity

The greater the
importance or centrality,
the higher the flow (or

fluxes)

[12,30,42,78–84]

Node closeness
(Closeness) µ[Ci ] = µ

 n−1
Nv
∑

j=1
dist(i,j)


Node eigenvector

(Eigenvector) λe = Re→ µ[e]

Node Bonacich
power (B power) µ[B(α, β)] = µ

[
α(I − βR)−1R1

]
Node coreness

(Coreness)
Mean of coreness (see text and

details in [79].

Compositional
heterogeneity

Community based on
propagating labels

(N CLP)

Number of community members
surrounding each node

Identify group
membership on the

basis of main land use

The higher the diversity
of communities or

patches, the higher the
local/patch

heterogeneity

[4,29,50,51,65,85–87]

Configurational
heterogeneity

Community based on
greedy optimization

of modularity
(N CGO)

Number of community members
surrounding each node after

Max [Q]
Identify group

membership on the
basis of local

topological structure

The greater the number
of communities

surrounding the node,
the higher the

local/patch
heterogeneity [4,29,30,54,87–89]

Community based on
the leading

eigenvector of the
community matrix

(NCLEV)

Number of community members
surrounding each node after

Max [Q]

Patch area (Area) Area of the patches/nodes With more area, the
patch is bigger

The larger the area, the
lower the local/patch

heterogeneity

Patch perimeter
(Perimeter) Perimeter of patches/nodes

A patch with a larger
perimeter is bigger or

more complex

The larger the perimeter,
the higher the

local/patch
heterogeneity

Node Importance/Centrality

Borgatti [81] provided a useful classification of flow processes according to the progress
of the flow and the mechanism of node-to-node transmission. Depending on the organisms
studied, their dispersal abilities, and movements from patch to patch, different measures
can be selected to characterize their flow (or movements) in the landscape. We used the
degree, closeness, eigenvector Bonacich power, and coreness measures to illustrate the use
of metrics for this group. Before presenting them, we first provide a short summary of
Borgatti’s work [81].

Node-to-node transmission has three types of mechanism: parallel duplication, serial
duplication, and transfer. In transfer, everything that flows exists only once in the landscape,
whereas, in duplication, everything that flows exists at the node of origin and in all the
nodes through which it flows. The difference between parallel and serial duplication is
that, in the former, the flow travels to several nodes at the same time, while, in the latter, it
moves from node to node.

There are four types of flow propagation: geodesics, paths, trails, and walks. A path is
a simple subgraph of a graph whose nodes can be ordered so that two nodes are adjacent
if and only if they are consecutive in the list; furthermore, edges and nodes cannot be
repeated [53,81]. A geodesic is the shortest path from u to v. Trails are a sequence of edges
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in which no edge is repeated, and walks have no restriction in their sequences [53,81]. All
paths are trails and all trails are walks, but not every walk is a trail and not every trail is a
path (Table 3; ref. [81]).

Table 3. Typology of flow processes and major centrality measures (adapted from [81]). Met-
rics combining a particular flow propagation trajectory and node-to-node transmission are shown.
As an example, a process that shows the particular combination of flow characteristics is given
within parentheses.

Typology Parallel Duplication Serial Duplication Transfer

Geodesics dPCflux + dPCconnector Freeman closeness
(Mitotic reproduction)

Freeman closeness
Freeman betweenness

(Package delivery)

Paths
Freeman closeness
Degree centrality

(Internet name server)
(Viral infection) (Mooch)

Trails
Freeman closeness
Degree centrality

(E-mail broadcast)
(Gossip) (Used goods)

Walks

Freeman closeness
Degree centrality

Bonacich eigenvector
(Attitude influencing)

(Emotional support) (Money exchange)

Plants and animals show different dispersal or movement strategies that can be critical
to their survival in agricultural landscapes [84,90]. Hence, it is necessary to account for all
these different mechanisms of dispersal or movement when selecting centrality measures,
i.e., metrics using parallel duplication for their diffusion and the different trajectories
that follow.

For every metric of this group, a higher value means that the patch has an important
role in the landscape flow because it has several connections to other patches (node degree),
its neighbors have several connections (eigenvector, Bonacich power, and coreness), or it is
close to other patches (closeness). These important or central patches are probably more
diverse because more individuals from different species may flow through them [91]. The
vegetation productivity of these central patches may also be higher because the flow could
increase the arrival of beneficial insects, but it could also be lower due to higher incidence
of diseases [91].

The degree of a node can also be defined as the number of paths of length one that
emanates from a node; thus, this metric can be regarded as a measure of immediate
effects [30,81]. The probability of a patch being part of a flux of organisms (e.g., plants or
insects) from neighboring patches may be related to the number of patches surrounding
it [12]. This metric, also called “degree centrality”, is probably the simplest centrality
measure. Its value ranges from 0, when a node is not connected to other nodes, to Nv − 1,
when a node is connected to all other nodes. It has been widely used in the social sciences,
as well as in citation counts to assess the impact of scientific research, in neuroscience, in
ecological networks, and in the analysis of commercial economic exchange [12,55,83,92–95].

Closeness is based on the degree to which a node is close to all other nodes in the
graph or the degree of independence from other nodes to pass everything that flows [82].
It may be understood as the inverse of the average distance between i and all other nodes,
and it provides expected values of arrival times of something flowing through the network
or the degree of independence from other nodes to pass everything that flows through
them [81,82]. A node’s closeness centrality is calculated as the sum of the geodesic from/to
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all other nodes [81,82]. Beauchamp [96] recommended calculating the relative centrality of
a node i as

Ci =
n− 1

Nv
∑

j=1
dist(i, j)

. (6)

Closeness is 1 when i is maximally close to all other nodes and decreases as the average
distance between i and the other nodes grows [82]. Values are scaled by multiplying raw
closeness by (NV) − 1; thus, values range between 0 and 1.

Borgatti [81] showed that the interpretation of closeness is accurate for two kinds
of processes: those in which things flow along the shortest paths and those in which
things flow by parallel duplication, regardless of how diffusion occurs, which is the case
for seeds. A patch with high closeness may be regarded as well placed in the graph to
facilitate the dispersal of plant species across the landscape [30]. This metric has also
been used to analyze commercial economic exchange, identify stakeholders to facilitate
diffusion-related conservation objectives in landscape ecology, and analyze the organization
of transnationals [55,93,95,97].

A node’s centrality, based on the eigenvector centrality method, is calculated as the
summed connections to other nodes weighted by their centralities, and it corresponds to
the values of the first eigenvector of the graph adjacency matrix R [80,98]. The centrality of
a node is given by the following expression:

λe = Re, (7)

where R is the matrix of adjacencies, e is an eigenvector of R (the centrality value), and λ is
its associated eigenvalue. Each eigenvector is a factor of R, and the associated eigenvalue
measures the accuracy with which it can reproduce R. Consequently, the largest eigenvalue
is preferred [80,98]. Its range is between 0 and 1, with the most important node with a
value of 1. This measure counts walks, which assume that trajectories can not only be
circuitous but also revisit nodes and edges multiple times along the way, and that organisms
(e.g., seeds) can take multiple “paths” simultaneously [81]. Moreover, it counts the number
of walks of all lengths, weighted inversely by length, which emanate from a node. It has
been applied to identify stakeholders to facilitate diffusion-related conservation objectives,
analyze the organization of transnationals, and identify best patches for the purpose of
conservation in landscape ecology [30,93,97]. This centrality metric is scaled so that the
node with the highest value is 1.

Bonacich power is very similar to eigenvector centrality but allows greater flexibility.
In this metric, it is possible to choose a parameter β to vary the degree and direction
(positive or negative) of the dependence of each node’s score or power on the scores of the
other nodes [80]. It is calculated in matrix notation as

B(α, β) = α(I − βR)−1R1, (8)

where “I1” is a column vector of ones, I is an identity matrix, and α affects only the length
of the vector B(α,β). The parameter α is selected so that the sum of squared scores B(α, β)
is equal to the number of nodes in the network [80]. Centrality values are rescaled to sum
to 1.

On the other hand, whenever the centrality or power of a patch is increased positively
by connections to other high-status patches, a positive value is adequate for β; however,
when it is advantageous to be connected to patches with lower scores, a negative value of β
is necessary [80]. Furthermore, the magnitude of β affects the degree to which distant ties
are taken into account; as β increases in magnitude, the centralities of the other patches
are taken more into account, such that Bi(α, β) becomes a function of both the indirect
and the direct ties connecting the patch to the system [80]. Thus, when β = 0, B(α, β)
is perfectly correlated with the degree centrality measure, and when β is equal to the
reciprocal of the largest eigenvalue of R (RLER), B(α, β) is perfectly correlated with the
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eigenvector centrality measure. In our analyses (see graph metrics application below), we
selected a value of 0.85 for RLER, because it was less correlated to the other measures and
consequently, B(α, β) could be interpreted as the eigenvector, but with less influence of the
farthest nodes. In contrast, Bonacich power with a negative value of β could be used, for
example, to detect patches less prone to pest attacks because it would highlight patches
connected to various other patches unimportant for network flow.

Coreness, proposed by Seidman [67], is a measure of network cohesion. It is based
on minimum degree and produces a sequence of subgraphs of gradually increasing co-
hesion [67]. A subgraph H of graph G induced by set W is a k-core (or a core of order k)
if ∀v ∈ W : d(v) ≥ k, and H is a maximum subgraph with this property [79]. The core
number of a node v is the highest order of a core that contains this node. The core number
of maximum order is also called the main core [79]. The algorithm recursively deletes all
nodes and edges incident with them of degree less than k, and the remaining graph is
the k-core.

The k-core indices of neighbors’ patches may be good indicators of the dispersion
occurring in a patch [78]. It has been used to identify the most cohesive patches in a
pond network and was related to the presence/absence of the European pond turtle, Emys
orbicularis L. [99]. It has also been used to analyze protein–protein interactions [100] and
to detect influential spreaders in politics [101]. Here, we counted the number of nodes
belonging to different communities surrounding the focal node to calculate related metrics.

Compositional Heterogeneity

To characterize compositional heterogeneity, we used the number of communities
based on propagating labels surrounding a node (which is already explained for cluster
metrics at landscape scale). Sirami et al. proposed hypotheses regarding crop heterogeneity,
i.e., the compositional and configurational heterogeneity of the crop mosaic itself [87]. To
describe the effect of compositional crop heterogeneity on biodiversity, they presented four
hypotheses: first, biodiversity increases with increasing crop diversity if different crop
types can serve as habitats for different specialist species [65,102]; second, biodiversity
increases with increasing crop diversity through landscape complementation, i.e., different
crop types provide different resources required by single species, or if specialist species
spill over from other crop types in the landscape into the sampled fields [50,51,86]; third,
biodiversity decreases with crop diversity if most species have high minimum total habi-
tat area requirements, i.e., they require large amounts of a single crop type [29]; fourth,
biodiversity shows a peaked relationship with crop diversity of the landscape [85]. As
each node belongs to a community, we counted different community labels surrounding
samples, with the expectation of greater biodiversity in samples surrounded by more
different communities. According to Sirami et al. [87], the heterogeneity of cover types
should increase biodiversity, at least up to a point, in agricultural landscapes.

Configurational Heterogeneity

We used other community detection methods and the area and perimeter of patches
as indicators of configurational heterogeneity. In the case of community membership
based on the leading eigenvector of the community matrix and greedy optimization of
modularity methods, we used the number of different communities surrounding samples
as an indicator of configurational heterogeneity [88]. Configurational crop heterogeneity
may enhance biodiversity through several mechanisms [87]. First, if small fields provide
easier access to adjacent crop fields for many species, the reduction in mean field size may
benefit biodiversity by landscape complementation and by increasing spillover [4,54,88].
Second, a decreased mean field size may limit some species by negative edge effects, and
species that require large patches will also decrease [29,54]. Therefore, as in composi-
tional heterogeneity, a peaked relationship between configurational heterogeneity and
biodiversity is expected. As we stated previously, patches in the same community may
indicate mutual dispersal between them as a consequence of the denser connections within
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communities [30]; thus, a higher number of communities surrounding the sample denotes
higher heterogeneity.

3.2. Graph Metric Application
3.2.1. Landscape Scale

We applied the discussed graph metrics to the three landscapes of the Zone Atelier
Armorique. In the landscape heterogeneity group, we found a gradient in the number of
patches and in the total perimeter from the south to the north, with landscape A having
the highest and landscape C having the lowest number of patches and total perimeter
(Table 4; Figure 2). In the case of the metrics of the landscape connectivity group, landscape
C had the densest graph compared with landscapes A and B. In contrast, landscape A
had the highest and landscape C the lowest number of edges and maximum degree, with
landscape B being intermediate. All landscapes showed similar trends in mean and median
node degree, indicating a similar number of connections within them. Lastly, there was a
6% and 9% difference between the highest and lowest values of graph diameter and mean
node distance, respectively (Table 4). The number of communities varied considerably
depending on the method used (Table 4).

Table 4. Application of graph metrics at landscape scale for the three landscapes (A, B, C) in the Zone
Atelier Armorique in 2010.

Group Metric Landscape A Landscape B Landscape C

Landscape/graph
heterogeneity

Number of nodes 553 506 395
Total perimeter 314,451.41 295,448.28 252,918.45

Landscape/graph
connectivity

Graph density 9.96 × 10−3 11.30 × 10−3 14.08 × 10−3

Number of edges 1520 1444 1096
Maximum degree 31 29 33
Mean node degree 5.49 5.71 5.55

Median node degree 4 5 5
Graph diameter 15 16 16

Mean node distance 6.32 6.72 6.15

Cluster metrics

Number of communities based on
propagating labels 3 6 5

Number of communities based on greedy
optimization of modularity 6 7 8

Number of communities based on the leading
eigenvector of the community matrix 12 12 11

Assortativity
coefficient Degree of assortativity −0.20 −0.18 −0.13

Figure 3 shows the number and arrangement of the communities based on greedy
optimization of modularity. Modularity ranged from 0.711 to 0.725, with a mean of 0.719,
indicating strong community structure of the three landscapes studied. Landscape C had
the highest and landscape A the lowest number of communities (Figure 3). We obtained
values between 0.720 and 0.755, with a mean of 0.733, for communities on the basis of the
leading eigenvector of the community matrix, indicating even more community structure
than shown by the greedy optimization method. However, the differences between land-
scapes were lower. The propagating labels method for the number of communities showed
the greatest differences between landscapes, with landscape B having the highest number
of communities and landscape A the lowest (Table 4).
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Lastly, the degree of assortativity was higher in landscape C, indicating that it was
more robust than landscape A when considering the flow of an organism, for example,
either a pest or beneficial insect. However, the three landscapes had negative values,
indicating that flow relied on a few nodes with high degree (Table 4).

3.2.2. Local Scale

At the local scale, the three contrasting nodes in landscape B had very different degrees
(Table 5; Figure 4), with node 454 being the least important when landscape connectivity
was considered, i.e., there was lower flow through it and more dispersal or movements
through node 208. However, depending on the metric (closeness, eigenvector, B power,
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or coreness), both nodes 134 and 208 could be the most central (Table 5). In the case
of compositional heterogeneity, node 208, being the most compositionally diverse, had
edges to three different communities. In contrast, node 134 had more configurational
heterogeneity according to the other two community methods (Table 5).

Table 5. Application of graph metrics at the local scale of landscape B in the Zone Atelier Armorique
in 2010. The metrics of the three groups are given for three contrasting nodes 134, 208, and 454.

Group Metric Node 134 Node 208 Node 454

Node importance

Node degree (degree) 14 29 2
Node closeness (closeness) 0.20 0.18 0.16

Node eigenvector (eigenvector) 0.05 1 0.06
Node Bonacich power (B Power) 4.96 × 10−3 12.13 × 10−3 1.51 × 10−3

Node coreness (Coreness) 4 4 2

Compositional
heterogeneity

Community based on propagating
labels (N CLP) 2 3 1

Configurational
heterogeneity

Community based on greedy
optimization of modularity (N CGO) 5 2 1

Community based on the leading
eigenvector of the community

matrix (NCLEV)
3 2 1

Patch area (m2) 82,877.01 197,840.49 903.87
Patch perimeter (m) 1624.94 4226.61 132.5

Land 2022, 11, x FOR PEER REVIEW 15 of 23 
 

Lastly, the degree of assortativity was higher in landscape C, indicating that it was 
more robust than landscape A when considering the flow of an organism, for example, 
either a pest or beneficial insect. However, the three landscapes had negative values, in-
dicating that flow relied on a few nodes with high degree (Table 4). 

3.2.2. Local Scale 
At the local scale, the three contrasting nodes in landscape B had very different de-

grees (Table 5; Figure 4), with node 454 being the least important when landscape connec-
tivity was considered, i.e., there was lower flow through it and more dispersal or move-
ments through node 208. However, depending on the metric (closeness, eigenvector, B 
power, or coreness), both nodes 134 and 208 could be the most central (Table 5). In the 
case of compositional heterogeneity, node 208, being the most compositionally diverse, 
had edges to three different communities. In contrast, node 134 had more configurational 
heterogeneity according to the other two community methods (Table 5). 

Table 5. Application of graph metrics at the local scale of landscape B in the Zone Atelier Armorique 
in 2010. The metrics of the three groups are given for three contrasting nodes 134, 208, and 454. 

Group Metric Node 134 Node 208 Node 454  

Node importance 

Node degree (degree) 14 29 2 

Node closeness (closeness) 0.20 0.18 0.16 

Node eigenvector (eigenvector) 0.05 1 0.06 

Node Bonacich power (B Power) 4.96 × 10−3 12.13 × 10−3 1.51 × 10−3 

Node coreness (Coreness) 4 4 2 

Compositional 
heterogeneity 

Community based on propagating labels (N CLP) 2 3 1 

Configurational 
heterogeneity 

Community based on greedy optimization of mod-
ularity (N CGO) 

5 2 1 

Community based on the leading eigenvector of 
the community matrix (NCLEV) 3 2 1 

Patch area (m2) 82,877.01 197,840.49 903.87 

Patch perimeter (m) 1624.94 4226.61 132.5 

 
Figure 4. Graphs representing three contrasting nodes selected from landscape B in 2010. Different 
node colors represent different land uses in the patches. Differences are evident in the degree of 
each node, i.e., the number of paths of length one that emanate from the node. 

Figure 4. Graphs representing three contrasting nodes selected from landscape B in 2010. Different
node colors represent different land uses in the patches. Differences are evident in the degree of each
node, i.e., the number of paths of length one that emanate from the node.

4. Discussion

This review provided a new general framework for characterizing landscapes, at
different scales, employing graph metrics with ecological meaning. Through an extensive
literature review, we bring together the graph metrics that have been used in ecological
research, describe the main characteristics related to their calculation and the type of infor-
mation provided, and discuss their potential applications in different ecological contexts.
In addition, our employment of the metrics to analyze three actual contrasting landscapes
helps to understand their behavior and to explore their potentiality for future research.

4.1. Graph Metric Analyses

Landscape metrics are quantitative indices that describe compositional and configu-
rational aspects of landscapes, the latter being typically described as discrete entities or
patches [7]. The release of the FRAGSTATS program [103] in 2012 revolutionized landscape
structure analysis and made landscape metrics the most common tool to understand biodi-
versity, ecological processes, and functions at the landscape scale [7,104]. Today, hundreds
of different metrics are used to measure landscape patterns [105]. However, some of them
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present problems such as redundancy and high correlation, limited consideration of spatial
patterns, and difficulties in interpretation leading to inappropriate inferences [7,104,106].
Although some of these problems are also apparent in graph metrics, graph theory presents
great potential for understanding processes and functions at the landscape scale and con-
sidering the type of landscape phenomenon (plant dispersal, animal movements, fire
propagation, etc.). Calabrese and Fagan highlighted the potential of graph theory due to
its low data requirement given the benefits it can deliver [107]. Kupfer showed that, for a
selection of landscape metrics, there is a tradeoff between (1) data requirements and ease
of calculation of the metrics, (2) their basis in structural versus functional properties, and
(3) their ease of interpretation [7]. In this sense, graph metrics are at the midpoint between
structure and function, but they are usually more difficult to calculate and interpret than
the commonly used structural metrics [7].

As demonstrated in our review, graph metrics must be used according to the type of
information provided by the metric. While there are some metrics that can be applied at the
landscape scale and provide a single value for the whole landscape, others are informative
about the role of one node in relation to its neighbors or the rest of the landscape. Among
the metrics used to characterize the whole landscape, those that appraise the heterogeneity,
connectivity, atomization, or assortativity of the landscape can be differentiated. On the
other hand, among the metrics used to characterize the landscape at the local scale, it is
possible to distinguish between metrics that are informative about node importance and
those that explain its local heterogeneity (compositional and configurational).

Graph/landscape heterogeneity metrics provide information similar to that offered
by classic compositional metrics, such as the number of patches and total edge. They
can easily be incorporated into a characterization and evaluation of a given landscape,
consequently facilitating the analysis by providing both points of view (classical and graph
theory analyses).

Several metrics available for graph connectivity at the landscape scale provide infor-
mation about the quantity of interactions between nodes (maximum degree and mean and
median node degree). These descriptive metrics can be complemented by observing the
complete distribution of the degrees of the landscape nodes.

On the other hand, the number of edges, mean node distance, and graph density
provide information about the number of connections and their density or degree of
topological aggregation/disaggregation that are not necessarily in a Euclidean plane. Given
that the three metrics are correlated with the number of nodes in the landscape, which
in turn could hide important patterns, we recommend modifying these metrics so that
their values are independent of the number of nodes. In addition, a particular value of
these metrics may be obtained either from a rather “uniform” network or from a network
consisting of a very cohesive region (with points of high degree) and a very sparse region
(with points of low degree; ref. [67]), which could also hide landscape patterns.

Graph diameter, which represents the topological distance between the two farthest
nodes, is an easily interpretable metric, which allows consideration of processes associated
with connectivity that are not necessarily Euclidean. However, it is necessary to account for
its value being influenced by differences in any of the edges that make up the diameter,
rendering changes or differences in other parts of the graph invisible.

Cluster metrics are probably the most dissimilar to the classic metrics of landscape
ecology. The number of communities based on “greedy optimization of modularity” and
“the leading eigenvector of the community matrix” are mainly metrics measuring the
configurational heterogeneity of the landscape, while the number of communities based on
“propagating labels” is related to both configurational and compositional heterogeneity.

The last metric at the landscape scale, the degree of assortativity, is also very different
from any other classic metric of landscape ecology. It allows relating connectivity between
nodes to some external property. Here, the number of connections is used to measure their
assortativity, but any other characteristics of the nodes can potentially be used. For example,
if information is available on patches with a certain disease, it is possible to evaluate the
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degree to which the disease clusters or whether it is dispersed in the landscape, which
could provide valuable information for its management.

At the local scale, metrics associated with node importance, which indicates the extent
of connectivity of the nodes, are configurational metrics that demonstrate their significance
in relation to others, revealing local flow capacity. The different methods for measuring
them represent the different ways to see their topology. These methods may be related
to the compositional metric, edge density (which measures the m/ha of a class per patch,
class of land use/land cover (LULC), or landscape), but the methods themselves do not
measure the flow between patches.

Compositional heterogeneity is one of the newest measures, along with cluster metrics,
which identifies communities or groups in the landscape on the basis of LULC and the
amount of connectivity between nodes. It describes heterogeneity at the local scale as
a function of the first-order neighborhood. In the configurational heterogeneity group,
patch area and perimeter are metrics that provide the same information as the classic
configurational metrics obtained from raster data. This occurs because the configuration of
each node of the graph contains the area and perimeter information of each patch as an
attribute. This is useful since it is possible to add other patch attributes, such as temperature,
primary productivity, and type of management. On the other hand, the other two metrics
in this group measure the number of communities surrounding each node. It is not possible
to obtain this information by classic metrics of landscape ecology.

4.2. Implementation of Graph Metrics

As Kupfer stated, graph metrics are more difficult to calculate and interpret than
commonly used structural metrics [7]. This calculation difficulty is in part due to the
lack of software that can construct and analyze graphs [7]. However, the development
of new packages in open-source software, such as R, is providing the opportunity to
overcome this barrier by using them in conjunction with other tools, such as sf, raster,
and landscape metrics, to analyze landscapes [104,108–110] or specific to graphs such as
graph4lg, Makurhini, and igraph [44,111,112]. Unlike other software for calculating graph-
based metrics, R allows integration of large workflows and reproducibility of analyses, as
it is available for the most common operating systems [108]. Given the many approaches
to quantify spatial patterns (e.g., landscape, graph, and surface metrics) and that there is
no one-size-fits-all solution [105], different complementary approaches may be required for
the same study, and R is the program with the highest potential to offer them.

However, by reducing technological barriers, the same problems that occurred with
FRAGSTATS development, i.e., the use and misuse of metrics due to the problems men-
tioned by Gustafson, Kupfer, and Li and Wu are possible [7,104,106]. One of these problems
is the assumption that the matrix is homogeneous, when, in fact, it may neither be uniformly
uninhabitable nor serve as a total barrier to the movement of a certain organism [7]. Many
graph metrics are based on this binary perspective of the landscape. For instance, Rayfield
et al. identified 63 graph metrics, of which 29 are calculated using simple connections
between habitat patches, i.e., topological relationships or the “Euclidean nearest neigh-
borhood” metric [20]. The other 34 metrics are calculated by including node and/or edge
weights characterizing some functional factor, such as patch area, the distance between
patches, or the cost to move between patches. However, both types of metric (weighted
and unweighted) are analyzed from the perspective that habitat patches are nodes and
ignore the heterogeneity of the matrix.

In addition, one of the criticisms of the classic metrics obtained from landscapes viewed
as mosaics is that many tend to characterize the landscape in a structural rather than a
functional way, and they do not necessarily have a relationship with the processes that occur
in the landscape [7,106]. Although the graphs in this study are based on mosaics, nodes can
incorporate qualitative and quantitative information, and the links can incorporate weights,
allowing the graphs to better represent the relationships between the structure and function
of the landscape [113]. For example, edges between nodes can be weighted on the basis
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of patch similarity in terms of genetics, species richness, agricultural practices, or another
relevant ecological factor [105]. Using graphs to analyze the processes and functions of
landscapes through their metrics offers an opportunity to go beyond the emphasis on
structural properties inherent in most traditional landscape metrics; however, the degree
to which this can be accomplished with graphs is determined by the way in which nodes
and edges are defined and how metrics are calculated [7,18,20,114]. To the extent that
information and/or resources are available, mark–recapture studies or species-specific cost
surfaces can be used to estimate the movement of organisms between patches. In this way,
edges between patches can be more realistically characterized for analysis.

4.3. Case Study and Final Remarks

The case study investigated three contrasting landscapes that represent a gradient of
low to high hedgerow network density and farming practice intensity from the north to
the south (Figure 1), which affects fauna and flora and the ecological processes in different
ways [38,39,115]. The application of graph metrics showed clear differences between the
areas studied when landscape heterogeneity, connectivity, and assortativity were measured
from graphs (the number of nodes, total perimeter, graph density, number of edges, and
degree of assortativity), confirming the ecological differences already reported in other
studies. Otherwise, unclear differences can be observed from graph metrics that consider
aggregated values of neighborhood relationships or clustering at the node level, possibly
due to the topological configuration of the nodes in the graph (based on the LULC classes
and the number of connections present in each community).

At the local scale, when we compared node degree with other graph metrics (from
the node importance and compositional and configurational heterogeneity groups), it
was not possible to see a clear pattern associated with it. In these metrics, topological
relationships are used, but they do not necessarily represent the relationships that occur in
a Euclidian context.

Lastly, using graph metrics, we succeeded in highlighting the main differences be-
tween the three landscapes, as well as the more subtle differences that can also explain
ecological processes/patterns. Thus, graph metrics offer an integrative (and deeper) view
of landscapes by considering both structure and function.

5. Conclusions

Graph metrics allow the description of landscape heterogeneity in the same way
as classical metrics, and they consider compositional, configurational, and topological
characteristics. Some graph metrics that consider topology provide new information
owing to the application of topological relationships that are not necessarily based on a
Euclidian space.

A graph analytical perspective enables the incorporation of new biophysical infor-
mation related to ecological processes beyond the conventional LULC categories applied
in classical landscape analysis. Consequently, more complex ecological questions can be
addressed, for example, relationships between ecological processes at the level of topology
or topological relationships between processes beyond the traditional dimensions.

The development of new software, functions, and libraries oriented toward calculating
graph metrics and the incorporation of new metrics will allow expanded use of a graph-
based analytical perspective in the framework of landscape ecology. Further studies are
necessary that relate graph metrics with ecological processes at the landscape scale. This is
a promising area for future scientific development in the field of landscape ecology.
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